水质浊度测量系统

水质浊度测量系统
水质浊度测量系统

水质浊度测量系统的硬件电路设计

系统基本组成和控制框图

整个测量系统的控制是由一片80C31单片微机来实现的,外围电路由许多模块组成——信号放大,量程转换,A/D转换,数据存储,D/A转换,键盘,显示,指示报警,标准信号输出,RS232标准接口等组成。整体通过对80C31进行编程来实现对所有模块的调度和管理。

基本的控制框图如下所示:

图 2.1.1 总体控制框图

系统的功能

根据上述总体的控制框图,我们可以确定测量系统的功能如下:

1) 量程自动切换功能:为了提高浊度测量的分辨率设置了量程自动切换功

能,A/D 转换为三位半BCD码,量程切换为两档,分别为0~ 10NTU 及0~ 100N TU , 这样低浊度时测量的分辨率为0.05NTU , 高量程时为0.005NTU , 显示采用四位数显, 小数点可自动移位。

2) 软硬件结合实现软件死机自动复位功能,可以提高仪器的抗干扰能力;

3) 系统参数保存:仪器的系统信息编程数据等均保持在EEPROM 中,在断电时信息不会丢失。并在数据结构设计中采取了容错技术, 在EEPROM 中建立了数据镜象, 进一步提高了系统信息的安全性;

4) 提供4~20mA 及0~1V,0~100mV,0~10mV标准信号输出;

5) 提供RS232串行通讯接口,便于与其它标准接口的设备相连;

6) 自动测试诊断功能提高了系统的智能化水平, 并使该仪器的日常维护变得简单。

系统的功能在很大程度上不仅取决于硬件电路的连接,还取决于软件与硬件的相互结合。

系统硬件电路设计

下面分模块对系统的硬件电路设计进行一一介绍。

分几大块?

A/D转换系统介绍

首先,传感器所接收到的光信号在进行过光电转换后,变成了模拟电信号,这个电信号的强弱完全取决于光电传感器接收到的光信号的强若,因此我们需要对电信号进行信号放大,这就要用到模拟运算放大器,该系统所采用的运算放大器是LM358,一个LM358芯片中包含两个独立的运算放大器。同时,考虑到测量精度的问题,我们将该测量系统的测量范围分成了两档,分别是0~10 NTU和0~100 NTU。当测量值分别属于不同的测量范围时,就需要对信号放大不同的倍数,因此,我们选用了多个放大器,分别在其输入端和输出端之间设置不同阻值的电阻来达到此目的。精度?

其次,经过放大器后的信号仍然是模拟信号,而单片微机系统只能对数字信号进行处理,因此还需要一个模数转换的过程,即A/D(Analog to Digital)过程。该系统中模数转换所采用的芯片是MC14433(三位半的BCD码A/D转换器,相当于11位二进制数),分辨率比我们通常所使用的ADC0809等8位的A/D转换芯片要高。而且它在数据传输方面与ADC0809、AD574等也不同,后两者在数据传输上都是并行式的接口,而MC14433则是按数位轮流选通的,工作方式比较特殊。之所以采用该芯片是因为:它的精度比较高;它可以直接生成压缩的BCD码,显示的时候比较方便,省去了不同进制数之间的转换过程。仪器仪表多使用BCD码的A/D转换器,如我们常用的数字万用表。

A/D转换器MC14433的具体电路连接如图 2.3.1 所示:

注:完成电路原理图请参见附录A。

图 2.3.1 MC14433电路连接

其中,Vx端是模拟量的输入端,Q3~Q0是A/D转换BCD码的输出端,DS1~DS4是位选通的脉冲输出端;74LS244是个锁存器,用来控制选通读取A/D转换数据。该系统中A/D转换采用的是中断的连接方式,每一次A/D转换完成后,都会向CPU 发出中断请求。

MC14433是双积分式、输出为三位半BCD码的A/D转换器,其分辨率相当于11位二进制数,这使得仪器的测量精度可达到0.001V。该A/D转换器具有外接元件少,输入阻抗高,功耗低,电源电压范围宽,精度高等特点,并且具有自动校零和自动极性转换功能,只要外接少量的阻容件即可构成一个完整的A/D转换器,芯片内置了时钟振荡电路,在对时钟要求不高的场合,选择一个电阻即可设定时钟频率;如果在对时钟频率稳定性有较高要求的场合,则需要外接晶振或LC电路其电路的区别如图 2.3.2 所示。一次A/D转换的时间在100ms~250ms之间,可以通过外电路调节。

图 2.3.2 MC14433外部振荡电路连接方式图

MC14433是采用字位动态扫描BCD码输出的工作方式,即千、百、十、个位BCD码分时在Q0~Q3轮流输出,同时在DS1~DS4端输出同步字位选通脉冲,很方便实现LED的动态显示。

在该测量系统中,MC14433 A/D转换器的具体工作方式如下:

Vref:基准输入电压,2V或者200mV,该系统设计中采用的是2V;

R1,R1/C1,C1:外接积分阻容元件,并与适当的基准输入电压相匹配;

典型值如下:

1)当量程为2V时:C1=0.1uF,R1=470K;

2)当量程为200mV时:C1=0.1uF,R1=270k;

EOC:A/D转换结束输出端,高电平有效,可用来做CPU的中断信号,但是单片机的中断是低电平有效,因此需外接一个非门;

DU:更新转换结果输出控制端,DU与EOC接在一起,每次转换结果的输出都被更新,该系统设计就是采用这种连接方式,然后再经过一个非门连接到单片机的中断1——INT1脚上的;

DS1~DS4:多路选通脉冲输出端,高电平有效,DS1~DS4分别为千位、百位、十位和个位,这个脉冲信号是由MC14433芯片产生的并发送至单片机的,因此单片机只需读取该信号便可知当前传送的是哪一位的BCD码了;

Q0~Q3:BCD码数据输出线,Q0为最低位,Q3为最高位;三位半的BCD码的低三位可以显示0到9十个数字,而最高位只能表示0或1,所以当DS2,DS3,DS4分别选通期间,Q0~Q3输出完整的BCD码,但DS1选通期间比较特殊,特殊情况如下:

1)Q3表示千位输出,Q3=0,则“千位”=1;Q3=1,则“千位”=0;

2)Q2表示转换值的极性,Q2=1为正极性,Vx>0;Q2=0为负极性,Vx<0;

3)Q0表示超出量程范围,Q0=0表示量程范围适合输入Vx的大小;

例如:Q0=1,Q3=0表示过量程,(量程为2V时,Vx>1.999V)

Q0=1,Q3=1表示欠量程,(量程为2V时,Vx<0.179V)

MC14433芯片硬件接口注意:

1)由于MC14433的A/D转换结果是动分时轮流输出BCD码,而且Q0~Q3,DS1~DS4都不是总线结构,因此不能直接与单片机的数据总线P0口连接(Q0~Q3作为数据传输口,可接P0口,而DS1~DS4只能接P1口,或采用其它方式连接),可接P1口或扩展8155、8255等。

2)MC14433可不必控制A/D转换的开始,这也是该A/D转换器的一个特点,

而将EOC和DU两因脚直接相连接,以选择连续A/D转换方式,每次转换完毕都送至内部输出锁存器中,由于EOC是A/D转换结束输出标志信号,因此CPU可定时查询EOC引脚,或采用中断方式。

表 2.3.1 MC14433 当DS1选通时BCD码分别表示的含义

注:当DS1=1时,Q1的输出无任何意义

选用该芯片时我查阅了很多相关的参考实例,发现很多系统在采用该芯片时都是直接将P1口的8根口线连接到MC14433的Q0~Q3和DS1~DS4。这种接法虽然正确,但却将P1口的8根口线全部占用了。考虑到系统还要外接LED指示灯等电路,我对这种接法进行了改进:将DS1~DS4接P1口高4位的4根线,而将Q0~Q3改接到P0口的低4位的4根线。这样不仅没有影响系统功能的实现,还节省了P1口的4根口线,可以用来扩展实现其它功能。

D/A转换系统介绍

很多测量设备都可以接记录仪等记录设备,以便随时记录测量系统的测量结果。记录仪等记录设备大都需要标准信号,比如:4~20mA及0~1V,0~100mV,0~10mV等模拟标准信号,而单片微机能处理的和处理后的的信号都是离散的数字信号,这就需要一个数模转换的过程,即D/A(Digital to Analog)过程。该系统中数模转换器所采用的芯片是DAC1208(12位二进制的D/A转换器),其功能和管脚图与我们常用的DAC1210(12位二进制的D/A转换器)等相类似。选用该芯片主要是因为它的分辨率比较高。但是在使用12位的数模转换器时要注意一个问题,那就是,我们所使用的单片微机都是8位的,因此12位的模拟量不能一次性输入数模转换器的锁存器中,必须分两次输入,然后再进行转换,这就是多位(超

过8位)数模转换器工作的大致原理。为什么精度?

