离子交换器设计手册(内部资料)

离子交换器设计手册(内部资料)
离子交换器设计手册(内部资料)

石油化工有限公司炼油乙烯项目除盐水处理系统计算书

设计原则

1工艺流程的设计

由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。

根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。

为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。

2工艺流程总述

2.1工艺流程:

由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。

原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO3-含量为20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除CO2器除去重碳酸根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,

增加运行时间。

工艺如下:

(原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点

2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括:

10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。

2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。

设计进水水质及出水水质

1进水水质

1.1 除盐水物流特性

本项目的原水来自于菱溪水库,其水质(供参考)为:

1.2出水水质

2处理水量

处理水量为:900m3/h

设备选型计算

一、混床

处理水量为:900m3/h,考虑系统自用水量10%,混床处理能力为990 m3/h,采用多孔强碱I型201×7#阴树脂和001×7#阳树脂,混合树脂的单位周期制水量取6000m3/m3,

1.混床总面积

F=Q/U=990/48=18.75 (U取48m/h)

2.混床计算台数

n=F/0.785d2=18.75/0.785×2.82=3台(ф2800mm)

一台再生一台备用,共5台

3.实际正常运行流速

单台混床处理量为930/3=330m3/h

U=Q/F=4×330/(3.14×2.82)=53.62m/h

4.树脂高度计算

阳树脂体积V c=Π/4×D2×h阳

阴树脂体积V a=Π/4×D2×h阴

混床运行周期选取为5天合120小时

T=6000(V阳+ V阴) /Q=[6000Π/4×D2×(h阳+h阴) ]/330=120

H c:h a取1:2

H c=353mm h a=706mm

阳树脂高取360mm,阴树脂高取720mm

5.阳树脂再生一次耗用30%盐酸量

B c1=V c b c/30%=2.22×75/30%=523.6Kg/次

6.阳树脂再生一次耗用30%盐酸体积

V c1=B c1/r c1==524.6/1.149=455.7L/次

7.盐酸计量槽的容积

V c2=1.2V c1=1.2×455.7=546.8L

8.稀释至5%盐酸溶液的体积

V c3=V c*b c/5%*r c2=3070.5L/次

9.阳树脂再生一次释用除水用量

V c4=V c3-V c1=3070.5-455.7=2614.8L/次

10.30%盐酸的平均月耗量

B c2=30×24*B c1/T=30×24×523.6/120=3141.7Kg/月

11.30%盐酸的平均年耗用量

B c3=12*B c1=37699/年=37.7吨/年

12.阴树脂再生一次耗用30%NaOH量

B a1= V a*b a/30%=4.43*70/30%=916Kg/次

13. 阴树脂再生一次耗用30%NaOH体积

V a1= B a1/r a1=916/1.328=735.9L

14.NaOH计量槽的容积

V a2= V a1×1.2=735.9×1.2=885L 15.稀释至4%NaOH 溶液的体积

V a3= V a ×b a /4%r a2=3.926×70/4%*1.043=6587.2L 16.阴树脂再生一次稀释用除盐水量 V a4= V a3- V a1=6587.2-735.9=5851.3L 17.30%NaOH 的平均月耗量

B a2=30×24×B a1/T=30×24×916/120=5496Kg/月 18. 30%NaOH 的平均年耗量

B a3=B a2×12=65952Kg/年=65.95吨/年 19.离子交换器酸废水排放量

G 1`=V*E(N-N 1)*10-3=2.154×550×(150-36.5)×10-3=134.5Kg/周期 20.离子交换器碱废水排放量

G 2`=V*E(N-N 1)*10-3=4.038×250×(250-40)×10-3=212Kg/周期 21.废碱液中能被废酸液中和的部分的酸量 G 3=

1

1`40G N =

5

.3604134.5 =147.4Kg/周期

22.剩余碱量

G 4= G 2`- G 3=212-147.4=64.6Kg/周期 23.中和后碱性废水排放量

Q=V 1+V 2+V 3+V 4 =23.08+3.16+3.16+92.32=121.7m 3 23.碱性废水浓度

A1=

Q

4

G =

7

.1246.64=0.518g/l

24.排放碱性废水PH 值 PH =14-lg

40

1A =14- lg

40

518.0=12.11

25.体外管系接口规范 进、出水口管径计算

Q =u*Π/4×D 2

=2×3600×3.14×D 2

/4=330

D=242mm 取250mm 反洗进水、排水管管径计算

Q =10Π/4×2.82=u*Π/4×D 2=1.5×3600×3.14/4×D 2

D=121mm 取150mm 进碱管管径计算

Q =5Π/4×2.82=u*Π/4×D 2=1.5×3600×3.14/4×D 2

D=85mm 取100mm

进水管: DN250,PN1.0MPa 出水管: DN250, PN1.0MPa 中间排水管: DN100, PN1.0MPa 反洗进水管: DN150,PN1.0MPa 反洗排水管: DN150,PN1.0MPa 正洗排水管: DN100,PN1.0MPa 进气管: DN65,PN1.0MPa 排气管: DN40,PN1.0MPa 进碱管: DN100,PN1.0MPa 进酸管: DN100,PN1.0MPa 26.筒体高度计算