DAC1208具体的电路连接如下图所示:

图 2.3.3 DAC1208电路连接

D/A转换器输出模拟量的形式有电流型和电压型两种,对于电流型输出D/A转换器,可外接运算放大器,将输出电流转换成电压提高带载能力。

DAC1208是12位二进制的D/A转换器,分辨率和精度都比较高,数据总线D0~D11用来传送被转换的数据,高8位D4~D11对应高8位输入寄存器,低4位D0~D3对应低4位输入寄存器。电流输出Iout1与Iout2之和为常数。当寄存器中所有的数字位均为1时,Iout1为最大;全为0时,Iout1为零;但是无论待转换的数字量是多少,转换后的结果都不能超过参考电压的值,即Vref管脚的电压值。芯片中有一个B1/B2脚,该管脚是用作字节顺序控制信号。此控制端为高电平时,高8位输入寄存器及低4位输入寄存器均被允许;此控制端为低电平时,仅低4位输入寄存器被允许,这个管脚的功能就是将12位的待转换数据分两次输入到寄存器中。

D/A转换器的工作过程分为三步:

1)取高8位待转换数据,送入8位输入锁存器中;

2)取低4位待转换数据,送入4位输入锁存器中;

3)将12位待转换数据送入12位D/A转换寄存器中,准备进行转换。

另外,DAC1208还有一个片选信号CS,即只有当片选信号有效时,我们所有对该芯片的读写操作才能得以实现。

对于DAC1208芯片还有一点需要注意,那就是这个芯片的工作电压问题,和一般普通的芯片不同,它的工作电压是+15V,因此在具体电路设计的时候要特别注意。

键盘显示模块

一个人性化的系统必须具备完善的人机界面设计,其实这就像我们人与人的交流靠语言和文字一样,使用者和设备之间的交流就是靠键盘和显示。使用者通过键盘将信息传递给设备,而设备又通过显示屏将信息反馈给使用者。键盘和显示就充当了人机信息交流媒介的角色。

在前文提到过,浊度测量值是一个相对量,因此,测量系统本身必须含有一套标准,这个标准必须由人为输入到系统中去,这个过程就是标定,输入必然要用到键盘。而且,测量结果要输出至数码管显示,就需要有显示电路的支持。针对键盘和显示,我们集中采用8279芯片来控制,这是一个专用的键盘、显示芯片,它集成了很多功能,因此其外围电路就比较简单了。

键盘包含从0到9十个数字,小数点,正负号,报警上限,报警下限,记录上限,记录下限,系统重置,系统暂停,仪器标定,错误诊断,清除,打印输出功能,共有22个键;

显示只有四个LED七段数码管。用来显示测量所得到的液体的浊度值,显示仪器所处的工作状态,还用来显示系统发生错误时的错误代码。

另外还有五个LED发光二极管,用来指示系统上电和系统的各种报警状态。

8279是一个专用的显示器键盘接口,它用硬件完成对显示器和键盘的扫描,在硬件上它只占用两个地址,在软件上省去了显示和键盘的扫描,大大方便了用户,使用户程序变得简洁、易读和模块化。

如果不用8279,而换用锁存器或使用8155也都可以作键盘显示器的接口。但他们共同的缺点是,需要编制定时扫描显示和扫描键盘的程序,使整个系统的软件变得比较复杂。

8279可以支持8位或16位LED显示器,可以和具有64个按键或传感器的阵列相连接,通过编程可以实现多种工作方式,其主要功能如下:

1)键盘与显示器能同时工作;

2)扫描式键盘工作方式;

3)扫描式传感器工作方式;

4)用选通方式送入输入信号;

5)带有8字符的键盘先入先出存贮器(FIFO);

6)触点回弹时两键封锁或N键巡回;

7)双排8字符或单个16字的数字显示器;

8)可右入或左入的16字节显示器RAM;

9)工作方式可由CPU编程;

10)可编程扫描定时、键盘送入时有中断输出。

下面我们来看一下8279芯片中比较特殊的几个管脚:

CLK:时钟输入线,为8279提供内部定时时钟。在该系统中,此管脚和单片机的ALE脚联系在一起,就将单片机的时钟信号提供给8279芯片。

RESET:复位线,当输入为高电平时,8279复位。在电路设计过程中,将单片机的RESET管脚和8279的RESET管脚连接在一起,以实现其复位功能。

CS:片选信号,低电平有效,只有在8279被选通的时候,我们才能对其进行读写操作。8279的片选信号在使用上同其他芯片的片选信号基本一样。

2.3.4

作为一个先进的测量系统,并不能只满足于实时测量,还有一个要解决的问题就是:我们可能需要对一个时间段内的测量数据进行分析,或者是我们可能需要对不同时间内的数据进行比较,这就要求系统能够存储所测量的数据。因此,我们在单片微机外部扩展了一个EEPROM 2816芯片(Electrically Erasable Programmable Read Only Memory,内存2KB,电可擦可编程只读存储器),用来作为数据存储器。另外,通过键盘用标准溶液对仪器进行标定时输入的测量标准同样也需要储存在EEPROM中,因为不可能在每次使用测量仪器前都对其进行标定,我们需要做的就是将测量标准储存在EEPROM中,然后定期用标准溶液对测量仪器进行校准就可以了。

80C31接口说明:

P1.0~P1.3:外接LED指示灯和三极管控制电路等;

P1.4~P1.7:接14433(A/D转换器)芯片的DS1~DS4,作为A/D转换电路的选通控制;

P1.0:量程转换,该管脚接在三极管的B极,高电平时可驱动三极管导通;

P1.1:接SYSTEM WARNING 指示灯和三极管驱动电路,高电平工作;

P1.2:接LOW ALARM 指示灯和三极管驱动电路,高电平工作;

P1.3:接HIGH ALARM 指示灯和三极管驱动电路,高电平工作;

P1.4:接14433的DS1,接受千位的选通信号;

P1.5:接14433的DS2,接受百位的选通信号;

P1.6:接14433的DS3,接受十位的选通信号;

P1.7:接14433的DS4,接受个位的选通信号;

在前文曾经提到过,这种接法不但可以节省P1口的4根口线用于其他扩展功能,而且对整个系统的功能没有任何影响。

RESET:接SYSTEM RESET 按键(并有一个上电自动复位功能的电路),这样即可以实现上电复位,又可以实现按键复位;

INT0:该管脚不是用做中断使用,而是作为第一功能口使用(作为I/O口使用),在这种情况下,该口的结构和操作同P1口;

INT1:该管脚不同与INT0,它是作为第二功能口使用(作为中断口使用),用来接收14433产生的中断;

P2口作为地址/数据复用总线使用;

P2.7:控制选通2816(EEPROM),低电平有效,即低电平选通;

P2.5:该管脚和8031的RD管脚作为一个或门的两个输入端,输出端接74LS244(锁存器)的控制端,74LS244的输入端接14433(A/D)的Q0~Q3(数据口线),输出端接8031的P00~P03,当RD为低电平,P2.5也为低电平时,或门的输出也是低电平,此时74LS244导通,P0.0~P0.3接收的数据就是A/D转换后的数据,因此,该管脚控制读取14433进行A/D转换的数据;

P2.4:控制选通DAC1208(D/A转换器),低电平有效,即低电平选通;

P2.3:控制选通8279,低电平有效,即低电平选通;

P2.2:只作为数据线使用;

P2.1:只作为数据线使用;

P2.0:除了作为数据线使用外,还作为D/A转换的输入控制线使用,当P20为高电平时,P0口输出的是D/A转换的高8位数据,当P20为低电平时,P0口输出的是D/A转换的低4位数据;

P0口只作为数据线使用,外部有锁存器可以控制数据的流向。

有关于各个芯片的选通地址:

MC14433:(1101 1111 1111 1111)DFFF;

DAC1208:高8位锁存器:(1110 1111 1111 1111)EFFF;

低4位锁存器:(1110 1110 1111 1111)EEFF;

12位寄存器地址:(1111 1110 1111 1111)FEFF;8279:(1111 0111 1111 1111)F7FF;