反洗膨胀率50%,直筒高度h=(0.36+0.72)×(1+50%)/80%=2.05m

二、阴双室双层浮动床

阴双室双层浮动床直径取ф3000,采用D301弱碱阳离子交换树脂和201×7强碱阳离子交换树脂,运行周期取120h 。 1.弱碱阴树脂量计算 V a1=

1

S1E T

Q ??×k 1=

850

120

330199.0??×1.20=11.138m 3

V a1=Π/4×D 2×h 弱碱=3.14/4*32* h 弱碱=11.138m 3

h 弱酸=1.568m 取1600mm 2.强碱阴树脂量计算 V a2=

2

S2E T Q ??×k 2=

400

120

330086.0??×1.10=9.372m 3

V a2=Π/4×D 2×h 弱碱=3.14/4*32* h 弱碱=9.372m 3 h 弱酸=1.309m 取1300mm 3.阴床再生用碱量 G 2=(V a1*E 1+V a2*E 2)*q*10-3

=(11.138×850+9.372×400)×60×10-3 =793Kg

30%NaOH 一次投加体积 V 2=

2

*2*1000G2r C =

328

.1%301000793

??=1.99m 3

4%NaOH 一次投加体积 V 2=

2

*2*1000G2r C =

043

.1%41000793

??=19.25m 3

4.每周期碱排放量计算

G 2=V*E(N-N 1)*10-3

=(10.125×850+8.52×400)×(65-40)×10-3

=300.4Kg 5.碱性废水排放体积

Q 1= V 2+V 3+V 4 =17.5+38.86+37.28=93.6m 3 6.体外管系接口规范

Q =u*Π/4×D 2=2×3600×3.14×D 2/4=330

D=242mm 取250mm 反洗进水、排水管管径计算

Q =10Π/4×32=u*Π/4×D 2=1.5×3600×3.14/4×D 2

D=129mm 取150mm 进碱管管径计算

Q =5Π/4×32=u*Π/4×D 2=1.5×3600×3.14/4×D 2

D=91mm 取100mm

进水管: DN250,PN1.0MPa 出水管: DN250, PN1.0Mpa

再生液进水管: DN100,PN1.0Mpa 再生液出水管: DN100,PN1.0Mpa 排水管: DN200,PN1.0Mpa 正洗进水管: DN100,PN1.0Mpa 正洗出水管: DN150,PN1.0Mpa 排气管: DN40,PN1.0Mpa 上部进树脂口: DN100,PN1.0Mpa 下部进树脂口: DN100,PN1.0Mpa 上部排树脂口: DN100,PN1.0Mpa 下部排树脂口: DN100,PN1.0Mpa 7.筒体高度计算

反洗膨胀率50%,直筒高度h=(1.3+1.6)×(1+50%)/90%=4.83m

三、阳双室双层浮动床

阳双室双层浮动床直径取ф3000,采用D113-Ⅲ弱酸离子交换树脂和001×7强酸阳离子交换树脂,运行周期取120h 。 1. 弱酸阳树脂量计算 V c1=

1

)(E T

Q a Hz ?-×K 1=

1800

120

330)15.034.0(??-×1.15=4.81m 3

V c1=Π/4×D 2×h 弱酸=3.14/4×32×h 弱酸=4.81m 3 h 弱酸=0.68m 取700mm 2. 强酸阳树脂量计算 V c2=

1

S2E T

Q ??×k 1=

1000

120

330)19.031.(0??-×1.20=5.71m 3

V c2=Π/4×D 2

×h 强酸=3.14/4*32

* h 弱酸=5.71m 3

H 强酸=0.81m 取850mm 3. 阳床再生用酸量(HCl) G1=(V c1*E 1+V c2*E 2)*q*10-3

=(4.81×1800+5.71×1000)×50×10-3 =718.4Kg 30%HCl 一次投加体积 V 2=

2

*2*1000G2r C =

149

.1%3010004

.718??=2.09m 3

4%NaOH 一次投加体积 V 2=

2

*2*1000G2r C =

023

.1%410004

.718??=17.56m

3

4.离子交换器酸废水排放量

G 2`

=V*E(N-N 1)*10-3

=(4.93×1800+5.61×1000)×(50-36.5)×10

-3

=195Kg/周期

5.酸性废水排放体积

Q 2=V 1+V 2+V 3+V 4 =11.8+17.7+42.39+19.12=91.1m 3 6.剩余碱量 G 4= 300-5

.3640195?=300-213.7=86.3Kg/周期

7.中和后碱性废水排放量 Q=Q 1+Q 2=93.6+91.1=184.7m 3

8.碱性废水浓度

A 2=

Q

4

G =

7

.1843.86=0.467g/l

9.排放碱性废水PH 值

PH =14-lg

40

1A =14-lg

40

467.0=12.07

10.体外管系接口规范

Q =u*Π/4×D 2=2×3600×3.14×D 2/4=330

D=242mm 取250mm 反洗进水、排水管管径计算

Q =10Π/4×32=u*Π/4×D 2=1.5×3600×3.14/4×D 2

D=129mm 取150mm 进碱管管径计算

Q=5Π/4×32=u*Π/4×D2=1.5×3600×3.14/4×D2

D=91mm 取100mm

进水管: DN250,PN1.0MPa

出水管: DN250, PN1.0Mpa

再生液进水管: DN100,PN1.0Mpa

再生液出水管: DN100,PN1.0Mpa

排出管: DN200,PN1.0Mpa

正洗进水管: DN100,PN1.0Mpa

正洗出水管: DN150,PN1.0Mpa

排气管: DN40,PN1.0Mpa

上部进树脂口: DN100,PN1.0Mpa

下部进树脂口: DN100,PN1.0Mpa

上部排树脂口: DN100,PN1.0Mpa

下部排树脂口: DN100,PN1.0Mpa

11.筒体高度计算

反洗膨胀率50%,直筒高度h=(0.7+0.85)×(1+50%)/90%=2.60m

四、纤维球过滤器

型号: WQJ-2800

过滤器直径: 2800mm

过滤器高度: 4106mm

过滤面积: 6.154m2

处理能力: 165m3/h

滤速: 30m/h

进水压力:≤0.6Mpa

过滤器阻力损失:≤0.10Mpa

反洗压力:≤0.2Mpa

反洗强度: 36 m3/m2.h

反洗水泵

流量: 221m3/.h

扬程: 32m

功率: 30Kw

反洗器阻力损失:≤0.15Mpa

反洗历时: 20-30min

气洗强度: 150 m3/m2.h

滤后水质:

SS:≤10mg/L

粒径:≤0.2mm 滤料:纤维球 30mm

电机功率: 22KW

桨叶直径:φ900mm

数量: 10台反洗水泵流量计算

反洗强度为36m3/ m3h

Q=36×3.14×1.42=221m3/h

反洗水泵扬程:35m

体外管系接口规范

进、出水口管径计算

Q=u*Π/4×D2=2×3600×3.14×D2/4=165

D=185mm 取200mm

反洗进水、排水管管径计算

Q==u*Π/4×D2=1.5×3600×3.14/4×D2=36×3.14/4×3.22 D=169mm 取200mm

(1)过滤进水、反洗出水管: DN200,PN1.0MPa

(2)过滤出水、反洗进水管: DN200, PN1.0MPa (3)排气管: DN40,PN1.0MPa (4)溢流管: DN15,PN1.0MPa

五、脱气塔

中间水箱和脱气塔为一体化布置,脱气塔置于中间水箱上。 1.脱气塔的横截面积

f=

q

Q =

50

330=6.6m 2

2.脱气塔的直径

D=1.13

f

=1.136.6=1.13×2.45=2.77m

取脱气塔直径2.8m 3.脱气塔填料表面积

F=c

K G ??

G=

1000

)

21(C C Q -=

1000

)

08.0342.0(330-=0.1

?