2816:(0111 1111 1111 1111)7FFF;

注:有关于系统的详细原理图请参见附录A。

附录A:电路原理图

水的浊度和色度的测定

水的浊度的测定 浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉砂、微细有机物、无机物、浮游动物和其他微生物等悬浮物和胶体物都可使水样呈现浊度。水的浊度大小不仅和水中存在颗粒物含量有关,而且和其粒径大小、形状、颗粒表面对光散射特性有密切关系。测定浊度的方法有目视比色法、分光光度法、浊度仪法等。一、实验目的和要求 (1)掌握利用浊度仪测定废水浊度的方法。 (2)复习第二章有关浊度的内容,了解浊度测定的其他方法及各自的特点。二、实验原理 测量悬浮于水或透明液体中不溶性颗粒物质所产生的光的散射程度,并定量表征这些悬浮颗粒物质的含量。 三、实验仪器 SGZ数显散射光式浊度仪。本仪器采用国际标准ISO7027中规定的福尔马肼(Formazine)浊度标准溶液进行标定,采用NTU作为浊度计量单位。 四、测量准备 (1)开启仪器背后右下角的电源开关,预热30 min。 (2)用不落毛软布擦净试样瓶上的水迹和指印,如不易擦净可用清洁剂浸泡,然后再用清水冲洗干净。 (3)准备好校零用的零浊度水及配制校准用的福尔马肼标准溶液。 (4)用一清洁的容器采集好具有代表性的样品。 五、测量步骤 (1)将零浊度水倒入试样瓶内到刻度线,然后旋上瓶盖,并擦净瓶体的水迹及指印,同时应注意启放时不可用手直接拿瓶体,以免留上指印,影响测量精度。 (2)将装好的零浊度水试样瓶,置入试样座内,并保证试样瓶的刻度线应对准试样座上的白色定位线,然后盖上遮光盖。 (3)稍等读数稳定后调节零位后旋钮,使显示为零。 (4)采用同样方法装置校准用的标准溶液,并放入试样座内,调节校正钮,使显

示为标准值。 (5)重复(2)、(3)、(4)步骤,保证零点及校正值正确可靠。 (6)放入样品试样瓶,等读数稳定后即可记下水样的浊度值。 六、注意事项 操作过程中使用洁净的样瓶、正确的操作方法,认真去除气泡,确保仪器的工作条件。

工业循环水中浊度的测定

工业循环水中浊度的测 定 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工业循环水中浊度的测定浊度 方法一分光光度法 1)适用范围 本方法适用于天然水、经澄清池预处理的水及循环冷却水的浊度测定,浊度范围为0~40mg/L。 2)测定原理 在水溶液里,六次甲基四胺(CH2)6N4与硫酸肼(NH2)2H2SO4能定量缔结合为不溶于水的大分子盐类混悬液,由于该混悬液条件易于控制,故以此作为浊度标准溶液,便可用分光光度法测得水样的浊度。 3)试剂和仪器 )试剂 3.1.1)标准浊度储备液(400mg/L) a. 溶液A—称取1.0000g硫酸肼,用水溶解,移入100mL容量瓶中,并稀释至刻度。 b. 溶液B—称取10.000g六次甲基四胺,用水溶解,移入100mL容量瓶中,并稀释至刻度。 c. 标准浊度储备液 分别移取溶液A和溶液B各5mL,注入100mL容量瓶中,充分摇匀,在25±3℃下保温静置24小时,用水稀释至刻度,摇匀。该储备液在30℃以下放置,可使用1周。 3.1.2)标准浊度工作液(100mg/L) 准确吸取25mL标准储备液(400mg/L)注入100mL容量瓶中,用水稀释至刻度,摇匀。 )分光光度计,具3cm比色皿。 )滤膜过滤器:滤膜孔径μm。 试样准备 样品应收集到具塞玻璃瓶中,取样后尽快测定。如需保存,可保存在暗处不超过24h。测试前需激烈振摇并恢复到室温。 所有与样品接触的玻璃器皿必须清洁,可用盐酸或表面活性剂清洗。 4)分析步骤 )标准曲线的绘制 )分别吸取标准浊度工作液(100mg/L),,,,,,,比色管中,用水稀释至刻度,摇匀。 以上各液的浊度分别为:5 mg/L,10 mg/L,15 mg/L,20 mg/L,25 mg/L,30 mg/L,35 mg/L,40 mg/L,45mg/L。 4.1.2)在分光光度计上的420mm处,以水作参比用3cm比色皿,测定上述各液的吸光度。 4.1.3)以吸光度为纵坐标,浊度为横坐标,绘制标准曲线。

水质检测PH标准

水质检测P H标准 水质检测标准的制定与人们的生活习惯、文化、经济条件、科学技术发展水平、水资源及 其水质现状等多种因素有关,不仅各国之间,而且同一国家的不同地区之间,对饮用水水质 的要求都存在着差异。水质检测标准及水质要求的完整制定,让人们的生活更加健康。 1.基本概述 pH值与溶液中的氢离子活度有关,在稀溶液中氢离子活度与氢离子浓度相等。pH值反应了溶液中各种溶解性化合物达到的酸碱平衡状态,主要是二氧化碳、碳酸氢盐、碳酸盐的平衡。温度对该平衡的影响较大,在纯水中温度提高25℃,pH值下降约0.45。 在水处理过程中,氢离子浓度会有变化(氯化作用减低pH值,软化水质提高pH值)。输水过程中,水pH值与水中其他物质(气体、胶质、带电或不带电物质等)联合作用侵蚀管网内壁, 而碳酸钙沉积在管网中可阻止水中氧气直接接触管壁而防止侵蚀发生,因而通过改变pH调节碳酸盐做酸氢盐平衡可防止管网腐蚀。 微生物对于pH值的适应生长范围是比较广的。管网内壁微生物生长形成黏质,同样也有防 止氧气接触管壁的作用。但微生物的大量繁殖产生的二氧化碳会造成局部pH值降低,引起局部腐蚀性增强。pH值为5.5~8.2时最适合铁细菌的生长,铁细菌的大量繁殖会形成“红水”。 pH值也会影响其他水质指标。pH值低于7时,被硫污染的水因生成硫化氢而散发臭鸡蛋味,氯化作用因趋向三氯化氮的生成而产生令人厌恶的刺激性味道。pH值提高,水会产生苦味, 色度会增加。pH值还影响水的混凝、沉淀、过滤,从而影响水中的杂质含量。 2.在饮用水中限值的确定 人体健康与pH值的直接关系是不明确的,但pH值可通过影响其他水质指标及水处理效果 而影响健康。pH值在6.5~9.5范围内并不影响饮用及健康,但pH值过低会腐蚀水管,过高会使溶解盐析出、降低氯化消毒作用。据调查,我国绝大多数天然水中pH值范围在6.5~8.5之间,故我国《生活饮用水卫生规范》规定:pH值范围在6.5~8.5之间。

实验1 废水悬浮固体和浊度的测定

实验一废水悬浮固体和浊度的测定 一、实验目的和要求 掌握悬浮固体和浊度的测定方法。 实验前复习第二章残渣和浊度的有关内容。 二、悬浮固体的测定 (一)、原理 悬浮固体系指剩留在滤料上并于103—105℃烘至恒重的固体。测定的方法是将水样通过滤料后,烘干固体残留物及滤料,将所称重量减去滤料重量,即为悬浮固体(总不可滤残渣)。 (二)、仪器 1.烘箱。 2.分析天平。 3.干燥器。 4.孔径为0.45μm滤膜及相应的滤器或中速定量滤纸。 5.玻璃漏斗。 6.内径为30—50mm称量瓶。 (三)、测定步骤 1.将滤膜放在称量瓶中,打开瓶盖,在103—105℃烘干2h,取出冷却后盖好瓶盖称重,直至恒重(两次称量相差不超过0.0005g)。 2.去除漂浮物后振荡水样,量取均匀适量水样(使悬浮物大于2.5mg),通过上面称至恒重的滤膜过滤;用蒸馏水洗残渣3—5次。如样品中含油脂,用10mL石油醚分两次淋洗残渣。 3.小心取下滤膜,放入原称量瓶内,在103—105℃烘箱中,打开瓶盖烘2h,冷却后盖好盖称重,直至恒重为止。 (四)、计算 式中:A——悬浮固体+滤膜及称量瓶重(g); B——滤膜及称量瓶重(g); V——水样体积(mL)。 (五)、注意事项: 1.树叶、木棒、水草等杂质应先从水中除去。 2.废水粘度高时,可加2—4倍蒸馏水稀释,振荡均匀,待沉淀物下降后再过滤。 3.也可采用石棉坩埚进行过滤。