C =

2

1lg

44.221C C C C -*10-3

=

08

.0342.0lg

44.208.0342.0-*10-3

=0.185×10-3

K=

d

P 33

.086

.01Pr

Re

02.1??=

d

33

.086

.08

Pr

Re

10

37.602.1????-

Pr=0.36×10

-2

1

P u =0.36×10

-2

8

410

37.61079.1--??=10.1

Re=36

.010

2

×

u

d g ?=

36

.010

2

×

4

10

79.201525.060-??=5.5×105

F=

3

10

185.079.01

.0-??=1684m

2

4.脱气塔填料高度 V=

S

F =

236

1684=7.14

H=

E

V =

2

8

.24/14.314.7?=1.46m

取1500mm 5.鼓风机选择计算 L =1.1*g*Q*K*K 1*K 2

=1.1×20×330×1×273

5273+×1.6

=11968m 3/h 6.风机的风压

P =1.2*(A*H +?h )*K*`1K =1.2×(294×1.8+392) ×1×273

5273+

=1125Pa 7. 体外管系接口规范

进、出水口管径计算

Q =u*Π/4×D 2

=2×3600×3.14×D 2

/4=330

D=242mm 进口取250mm 出口取300mm 8.配套风机

数量: 5台 型号: CQ20-J

风量: Q=9612-14418m 3/h 风压: H=1.96KPa 电源电压: 380 V 电机功率: P=15kW 转速: 2900r/min

生产厂家: 湖北鼓风机有限公司 7.中间水箱

型式: 方形

数量: 5台

容积: 100m3

外形尺寸: L4500mm×B4500mm×H5000mm

六、树脂清洗罐

阳树脂清洗罐

设备规范及数量:?3000mm 1台

设备直径(外径、壁厚):3024 mm、12mm.上、下封头厚度14 mm。

设计压力:0.6MPa

试验压力:0.75MPa

工作温度:最低:5℃最高:60℃

设备高度

(1)树脂层高1600 mm。

(2)膨胀高度1600mm。

(3)器体高度(不包括支腿) 5550 mm。

(4)总高度6200mm(包括支腿)。

阴树脂清洗罐

设备规范及数量:?3000mm 1台

设备直径(外径、壁厚):3024 mm、12mm.上、下封头厚度14 mm。

设计压力:0.6MPa

试验压力:0.75MPa

工作温度:最低:5℃最高:60℃

设备高度

(1)树脂层高1000 mm。

(2)膨胀高度1000mm。

(3)器体高度(不包括支腿) 4730 mm。

(4)总高度5380mm(包括支腿)。

七、其它

1.原水箱

型式:圆形

数量: 2台

容积: 500m3

直径:Φ8000mm

高度: H=10700mm

2.脱盐水箱

型式:圆形

数量: 2台

容积: 500m3

直径:φ10000mm

高度: H=6400mm

3.酸碱再生系统

2套,混床一套,阳、阴床一套

贮存罐装置

酸贮存罐

(1)数量: 2台

(2)容积: 50m3

(3)尺寸和壁厚

尺寸:Φ3024×7805mm

直筒壁厚: 12 mm

封头厚度: 14 mm

(4)体外管系接口规范

进水管: DN50,PN1.0MPa

进液管: DN150, PN1.0MPa

出液管: DN80, PN1.0MPa

备用管: DN50, PN1.0MPa

排污管: DN50,PN1.0MPa

排气管: DN80,PN1.0MPa

人孔:数量:2,规格Φ500 碱液贮存罐

(1)数量: 2台

(2)容积: 50m3

(3)直径和壁厚

直径:Φ3024×7805mm

直筒壁厚: 12 mm。

封头厚度: 14 mm。

(4)体外管系接口规范

进水管: DN50,PN1.0MPa

进液管: DN150, PN1.0MPa

出液管: DN80, PN1.0MPa

备用管: DN50, PN1.0MPa

排污管: DN50,PN1.0MPa

排气管: DN80,PN1.0MPa

人孔:数量: 2 ,规格:Φ500 计量装置

酸计量箱

(1)数量: 1台

(2)容积: 4.0m3

(3)尺寸

尺寸:Φ1612×2340mm

壁厚: 8 mm

(4)体外管系接口规范

进水管: DN32,PN1.0MPa

进液管: DN50, PN1.0MPa

排污管: DN32,PN1.0MPa

排气管: DN25,PN1.0MPa

出液管: DN32, PN1.0MPa 碱计量箱

(1)数量: 1台

(2)容积: 4.0m3

(3)尺寸

直径:Φ1612×2340mm

壁厚: 8 mm

(4)体外管系接口规范

进水管: DN32,PN1.0MPa

进液管: DN50, PN1.0MPa

排污管: DN32,PN1.0MPa

排气管: DN25,PN1.0MPa

出液管: DN32,PN1.0MPa

酸雾吸收器

(1)数量: 1台