三、浊度 (一)、原理 浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。水中含有泥土、粉砂、微细有机物、无机物、浮游动物和其他微生物等悬浮物和胶体物都可使水样呈现浊度。水的浊度大小不仅和水中存在颗粒物含量有关,而且和其粒径大小、形状、颗粒表面对光散射特性有密切关系。 将水样和硅藻土(或白陶土)配制的浊度标准液进行比较。相当于1mg一定粘度的硅藻土(白陶土)在1000mL水中所产生的浊度,称为1度。 (二)、仪器 1.100mL具塞比色管。 2.1L容量瓶。 3.750mL具塞无色玻璃瓶,玻璃质量和直径均需一致。 4.1L量筒。 (三)、试剂 浊度标准液 1、称取10g通过0.1mm筛孔(150目)的硅藻土,于研钵中加入少许蒸馏水调成糊状并研细,移至1000mL量筒中,加水至刻度。充分搅拌,静置24h,用虹吸法仔细将上层800mL悬浮液移至第二个1000mL量筒中。向第二个量筒内加水至1000mL,充分搅拌后再静置24h。 虹吸出上层含较细颗粒的800mL悬浮液,弃去。下部沉积物加水稀释至1000mL。充分搅拌后贮于具塞玻璃瓶中,作为浑浊度原液。其中含硅藻土颗粒直径大约为400μm左右。 取上述悬浊液50mL置于已恒重的蒸发皿中,在水浴上蒸干。于105℃烘箱内烘2h,置干燥器中冷却30min,称重。重复以上操作,即,烘1h,冷却,称重,直至恒重。求出每毫升悬浊液中含硅藻土的重量(mg)。 2、吸取含250mg硅藻土的悬浊液,置于1000mL容量瓶中,加水至刻度,摇匀。此溶液浊度为250度。 3、吸取浊度为250度的标准液100mL置于250mL容量瓶中,用水稀释至标线,此溶液浊度为100度的标准液。 于上述原液和各标准液中加入1g氯化汞,以防菌类生长。 (四)、测定步骤 1.浊度低于10度的水样 (1)吸取浊度为100度的标准液0、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0及10.0mL于100mL比色管中,加水稀释至标线,混匀。其浊度依次为0、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0度的标准液。 (2)取100mL摇匀水样置于100mL比色管中,与浊度标准液进行比较。可在黑色底板上,由上往下垂直观察。

水质检测制度

水质检测三级管理规定 1.1说明 本标准制定了水质检验三级管理的规定,即中心化验室,厂部化验室,班组化验检测制度。 1.2班组检验 1.2.1加药间 源水浊度:1小时/一次PH值:1小时/一次 滤前水浊度:1小时/一次PH值:1小时/一次 滤后水浊度:1小时/一次PH值:1小时/一次余氯:1小时/一次 1.2.2二级泵房 出厂水余氯:1小时/一次浊度:1小时/一次PH值:1小时/一次;余氯、浊度、PH值24小时在线监测。 1.3厂级化验室 1.3.1每日日班,每小时一次对滤前水、滤后水的浊度、PH值、余氯监测、发现有超内控指标,马上采取措施解决,若难以解决的及时报告中心化验室及制水厂负责人,确保生活饮用水的质量。 1.4中心化验室 1.4.1按照中华人民共和国城镇建设行业标准GB 5749—2006《生活饮用水卫生标准》,对出厂水、管网水、源水进行检测。 1.4.2认真全面掌握地面水源水、出厂水、水质变化情况。发现情况及时解决,确保饮用水质量。

1.4.3每天对出厂水、原水做一次常规项目。检测项目有:浑浊度、色度、臭和味、肉眼可见物、水温、PH值、氨氮、亚硝酸盐氮、耗氧量、氯化物、总铁、总碱度、总硬度、余氯、锰、细菌总数、总大肠菌群、粪大肠菌群、需矾量。源水必做项目:每季度对出厂水、源水、管网水做一次全分析,不能做的项目委托市水务集团检验科检验,每年两次对源水上中下游取三点进行水污染调查,检验项目37个。 1.4.4每月两次对管网水质定点,六个采样点。检验,检验项目有:浑浊度、色度、PH值、臭和味、铁、耗氧量、余氯、细菌、总大肠菌群。 1.4.5每一个小时一次对出厂水浑浊度、余氯、PH值进行监测,发现有超内控指标,马上通知净化车间并采取措施解决,确保水质质量。 1.4.6净水剂检验,聚合氯化铝每进一批进行一次浓度检验工作。1.4.7发现管网水质质量下降,通知生技部对管网进行排污冲洗,对新铺设管道进行排污后进行采样检验工作。 1.4.8做好各项原始记录、统计报表、记录、汇总、管理、归档工作。汇总要及时、正确、齐全。

游泳池水质标准及PH值浑浊度检测

游泳池水质标准及PH值、浑浊度检测 1、原水水质要求 (1)原水的水质对游泳池池水循环净化处理系统的选择有影响,所以推荐采用城市给水系统的水作为水源,城市给水的水质符合现行国家标准GB5749《生活饮用水卫生标准》,这样就极大地简化了池水循环净化处理的工艺流程,对节约建设投资和运营成本有好处。 (2)如果采用井水、泉水、地热水甚至水库水作为游泳池原水时,则需对这些水进行必要的预净化处理。因水源水质不同,有的需要“沉淀→絮凝(去色)→过滤→消毒”多种工序处理,有的仅需除铁、除锰等简单处理即可使用,因为铁、锰含量超标会与游泳池水循环净化处理使用的化学药品发生化学反应,使池水变成黑色或墨绿色。预处理可参照《给水排水设计手册城镇给水》。 2、我国新版水质标准 (1)常规检验项目如下表所示: (2)非常规检验项目及限值如下表所示: 3、PH值、浑浊度简单检测方法 如下PH值简单检测方法: (1)、打开PH试纸包装盒,会发现里面含有PH试纸颜色对比卡(如图1)和PH试纸。 (2)、取被检测水溶液少许放入器皿中,将PH试纸浸入等待2至3秒后取出。或者用试管取少量被测水溶液滴到PH试纸上面,稍等片刻试纸颜色将起变化(如图2)。

(3)、最后将检测结果和PH试纸颜色比对卡进行比对,以确定被检测水溶液酸碱程度(如图3)。游泳池水的PH值,应保持在~(国家标准)之间,最好在~(国际泳联标准)之间。 如下浑浊度简单检测方法: 用制好的标准液,稀释成不同浓度,并盛于10支试管中。将水样盛入试管摇匀,分别用标准液试管和水样试管观察同一目标,根据视觉清晰度得出浑浊度。游泳池水的浑浊度不应大于5度。直观上判断,池水的透明度应站在水深米岸处能看清第4、5泳道水底的泳道标志线。 4、池水水质标准的作用 1、池水水质的卫生标准并不是一成不变的,是随着经济的发展、科学技术的进步、人们生活水平和生 活质量不断的提高而不断的进行修订和完善,以适应社会的发展和进步。 2、池水水质标准是确定池水循环净化处理方式的设计依据,因为游泳池在使用的过程中,池水是在不断地被 污染,这就要求对池水进行不断的净化处理,使池水中的污染物始终维持在水质卫生标准规定的限值内。 所以,它对净化处理工艺流程的选择、各净化处理单元设备的确定,起着决定性的作用。 3、从节约水资源、防止污染、环境保护等我国的资源国策出发,一般不允许在游泳池的供水系统中采用直 流式供水系统,游泳池池水的循环净化处理系统是必然的选择。

水质浊度的测定透明度测试试管法

FHZHJGF0002 固体废物环境中有机污染物遗传毒性检测的样品前处理方法 F-HZ-HJ-GF-0002 固体废物—环境中有机污染物遗传毒性检测的样品前处理方法本方法规定了环境中有机污染物遗传毒性检测时样品前处理的技术要求。 本方法分五篇: 第一篇大气可吸入颗粒物样品前处理 第二篇地面水及废水样品前处理 第三篇非水液态废弃物样品前处理 第四篇土壤及沉积物样品前处理 第五篇固体废弃物样品前处理 方法所给定义仅限定在本方法内使用,不具普遍性。 本方法不对样品前处理的质量控制及操作安全性作全面阐述,仅对特定问题给以说明,其他问题应遵从合格实验室准则的有关原则。 本方法的质量控制原则皆以遗传毒性检测系统本身正常为前提。 本方法不另提供记录表格,样品前处理过程的记录应遵从常规分析测试原则。 第一篇大气可吸入颗粒物样品前处理 可吸入颗粒物:能长期悬浮在空气中,空气动力学当量直径≤10μm的、能进入人体呼吸道的颗粒物。 1 范围 本方法适用于大气可吸入颗粒物中非挥发性有机物,不适用于大气可吸入颗粒物的气态及半气态有机物。 2 试剂 2.1 纯水:符合GB 6682实验室用水规格中一级水标准的水,即电导率≤0.01μS/cm(25℃),吸光度≤0.001(254nm,1cm光程)二氧化硅含量≤0.01mg/L。可用去离子水(加少量KMnO4)经全玻璃器皿重蒸馏制得。 2.2 溶剂:等级不得低于分析纯,且皆应在玻璃容器中重蒸馏后方能使用。 2.2.1 二氯甲烷。 2.2.2 二甲基亚砜(DMSO)。 2.3 氢氧化钠:с(NaOH)=1mol/L。 2.4 盐酸:с(HCl)=1mol/L。 2.5 无水硫酸钠。 3 仪器 3.1 采样系统:符合GB 6921大气瓢尘浓度测定方法(见FHZHJDQ0156)的要求。 3.2 超细玻璃纤维滤膜:过滤效率不低于99.99%。 3.3 索氏提取器:500mL容量。 3.4 超声波清洗器:250W功率。 3.5 分液漏斗。 3.6 旋转蒸发器。 3.7 KD浓缩器。 3.8 钢瓶。 3.9 减压阀。 3.10 高纯氮气。 3.11 一般实验室器具及玻璃器皿。为避免其他有机物质的干扰,所有玻璃器皿及直接接触样

有用的饮用水水质检测项目达标标准

有用的饮用水水质检测项目达标标准 来源:国联质检实验室 饮用水和我们的生活健康息息相关,因此它的质量问题不容忽视。近年来常有关于饮用水水质安全隐患的报道,人们一直以来都对饮用水水质检测不重视,喝了这么久也没有什么问题,这是一个认识误区,水中含有众多微量物质,其中不乏有害物质,水质检测通过多个项目分别检测,达标后才能确定饮用水是否安全。 常见饮用水水质检测项目 1、色度:饮用水的色度如大于15度时多数人即可察觉,大于30度时人感到厌恶。标准中规定饮用水的色度不应超过15度。 2、浑浊度:为水样光学性质的一种表达语,用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一,也是考核水处理设备净化效率和评价水处理技术状态的重要依据。浑浊度的降低就意味着水体中的有机物、细菌、病毒等微生物含量减少,这不仅可提高消毒杀菌效果,又利于降低卤化有机物的生成量。 3、余氯:余氯是指水经加氯消毒,接触一定时间后,余留在水中的氯量。在水中具有持续的杀菌能力可防止供水管道的自身污染,保证供水水质。 4、臭和味:水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。公共供水正常臭味的改变可能是原水水质改变或水处理不充分的信号。 5、细菌总数:水中含有的细菌,来源于空气、土壤、污水、垃圾和动植物的尸体,水中细菌的种类是多种多样的,其包括病原菌。我国规定饮用水的标准为1ml水中的细菌总数不超过100个。 6、化学需氧量:是指化学氧化剂氧化水中有机污染物时所需氧量。化学耗氧量越高,表示水中有机污染物越多。水中有机污染物主要来源于生活污水或工业废水的排放、动植物

腐烂分解后流入水体产生的。 7、总大肠菌群:是一个粪便污染的指标菌,从中检出的情况可以表示水中有否粪便污染及其污染程度。在水的净化过程中,通过消毒处理后,总大肠菌群指数如能达到饮用水标准的要求,说明其他病原体原菌也基本被杀灭。标准是在检测中不超过3个/L。 8、耐热大肠菌群:它比大肠菌群更贴切地反应食品受人和动物粪便污染的程度,也是水体粪便污染的指示菌。 9、大肠埃希氏菌:大肠细菌(E.coli)为埃希氏菌属(Escherichia)代表菌。一般多不致病,为人和动物肠道中的常居菌,在一定条件下可引起肠道外感染。某些血清型菌株的致病性强,引起腹泻,统称病致病大肠杆菌。肠道杆菌是一群生物学性状相似的G-杆菌,多寄居于人和动物的肠道中。

浊度复习题及答案

浊度复习题及参考答案(12题) 参考资料 1、《水环境分析方法标准工作手册》(下册)P453 水质浊度的测定 GB13200—91 2、《水和废水监测分析方法》第三版 一、填空题 1、浊度是由于水中含有 所造成的,可使 或。天然水经过、和等处理,使水变得。 答:泥砂、粘土、有机物、无机物、浮游生物和微生物等悬浮物质光散射 吸收混凝沉淀过滤清澈 《水和废水监测分析方法》第三版,P97 2、我国目前测定水样通常用法和法。 答:分光光度目视比浊 《水和废水监测分析方法》第三版,P97 3、样品收集于瓶内,应在取样后测定。如需保存,可在 保存,测试前恢复到。 答:具塞玻璃尽快 4℃冷暗处 24h 要激烈振摇水样并室温《水和废水监测分析方法》第三版,P97 4、分光光度法适用于测定、的浊度,最低检测浊度为度。答:天然水饮用水 3 《水和废水监测分析方法》第三版,P98 饮用水天然水及高浊度水 3 《水环境分析方法标准工作手册》(下册)P453 二、判断题(正确的打√,错误的打×) 5、无浊度水是将蒸馏水通过0.4μm滤膜过滤,收集于用滤过水荡洗两次的烧瓶中。()

答:×(0.2μm) 《水环境分析方法标准工作手册》(下册)P453 《水和废水监测分析方法》第三版,P98 6、测定水样浊度超过100度时,可酌情少取,用水稀释到50.0ml,用分光光度法测定。() 答:√ 《水和废水监测分析方法》第三版,P98 7、分光光度法测定浊度是在480nm波长处,用3cm比色皿,测定吸光度。() 答:×(680 nm波长处) 《水和废水监测分析方法》第三版,P98 8、分光光度法测定浊度,不同浊度范围读数精度一样。() 答:× 《水和废水监测分析方法》第三版,P98 9、硫酸肼有毒、致癌!() 答:√ 《水环境分析方法标准工作手册》(下册)P453 三、问答题 10、简述浊度为400度的浊度贮备液的配制方法。 答:吸取5.00ml硫酸肼溶液与5.00ml六次甲基四胺溶液于100ml容量瓶中,混匀。于25±3℃温度下反应24h,用水稀释至标线,混匀。此贮备液的浊度为400度。 《水和废水监测分析方法》第三版,P98 11、试述分光光度法测定浊度的原理。 答:在适当温度下,硫酸肼与六次甲基四胺聚合,形成白色高分子聚合物,以此作为浊度标准液,在一定条件下与水样浊度相比较。 《水环境分析方法标准工作手册》(下册)P453 《水和废水监测分析方法》第三版,P98 12、试述目视比浊法测定浊度的原理。 答:将水样与用硅藻土配制的浊度标准液进行比较,规定相当于1mg一定粒度的硅藻土在1000mL水中所产生的浊度为1度。 《水环境分析方法标准工作手册》(下册)P455

水质检测标准

水质检测标准 概况: 水质是指水与水中杂质共同表现的综合特征。评价水质优劣受污染程度的 参数,称为水质指标。水质指标通常可分为物理性指标、化学性指标和生物性 指标三类。常见的水质指标见下表。 2、水质检测中常用的水质分析方法有哪些? (1)国家标准分析方法:我国已编制60多项包括采样在内的标准分析方法,这些方法比较经典、准确度较高,是环境污染纠纷法定的仲裁方法,也是 用于评价其他分析方法的基本方法。 (2)统一分析方法:有些项目的检测方法尚不够成熟,没有形成国家标准,但经过研究可以作为统一方法予以推广,在使用中积累经验,不断完善,为上 升为国家标准方法创造条件。