(2)设计压力:<0.1MPa

(3)设计温度: 50℃

(4)直径: 500mm

(5)壳体材料/厚度: Q235A/6mm

(6)设备高度: 1100mm

(7)填料名称/高度:塑料多面空心球/500mm (8)填料直径: 50mm

喷射器

阳床喷射器

(1)流量:40m3/h

(2)再生液出口压力:0.2MPa

(3)材质:PTFE

(4)数量:1台

阴床喷射器

(1)流量:40m3/h

(2)再生液出口压力:0.2MPa

(3)材质:Q235A

(4)数量:1台

混床酸喷射器

(1)流量:35m3/h

(2)再生液出口压力:0.2MPa

(3)材质:PTFE

(4)数量:1台

混床碱喷射器

(1)流量:35m3/h

(2)再生液出口压力:0.2MPa

(3)材质:Q235A

(4)数量:1台

卸酸泵

(1)数量:1台

(2)流量:15m3/h

(3)压力:0.15Mpa

(4)功率: 1.5KW

(5)材质:HDPE

虹吸酸罐

(1)数量: 1台

(2)容积: 10.0m3

(3)尺寸Φ2000×3200mm 4.中和水池

换热器设计说明书样本1

2010级应用化学专业《化工原理》课程设计说明书 题目: 姓名: 班级学号: 指导老师: 同组人员 完成时间:

《化工原理》课程设计评分细则 说明:评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60)

目录(按毕业论文格式要求书写)

第一部分设计任务书

第二部分设计方案简介评述 我们设计的是煤油冷却器,冷却器是许多工业生产中常用的设备。列管式换热器的结构简单、牢固,操作弹性大,应用材料广。列管式换热器有固定管板式、浮头式、U形管式和填料函式等类型。列管式换热器的形式主要依据换热器管程与壳程流体的温度差来确定。由于两流体 的温差大于50 C,故选用带补偿圈的固定管板式换热器。这类换热器 结构简单、价格低廉,但管外清洗困难,宜处理壳方流体较清洁及不易结垢的物料。因水的对流传热系数一般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。

第三部分 换热器设计理论计算 1、试算并初选换热器规格 (1)、 定流体通入空间 两流体均不发生相变的传热过程,因水的对流传热系数一 般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。 (2)、确定流体的定性温度、物性数据,并选择列管式换热器的形式: 被冷却物质为煤油,入口温度为140℃,出口温度为40C 冷却介质为自来水,入口温度为30C ,出口温度为40C 煤油的定性温度:(14040)/290m T C =+= 水的定性温度:(3040)/235m t C =+= 两流体的温差:903555m m T t C -=-= 由于两流体温差大于50℃,故选用带补偿圈的固定管板式列管换热器。 两流体在定性温度下的物性数据 (3)、计算热负荷Q 按管内煤油计算,即 1253 361.981010() 2.2210(14040) 1.541610330243600 n ph W Q C T T W ?=-= ????-=??? 若忽略换热器的热损失,水的流量可由热量衡算求得,即 6 3,21() 1.54161036.94/4.17410(4030) c p c Q C t t W kg s =-?==??- (4)、计算两流体的平均温度差,并确定壳程数 逆流 温 差 212211222111 ()()(14040)(4030)39.09614040 ln ln ln 4030m t t T t T t t C t T t t T t ??-?------'====??---?- 121214040 104030 T T R t t --= ==--

离子交换设计计算书(有公式)

全自动软水器设计指导手册 (附设计公式)

目录 一、总述 0 1. 锅炉水处理监督管理规则 0 2. 离子交换树脂部结构 0 3. 钠离子交换软化原理及特性: (1) 4. 水质分析测试容 (1) ?PH值(Potential of Hydrogen) (1) ?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (1) ?铁含量(IRON) (1) ?锰 (2) ?硬度值(HARDNESS) (2) ?碱度 (2) ?克分子(mol) (2) ?当量 (3) ?克当量 (3) ?硬度单位 (3) ?我国江河湖泊水质组成 (5) 二、全自动软水器 (5) 三、影响软水器交换容量的因素 (7) 1. 流速(gpm/ft,m/h) (7) 2. 水与树脂的接触时间:(gpm/ft3) (7) 3. 树脂层的高度 (8) 4. 进水含盐量 (9) 5. 温度 (11) 6. 再生剂质量(NaCl) (11) 7. 再生液流量 (12) 8. 再生液浓度 (13) 9. 再生剂用量 (14) 10. 树脂 (14) 四、自动软水器设计 (14) 1. 软水器设备应遵循的标准 (14) 2. 全自动软水器主要参数计算 (15) 1) 反洗流速的计算: (15) 2) 系统压降计算 (15) 3. 软水器设计计算步骤 (15) 计算示例 (17)

一、总述 1.锅炉水处理监督管理规则 第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测 单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规 则。 第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。 第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。 第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。 第十四条锅炉水处理设备出厂时,至少应提供下列资料: 1.水处理设备图样(总图、管道系统图等); 2.设计计算书; 3.产品质量证明书; 4.设备安装、使用说明书; 5.注册登记证书复印件。 第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位 和个人)的处理。 2.离子交换树脂部结构 离子交换树脂的部结构可以分为三个部分: 1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等; 2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子官能团[如-SO3Na、-COOH、-N(CH3)3Cl]等,或带有极性的非离子型官能团[如-N(CH3)2、-N(CH3)H等]; 3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝 胶孔)和高分子结构之间的孔(毛细孔)。 离子交换树脂的部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。 顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

离子交换器的结构

离子交换器的结构 离子交换器主要用于纯水和高纯水的制备,也可用于锅炉、热电站、化工、轻工、纺织、医药、生物、电子、原子能及纯水处理的前道处理工序;工业生产所需进行硬水软化、去离子水制备的场合;食品、药物的脱色提纯;贵重金属、化工原料的回收;电镀废水的处理等。离子交换器(柱)的外壳一般采用PVC (硬聚氯乙烯)、PVC-FRP(硬聚氯乙烯复合玻璃钢)、PMMA(有机玻璃)、PMMA-FRP(有机玻璃复合透明玻璃钢)、JR(钢衬胶)或不锈钢衬胶等材质加工而成。 1按交换离子的类型分类 1.1复床 复床也就是阴阳离子交换床,是指将电解质溶液一次通过装有氢型阳离子交换树脂的阳床和装有氢氧型阴离子交换树脂的阴床的系统。其中,氢型阳床用于除去电解质溶液中的阳离子,而氢氧型阴床则用于除去水中的阴离子。通过复床一般可将电解质溶液中的离子基本除去。为达到较好的除盐效果,阳床内装载的是强酸性阳离子交换树脂,阴床则装载强碱性阴离子交换树脂。 图2.复床系统 1-强酸阳床2-弱碱阴床3-强碱阴床 4-除二氧化碳器5中间水箱6-水泵 1.2混床 混合离子交换柱即混床是为更好利用离子交换技术而设计的设备。所谓混床,是指把一定比例的阴、阳离子交换树脂混合装填于同一个交换柱中,以进行离子的交换和洗脱。一般来讲,阳树脂的比重会比阴树脂大。因此,在混床内阴树脂在阳树脂之上。阴、阳树脂的装填比例一般为2:1,也有装填比例为1.5:1的,可根据不同树脂和工况要求酌情考虑选择。 混床分为体内同步再生式和体外再生式。体内再生式混床的运行和整个再生

过程均在混床内部进行,再生时树脂不会移除设备以外,且阴阳树脂同时再生。这就有了它相较于体外再生式混床的优势,即所需附属设备少,操作简单。 混床一般设置在一级复床之后,以便进一步纯化水质。当水质要求不高的时候,也可以单独使用。混床的特点包括:出水水质优良,pH值接近中性;出水水量稳定,短时间内运行条件(如进水水质或组分、运行流速)的变化对混床出水水质影响不大;即使是间断运行,对出水水质的影响也相对较小,恢复至停运前水质所需要的时间较短;离子回收率可达100%。 1.3钠离子交换器 钠离子交换器即软化器是用于去除水中钙离子、镁离子,制取软化水的离子交换器。组成水中硬度的钙、镁离子与软化器中的离子交换树脂进行交换,水中的钙、镁离子被钠离子交换,使水中不易形成碳酸盐垢及硫酸盐垢,从而获得软化水。影响钠离子交换器的三大选型标准是水质硬度、产水量和安装空间。 离子交换器还可以按使用规模分类,大体包括实验室用小型交换柱和工业用离子树脂交换柱两类。 2实验室用小型交换柱 实验室中一般将酸滴定管改装为小型交换柱。在其底部填少许玻璃棉,然后再倒入一层小的玻璃珠,最后装填树脂,便基本制成一个实验室用小型交换树脂柱。专用的小型玻璃交换柱下面有玻璃砂芯垫板,这就可以直接装入树脂。较大的交换柱可采用玻璃管,下部有出口,中间插入细玻璃管,作为入水口,上部用橡胶塞封堵。内径50mm以上的多使用有机玻璃或聚氯乙烯材料,两头用法兰封口,并在柱的中间增加进液口,能够完成较复杂的试验。树脂在装柱前应将其浸泡在水中,然后将树脂随水一起倒入柱中,防止干的树脂夹带气体。柱中装填的树脂层称为树脂床。