(3)等效方法:与前两类方法的灵敏度、准确度具有可比性的分析方法。等效方法必须经过方法验证和对比实验,证明其与标准方法或统一方法是等效 时才能使用。 按照检测方法所依据的原理,水质检测常用的方法有化学法、电化学法、 原子吸收分光光度法、离子色谱法、气相色谱法、等离子体发射光谱(ICP-AE S)法等。其中,化学法包括重量法、容量滴定法和分光光度法,目前在国内外水质常规检测中被普遍采用。 3、怎样选择水质检测分析方法? 正确选择检测分析方法,是获得准确结果的关键因素之一。选择分析方法 应遵循的原则是:灵敏度能满足定量要求;方法成熟、准确;操作简便,易于 普及;抗干扰能力好。 非饮用水检测标准 1.污水检测 污水通常指受一定污染的、来自生活和生产的废弃水。污水主要有生活污水, 工业废水和初期雨水。污水的主要污染物有病原体污染物,耗氧污染物,植物 营养物,有毒污染物等.主要检测标准的依据是:污水综合排放标准GB 8978-1 996。该标准中已经部分被本标准部分内容被GB 20425-2006 皂素工业水污 染物排放标准、GB 20426-2006 煤炭工业污染物排放标准代替。 2.地下水检测 是贮存于包气带以下地层空隙,包括岩石孔隙、裂隙和溶洞之中的水。地下水 是水资源的重要组成部分,由于水量稳定,水质好,是农业灌溉、工矿和城市的重要水源之一,但在一定条件下,地下水的变化也会引起沼泽化、盐渍化、滑坡、地面沉降等不利自然现象。主要依据:GB/T14848—2017.旧版是GB/T14848—1993

灌溉用水水质标准及检测方法

灌溉用水水质标准及检测方法 为防止农田和农产品污染,国家质量监督检验检疫总局制定,国家标准化管理委员会发布了我国农田灌溉用水的水质标准。标准中对农也灌溉用水的水质做了16项基本控制标准和11项选择控制标准的规定。 其中基本控制标准用于使用地表水、地下水、经过处理的养殖废水以及农产品加工废水作为农业灌溉用水的所有农田,具体指标为五日生化需氧量、化学需氧量、悬浮物、阴离子表面活性剂、水文、PH、全盐量、氯化物、硫化物、总汞、镉、总砷、铬、铅、粪大肠菌群数和蝈虫卵数。另外11项选择性测定指标为铜、锌、硒、氟化物、石油类、挥发酚、笨、三氯乙醛、丙烯醛和硼,这11项指标农田灌溉用水水质检测16项基本指标的补充,由当地县级以上的环保和农业主管单位根据本地农业用水的水源和水质情况选择需要检测的标准进行检测。下面对农业灌溉用水16项基本控制标准和11项选择性控制标准的数值及检测方法做简单介绍。 农业灌溉用水水质的16项基本控制标准的标准值及检测方法 1、五日生化需氧量/(mg/L)。农业灌溉用水水质标准中对五日生化需氧量的要求是,水作种植时BOD5不能大于60mg/L;旱作种植时不能大于 100mg/L;在用于灌溉加工、烹饪或去皮食用的蔬菜时,BOD5不能大于40mg/L;若灌溉的蔬菜为生食,其浓度则不能大于15mg/L。 在对农业灌溉用水的生化需氧量进行检测时,可采用稀释与接种法,具体检测步骤参考GB/T7488中的规定。 2、化学需氧量/(mg/L)。在水作种植作物中,CDD含量小于等于 150mg/L;旱作用水中COD则要小于等于200(mg/L);用于灌溉加工、烹饪或去皮食用的蔬菜时小于等于100mg/L;若蔬菜为生食蔬菜、水果等则要降到小于等于60mg/L。在进行灌溉用水中化学需氧量的检测时以重铬酸盐法进行测定,具体步骤请参考GB/T 11914。 3、悬浮物/(mg/L)。悬浮物在水作种植用水中80mg/L;旱作用水中100 mg/L;蔬菜种植时60mg/L;生食蔬菜、水果时则不能大于15mg/L。对灌溉用水

水质检测的标准和方法

水质检测的标准和方法 生活饮用水卫生标准GB5749-85 生活饮用水水质,不应超过下表所规定的限量。 生活饮用水水质标准 项目标准 感官性状和一般化学指标 色色度不超过15度,并不得呈现其他异色 浑浊度度不超过3度,特殊情况不超过5度 嗅和味不得有异臭、异味 肉眼可见物不得含有 PH 6.5-8.5 总硬度以CzCO3,计mg/L 450 铁Femg/L 0.3 锰Mnmg/L 0.1 铜Cumg/L 1.0 锌Znmg/L 1.0 挥发性酚类以苯酚计mg/L 0.002 硫酸盐mg/L 250 氯化物mg/L 250 溶解性总固体mg/L 1000 毒理学指标 氟化物mg/L 1.0 氰化物mg/L 0.05 砷Asmg/L 0.05 硒Semg/L 0.01 汞Hgmg/L 0.001 镉Cdmg/L 0.01 铬六价Cr6+mg/L 0.05 铅Pbmg/L 0.05 银 0.05 硝酸盐以N计mg/L 20 氯仿μg/L 60 四氯化碳*μg/L 3 苯并(a)芘*μg/L 0.01 滴滴滴*μg/L >1.0 六六六*μg/L >5.0 细菌学指标 菌落总数cfu/mL 100 总大肠菌群(MPN/100mL) 3 游离余氯 在与水接触30min后应不低于0.3mg/L。集中式给水除出厂水应符合上述要求外,

管网末梢水不应低于0.05mg/L 放射性指标总σ放射性Bq/L 0.1 总β放射性Bq/L 1.0 检验项目在一般情况下,细菌学指标和感官性状指标列为必检项目,其他指标可根据当地水质情况和需要选定。对水源水、出厂水和部分有代表性的管网末梢水,每月进行一次全分析。 自备给水和农村集中式给水水质检验的采样点数、采样次数和检验项目,可根据具体情况参照上述要求确定。

浊度的测定

实验二浊度的测定 一、实验目的 1. 学会浊度标准溶液的配制方法; 2. 掌握分光光度法和目视比浊法测定水的浊度的方法。 二、浊度概述 浊度是表现水中悬浮物对光线透过时所发生的阻碍程度。浊度是由于水中含有泥沙、粘土、有机物、无机物、浮游生物和微生物等悬浮物质所造成的,可使光散射或吸收。天然水经过混凝、沉淀和过滤等处理,使水变得清澈。 三、水样的采集与保存 样品收集于具塞玻璃瓶内,应在取样后尽快测定。如需保存,可在4℃冷藏、暗处保存24h,测试前要激烈振摇水样并恢复到室温。 四、测定方法 测定水样浊度可用分光光度法、目视比浊法或浊度计法。 (一)分光光度法 1. 方法原理 在适当温度下,硫酸肼与六次甲基四胺聚合,形成白色高分子聚合物。以此作为浊度标准液,在一定条件下与水样浊度相比较。 2. 干扰及消除 水样应无碎屑及易沉降的颗粒。器皿不清洁及水中溶解的空气泡会影响测定结果。如在680nm波长下测定,天然水中存在的淡黄色、淡绿色无干扰。 3. 方法的适用范围 本法适用于测定天然水、饮用水的浊度,最低检测浊度为3度。 4. 仪器 50ml比色管,分光光度计。 5. 试剂 (1)无浊度水:将蒸馏水通过0.2 m滤膜过滤,收集于用滤过水荡洗两次的烧瓶中。 (2)浊度贮备液 ①硫酸肼溶液:称取1.000g硫酸肼((NH2)2SO4·H2SO4)溶于水中,定容至100ml。 ②六次甲基四胺溶液:称取10.00g六次甲基四胺((CH2)6N4)溶于水中,定容至100ml。 ③浊度标准溶液:吸取5.00ml硫酸肼溶液与5.00ml六次甲基四胺溶液于100ml容量瓶中,混匀。于25℃±3℃下静置反应24h。冷却后用水稀释至标线,混匀。此溶液浊度为400度,可保存一个月。 6. 步骤 (1)标准曲线的绘制 吸取浊度标准溶液0、0.50、1.25、2.50、5.00、10.00和12.50ml,置于50ml比色管中,加无浊度水至标线。摇匀后即得浊度为0、4、10、20、40、80、100的标准系列。在680nm 波长下,用3cm比色皿,测定吸光度,绘制校准曲线。 (2)水样的测定 吸取50.0ml摇匀水样(无气泡,如浊度超过100度可酌情少取,用无浊度水稀释至