换热器原理及设计大纲.pdf

《换热器原理及设计》教学大纲 Principles and Design of Heat Exchanger 一、课程类别和教学目的 课程类别:专业课 课程教学目标:通过该门课程的学习,使学生了解各种常用热交换器(也称换热器)的工作原理,掌握以满足流动和传热为条件的热交换器的设计方法,了解热交换器的实验研究方法、强化技术和性能评价,为以后的学习、创新和科学研究打下扎实的理论和实践基础。 二、课程教学内容 (一)绪论 介绍热交换器的重要性、分类及其在工业中的应用,换热器设计计算的内容。 (二)热交换器计算的基本原理 介绍传热方程式、热平衡方程式的应用;讲授流体比热或传热系数变化时的平均温差的 计算方法、传热有效度、热交换器计算方法的比较、流体流动计算方法的比较。 (三)管壳式热交换器 介绍管壳式热交换器的类型、标准与结构;讲授管壳式热交换器的结构计算、传热计算和流动阻力计算、管壳式热交换器的设计程序、管壳式冷凝器与蒸发器的工作特点。 (四)高效间壁式热交换器 介绍螺旋板式热交换器、板式热交换器、板翅式热交换器、翅片管热交换器、热管热交 换器、蒸发(冷却)器、微尺度热交换器的结构、工作原理及其设计计算。 (五)混合式热交换器 讲授冷水塔的热力计算、通风阻力计算与设计计算,汽-水喷射式热交换器的相关计算、水-水喷射式热交换器的相关计算;介绍混合式热交换器的分类。 (六)蓄热式热交换器 介绍回转型蓄热式热交换器和阀门切换型蓄热式热交换器的构造和工作原理;讲授蓄热式热交换器的计算、蓄热式热交换器与间壁式热交换器中气流及材料的温度变化比较。 (七)热交换器的试验与研究 介绍传热系数的测定方法、阻力特性实验的测定方法;讲授增强传热的基本途径、热交换器的结垢类型与腐蚀方法、热交换器的优化设计与性能评价方法。 三、课程教学基本要求 (一)绪论

热交换器原理与设计期末复习重点

热交换器原理与设计 题型:填空20%名词解释(包含换热器型号表示法)20% 简答10%计算(4题)50% 0 绪论 热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。(2013-2014学年第二学期考题[名词解释]) 热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式 按照传热量的方法来分:间壁式、混合式、蓄热式。(2013-2014学年第二学期考题[填空]) 1 热交换器计算的基本原理(计算题) 热容量(W=Mc):表示流体的温度每改变1℃时所需的热量 温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释]) 传热有效度(ε):实际传热量Q与最大可能传热量Q max之比2 管壳式热交换器 管程:流体从管内空间流过的流径。壳程:流体从管外空间流过的流径。 <1-2>型换热器:壳程数为1,管程数为2 卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释]) 记:前端管箱型式:A——平盖管箱B——封头管箱

壳体型式:E——单程壳体F——具有纵向隔板的双程壳体H——双分流 后盖结构型式:P——填料函式浮头 S——钩圈式浮头 U——U形管束 管子在管板上的固定:胀管法和焊接法 管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。(2013-2014学年第二学期考题[填空]) 管壳式热交换器的基本构造:⑴管板⑵分程隔板⑶纵向隔板、折流板、支持板⑷挡板和旁路挡板⑸防冲板 产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。 热交换器中的流动阻力:摩擦阻力和局部阻力 管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力 管程、壳程内流体的选择的基本原则:(P74) 管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。(2013-2014学年第二学期考题[简答])

离子交换器的设计计算

离子交换器的设计计算 1、交换器直径: F=Q/(T×N×V) F---交换器截面积(m2); Q---产水量(T/D); T---工作时间(H/D) N---交换器台数; V-交换流速(M/H). 2、交换器高度: H=Hp+Hr+Hs+Ht(米) Hp---交换器下部排水高度,一般为0.3—0.7m; Hr---交换剂层高度,一般在1.0—2.0之间选择。 Hs---反洗膨胀高度,树脂层高50%左右。 Ht---顶部封头高度。 3、交换器连续工作时间: t=V r×Eg/《q×(H1-H2)》 (小时) V r---交换剂体积; q---交换器流量; Eg---交换剂的工作交换容量,一般阳树脂取1000mol/m3。 H1---原水中硬度,mmol/L. H2---出水残留硬度,mmol/L. 4、再生剂用量:G z=V r×Eg×Bz/(1000×ε)