污染指数(SDI)测定方法

污染指数(SDI)测定方法: 10.1 SDI测定概要: SDI测定是基于阻塞系数(PI,%)的测定。测定是在 47mm的0.45 m的微孔滤膜上连续加入一定压力(30PSI,相当于2.1kg/cm2)的被测定水,记录下滤得500ml水所需的时间T i(秒)和15分钟后再次滤得500ml水所需的时间T f (秒),按下式求得阻塞系数PI(%)。 PI=(1-T i/T f)3100 SDI=PI/15 式中15是15分钟。当水中的污染物质较高时,滤水量可取100ml、200ml、300ml等,间隔时间可改为10分钟、5分钟等。 10.2测定SDI的步骤: a.将SDI测定仪连接到取样点上(此时在测定仪 内不装滤膜)。 b.打开测定仪上的阀门,对系统进行彻底冲洗数 分钟。 c.关闭测定仪上的阀门,然后用钝头的镊子把 0.45 m的滤膜放入滤膜夹具内。 d.确认O形圈完好,将O形圈准确放在滤膜上, 随后将上半个滤膜夹具盖好,并用螺栓固定。 e.稍开阀门,在水流动的情况下,慢慢拧松1-2个 蝶形螺栓以排除滤膜处的空气。 f.确信空气已全部排尽且保持水流连续的基础上,重新拧紧蝶形螺栓。 g.完全打开阀门并调整压力调节器,直至压力保持在30psi为止。(如果整 定值达不到30 psi时,则可在现有压力下试验,但不能低于15 psi。)h.用合适的容器来收集水样,在水样刚进入容器时即用秒表开始记录,收 取500ml水样所需的时间为T O(秒)。 i.水样继续流动15分钟后,再次用容器收集水样500ml并记录收集水样所

花的时间,记作T15(秒)。 j.关闭取样进水球阀,松开微孔膜过滤容器的蝶形螺栓,将滤膜取出保存(作为进行物理化学试验的样品)。擦干微孔过滤器及微孔滤膜支撑孔 板。 10.3测定结果计算 a. 当试验过程中压力为30 psi时,按照下式计算SDI值: SDI=(1-T i/T f)3100/15 b.当测量过程中压力打不到30 psi时,可改用现有压力,但测得的SDI值必须换算到30 psi时的SDI值,方法如下: %Pp=(1-T i/T15)3100 (%Pp为非标准压力30 psi时的阻塞指数) SDI=%P30/15 注意: A. 每次试验过程中压力要稳定,压力波动不得超过±5%,否则试验作废。 B. 选定收集水样量应为500ml(或其他确定的水量值);两次收集水样 的时间间隔为15分钟。 C. 当T15是T i的4倍时,SDI值是5;如果水样完全将膜片堵住时,SDI15 值为6.7。

余氯的测定-国标法(水质检测)

余氯的测定-国标法(水质检测)

1 余氯 余氯是指水经过加氯消毒,接触一定时间后,水中所余留的有效氯。其作用是保证持续杀菌,以防止水受到再污染。余氯有三种形式: 1.总余氯:包括HOCl、OCl-和NHCl2等。 2.化合性余氯:包括NH2Cl、NHCl2及其它氯胺类化合物。 3.游离性余氯:括HOCl及OCl-等。 我国生活饮用水卫生标准中规定集中式给水出厂水的游离性余氯含量不低于0.3 mg/L,管网末梢水不得低于0.05 mg/L。 余氯的测定常采用下述两种方法,N.N-二乙基对苯二胺(DPD)分光光度法和3,3,,5,5,-四甲基联苯胺比色法,前者可测定游离余氯和各种形态的化合余氯,后者可分别测定总余氯及游离余氯。 1.2 N,N-二乙基对苯二胺(DPD)分光光度法 1.2.1 范围 本标准规定了N,N-二乙基对苯二胺(DPD)分光光度法测生活饮用水及水源水的游离余氯。 本法适用于经氯化消毒后的生活饮用水及其水源水中游离余氯和各种形态的化合性余氯的测定。 本法最低检测质量为0.1 μg,若取10mL水样测定,则最低检测质量浓度为0.01mg/L。 高浓度的一氯胺对游离余氯的测定有干扰,可用亚砷酸盐或硫代乙酰胺控制反应以除去干扰。氧化锰的干扰可通过做水样空白扣除。铬酸盐的干扰可用硫代乙酰胺排除。 1.2.2 原理 DPD与水中游离余氯迅速反应而产生红色。在碘化物催化下,一氯胺也能与DPD反应显色。在加入DPD试剂前加入碘化物时,一部分三氯胺与游离余氯一起显色,通过变换试剂的加入顺序可测得三氯胺的浓度。本法可用高锰酸钾溶液配制永久性标准液。 1.2.3试剂 1.2.3.1 碘化钾晶体。 1.2.3.2 碘化钾溶液(5 g/L):称取0.50g碘化钾(KI),溶于新煮沸放冷的纯水中,并稀释至100mL,储存于棕色瓶中,在冰箱中保存,溶液变黄应弃去重配。 1.2.3.3 磷酸盐缓冲溶液(pH=6.5):称取24 g无水磷酸氢二钠 (Na2HPO4),46g无水磷酸二氢钾(KH2PO4),0.8 g乙二胺四乙酸二钠(Na2EDTA)和0.02 g氯化汞(HgCl2)。依次溶解于纯水中稀释至1000mL。 可防止霉菌生长,并可消除试剂中微量碘化物对游离余氯测定造注:HgCl 2 剧毒使用时切勿入口或接触皮肤和手指。 成的干扰。HgCl 2

水质浊度测定试题及答案

浊度 分类号:W2-2 一、填空题 1. 浊度是由于水中含有泥沙、黏土、有机物、无机物、浮游生物和微生物等悬浮物质所造 成的,可使光被或。 答案:散射吸收。 2. 测定水的浊度时,水样中出现有物和物时,便携式浊度计读数将不准确。 答案:漂浮沉淀 3. 目视比色法测定水的浊度时,所用的具塞无色玻璃瓶的和均需一致。答案:材质直径 4. 目视比色法测定水的浊度时,浊度低于10度的水样,与浊度标准液进行比较时,在 观察,浊度为10度以上的水样,比色时应对照观察。 答案:黑色度板有黑线的白纸 二、判断题 1. 一般现场测定浊度的水样如需保存,应于4度冷藏。测定时要恢复至室温立即进行测试。() 答案:错误 正确答案为:测试前要激烈振摇水样。 2. 测定水的浊度时,气泡和振动将会破坏样品的表面,会干扰测定() 答案:正确 3. 便携式浊度计法测定水的浊度时,透射浊度值与散射浊度值在数值上是一致的。 () 答案:正确 4. 便携式浊度计法测定浊度时,对于高浊度的水样,应用蒸馏水稀释定容后测定。()答案:错误

正确答案为:对于高浊度的水样,应用无浊度水稀释定容 5. 测定水中浊度时,为了获取表代有性的水样,取样前轻轻搅拌水样,使其均匀,禁止振荡。 答案:正确 6. 便携式浊度计法测定水中浊度时,在校准与测量过程中使用两个比色皿,其带来的误差 可忽略不计。() 答案:错误 正确答案为:在校准与测量过程中应使用同一比色皿,将比色皿带来的误差降到最低。 7. 测定浊度的水样,可用具塞玻璃瓶采集,也可用塑料瓶采集。() 答案:正确 三、选择题 1. 便携式浊度计法测定浊度时,水样的浊度若超过度,需进行稀释。() A. 10 B. 50 C. 100 D. 40 答案:D 2. 便携式浊度计法测定水的浊度时,所用的便携式浊度计用度的标准溶液进行校准。() A. 每月,10 B. 每季度,40 C. 半年,0每月,0 答案:A. 3. 便携式浊度计法测定水的浊度时,用将比色皿冲洗两次,然后将待测水样沿 着比色皿的边缘缓慢倒入,以减少气泡产生。() A. 待测水样 B. 蒸馏水 C. 无浊度水 D. 自来水 答案:A 4. 目视比色法测定浊度时,用250度的浊度原液配制100度标准液500ml,需吸取 ml浊度原液。() A. 250 B. 100 C. 500 D. 200 答案:A 5. 目视比色法测定浊度时,水样必须经后方可测定。 A. 静置24小时 B. 悬乳物沉降后 C. 摇匀 答案:C. 6. 目视比色法测定浊度时,对浊度低于10度的水样进行比色时,观察,浊度为

水质浊度测量系统

水质浊度测量系统的硬件电路设计 系统基本组成和控制框图 整个测量系统的控制是由一片80C31单片微机来实现的,外围电路由许多模块组成——信号放大,量程转换,A/D转换,数据存储,D/A转换,键盘,显示,指示报警,标准信号输出,RS232标准接口等组成。整体通过对80C31进行编程来实现对所有模块的调度和管理。 基本的控制框图如下所示: 图 2.1.1 总体控制框图 系统的功能 根据上述总体的控制框图,我们可以确定测量系统的功能如下: 1) 量程自动切换功能:为了提高浊度测量的分辨率设置了量程自动切换功 能,A/D 转换为三位半BCD码,量程切换为两档,分别为0~ 10NTU 及0~ 100N TU , 这样低浊度时测量的分辨率为0.05NTU , 高量程时为0.005NTU , 显示采用四位数显, 小数点可自动移位。 2) 软硬件结合实现软件死机自动复位功能,可以提高仪器的抗干扰能力; 3) 系统参数保存:仪器的系统信息编程数据等均保持在EEPROM 中,在断电时信息不会丢失。并在数据结构设计中采取了容错技术, 在EEPROM 中建立了数据镜象, 进一步提高了系统信息的安全性;

4) 提供4~20mA 及0~1V,0~100mV,0~10mV标准信号输出; 5) 提供RS232串行通讯接口,便于与其它标准接口的设备相连; 6) 自动测试诊断功能提高了系统的智能化水平, 并使该仪器的日常维护变得简单。 系统的功能在很大程度上不仅取决于硬件电路的连接,还取决于软件与硬件的相互结合。 系统硬件电路设计 下面分模块对系统的硬件电路设计进行一一介绍。 分几大块? A/D转换系统介绍 首先,传感器所接收到的光信号在进行过光电转换后,变成了模拟电信号,这个电信号的强弱完全取决于光电传感器接收到的光信号的强若,因此我们需要对电信号进行信号放大,这就要用到模拟运算放大器,该系统所采用的运算放大器是LM358,一个LM358芯片中包含两个独立的运算放大器。同时,考虑到测量精度的问题,我们将该测量系统的测量范围分成了两档,分别是0~10 NTU和0~100 NTU。当测量值分别属于不同的测量范围时,就需要对信号放大不同的倍数,因此,我们选用了多个放大器,分别在其输入端和输出端之间设置不同阻值的电阻来达到此目的。精度? 其次,经过放大器后的信号仍然是模拟信号,而单片微机系统只能对数字信号进行处理,因此还需要一个模数转换的过程,即A/D(Analog to Digital)过程。该系统中模数转换所采用的芯片是MC14433(三位半的BCD码A/D转换器,相当于11位二进制数),分辨率比我们通常所使用的ADC0809等8位的A/D转换芯片要高。而且它在数据传输方面与ADC0809、AD574等也不同,后两者在数据传输上都是并行式的接口,而MC14433则是按数位轮流选通的,工作方式比较特殊。之所以采用该芯片是因为:它的精度比较高;它可以直接生成压缩的BCD码,显示的时候比较方便,省去了不同进制数之间的转换过程。仪器仪表多使用BCD码的A/D转换器,如我们常用的数字万用表。 A/D转换器MC14433的具体电路连接如图 2.3.1 所示: 注:完成电路原理图请参见附录A。

浊度测定方法

浊度 浊度是指水中悬浮物对光线透过时所发生的阻碍程度。水中的悬浮物一般是泥土、砂粒、微细的有机物和无机物、浮游生物、微生物和胶体物质等。水的浊度不仅与水中悬浮物质的含量有关,而且与它们的大小、形状及折射系数等有关。 1简介 水中含有泥土、粉砂、微细有机物、无机物、浮游生物等悬浮物和胶体物都可以 所构成使水质变的浑浊而呈现一定浊度,水质分析中规定:1L水中含有1mgSiO 2 的浊度为一个标准浊度单位,简称1度。通常浊度越高,溶液越浑浊。 2测定方法 比浊法或射光法测定 浊度可用比浊法或散射光法进行测定。我国一般采用比浊法测定,将水样和用高岭土配制的浊度标准溶液进行比较侧度不高,并规定一升蒸馏水中含有1毫克二氧化硅为一个浊度单位。对不同的测定方法或采用的标准物不同,所得到的浊度测定值不一定一致。浊度的高低一般不能直接说明水质的污染程度,但由人类生活和工业生活污水造成的浊度增高,表明水质变坏。 浊度计测定 浊度也可以用浊度计来测定的。浊度计发出光线,使之穿过一段样品,并从与入射光呈90°的方向上检测有多少光被水中的颗粒物所散射。这种散射光测量方法称作散射法。任何真正的浊度都必须按这种方式测量。浊度计既适用于野外和实验室内的测量,也适用于全天候的连续监测。可以设置浊度计,使之在所测浊度值超出安全标准时发出警报。 其他方法 浊度也可以通过利用色度计或分光光度计测量样品中颗粒物的阻碍作用造成的透射光强衰减程度来估计。然而,管理机构并不承认这种方法的有效性,这种方法也不符合美国公共卫生协会对浊度的定义。 利用透光率测量容易受到颜色吸收或颗粒物吸收等干扰的影响。而且,透光率和用散射光测量法测得的结果之间并无相关性。尽管如此,在某些时候色度计和分

浊度测定方法

浊度测定方法 水的浑浊度,简称浊度,是指水体中除极易沉淀的物质外,含有不同大小、比重、形态的悬浮物质、胶体物质、浮游生物和微生物等杂质,这些物质能对光线的散射和吸收产生光学反应,因此,利用光学效应的原理测定水中浑浊度是评定水质感官性重要指标之一。 浑浊度的标准单位,是以不溶解硅如漂白土、高岭土等在蒸馏水中所产生 /L所构成的浑浊度为1度。生活饮用水卫的光学阻碍现象为基础,规定1mgSiO 2 生标准规定浊度不得大于3度。 水样浑浊度的测定常用光电比色法测定。 光电式浊度仪测定法 一、原理 光电浊度仪是利用一稳定的光源通过被水样直射至光电池(硒光电池或硅 光电池)。当水中的悬浮物和胶体颗粒越多、则透射光愈强,当透射光强弱受到不同程度变化时,在光电池上也产生相应变化的电流强度,直接推动直流输出电表,从表面上直接读出水样的浑浊度。 二、仪器 GDS—3型光电式浑浊度仪。 三、测定步骤 ●仪器接通电源,将稳压器、光源灯预热15—30分钟。 测定低浊度(0—30毫克/升) ●用长水样槽,将零浊度水倒入水样槽至水位线,然后将水样槽放入仪 器测量室(水样槽有号码的一面对着测量室右端),盖上盖子,缓慢地 旋转稳压器上的微调,调节至仪表零度处,然后取出水样槽。 将被测水样倒入水样槽至水位线,然后放入仪器测量室,盖上盖子,从仪表上直接读出浊度数。

测定高浊度(20—100毫克/升) ●用短水样槽,将零度浊度水倒入水样槽至水位线,然后把20毫克/升 基准浊度板对着水样槽有号码一端插入,将水样槽放入测量室(将有 20毫克/升基准浊度板一面对着测量室右端),盖上盖子,缓慢地旋转 稳压器上的微调,调至仪表右端20度处,取出水槽。 ●取出20毫克/升基准浊度板,将被测水样倒入水样槽至水位线,然后 将水样槽放入仪器测量室,盖上盖子,从仪表上直接读出浊度数。 ●如浑浊超过100毫克/升时,可用零度水进行稀释后再行测定,从仪表 浊度数乘上稀释倍数。 ●零度蒸馏水用双重蒸馏水,或经过通径为0.2微米的超滤膜滤过的蒸 馏水。 四、注意事项: ●仪器用于实验测定水的浑浊度,测量范围分为二档,测定0~30°低浊 度档时取用水长样匣,20~100°高浊度档时取用短水样匣。 ●测定前数分钟应先开启稳压电源使光源预热,然后再行测定。使用完 毕后,应立即关闭电源,以免光源老化而影响使用寿命。 ●水样匣必须勤清洗,特别是在测定高浊度水样后立即测定低浊度水样 时更应清洗,否则会影响测定的正确性。清洗方法是:用带橡皮头的玻 璃棒轻轻揩擦透光玻璃的内侧,勿使沾污。 ●水样倒入水样匣后必须用清洁而干燥的白布揩擦水样匣外部,以免残 留水渍而影响透光率。 ●在相对湿度较大的条件下使用时,应采取快速和瞬时读数,以减少误 差。 表中指示的读数即为浑浊度,并注意低浊度档(0~30°)或高浊度档(20~100°)。

相关文档
最新文档