Gz---再生剂用量; Bz---再生剂实际耗率,g/mol. ε---再生剂纯度,对NaCL,可取0.95。 常用再生剂的实际耗率 顺流再生逆流再生 再生剂:NaCL ;HCL NaCL ; HCL 耗率:120-150 ;60-90 70-90; 30-60混合离子交换器设计计算: Q=3.14R2×V Q--混床的处理能力;单位m3/h R--混床的半径;单位m V--过滤流速,一般普通混床20-30m3/h 精致混床30-40m3/h 抛光混床40-60m3/h 取石英砂10-12m/h; V=3.14R2×H×1000 V--树脂的体积;单位kg R--混床的半径;单位m H--树脂的有效高度;单位m 注:树脂总装高不小于1m 阴阳离子交换树脂比例(阳:阴=1:1.3-2)混床的再生周期:

换热器的设计

武汉工程大学化工机械专业毕业设计 列管式换热器设计 专业班级 学号 指导教师 成绩

列管式换热器设计 摘要 化工设备课程设计是培养学生综合运用本门课程及有关先修课程的基本知识去完成某一设备设计任务的一次训练。 本次的设计的内容是水—CO2列管式固定管板换热器的设计。这方面的知识虽然我们在大三上学期进行了理论课的学习,但是了解和掌握的东西仍然很有限。在这次的课程设计,通过热量衡算,工艺计算,结构设计和校核等一系列工作,我们基本上完成了设计任务,也让我明白了怎么应用所学的化工设备知识,结合我们所掌握的其他相关学科的知识、计算机技术、参照相关的书籍文献等去解决实际的设计问题。并且通过在设计过程中,不断的发现问题解决问题,使我们能够更加熟练的运用这些知识与技能。这些经验的积累是对课堂学习的巩固和拓展,也是一次宝贵的经验积累。 当然在整个设计过程种,也离不开老师的悉心指导和同组各位组员的同心协力。在我们的实践过程中,通过小组各位组员的分工合作和相互配合,我们才能比较顺利的完成各个时段的工作,在遇到问题时,我们能够一起参与讨论,通过查阅资料、咨询老师等来解决。虽然在这个过程中,我们有发生过计算失误而重头开始计算,有过发现画图过程中的设计缺陷而重新设计等等问题,但这不但没有让我们知难而退,反而让我们更加深刻的认识到科学设计中所应该持有的严谨务实的态度的重要性。这些宝贵经验的积累,对我们今后的学习工作也一定会有很大的帮助。 关键词:结构设计,工艺计算

目录 第一章设计条件 (3) 第二章换热器结构设计 (3) 2.1管子数计算 (3) 2.2排列方式确定 (3) 2.3壳体直径确定 (4) 2.4壳体壁厚计算 (5) 2.5管板尺寸确定 (5) 2.6封头尺寸确定 (6) 2.7容器法兰选择 (6) 2.8管子拉脱力计算 (6) 2.9折流板计算 (8) 2.10支座确定 (9) 第三章换热器主要结构尺寸和计算结果列表 (9) 参考文献 (11) 致谢 (12)

离子交换器设计介绍材料(内部资料)

石油化工有限公司炼油乙烯项目除盐水处理系统计算书 设计原则 1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO3-含量为20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除CO2器除去重碳酸根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,

增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

热交换器原理与设计样题

南京工程学院试卷(1) 1、在以多流程等复杂方式流动的热交换器中,通常先按( 后乘以考虑因其流动方式不同而引入的修正系数来确定其对数平均温差。 a.纯叉流;b.纯顺流;c.纯逆流。 3、采用空气预热器回收烟气中余热,采用热管式换热器,管子上加翅片,翅片应该( ) a.(氐而厚 b.高而薄 c 低而薄 二、问答题(本题4小题,每题8分,共32分) 1、对两种流体参与换热的间壁式换热器,其基本流动式有哪几种?说明流动形式对换热器热 力工作性能的影响?( 8分) 课程所属部门: 考试方式: 开卷 20 /20 学年 第2学期 共5页第1页 能源与动力学院 课程名称:热交换器原理与设计 使用班级: 热能与动力工程(核电站集控运行) 题号 一一一 -二 二 -三 四 五 六 七 八 九 十 总分 得分 、选择题(本题3题,每题3分,共9 分) )算出对数平均温差,然 2、下图所示的换热器,是( )型管壳式换热器。 主管领导批准: 命 题人:张翠珍 教研室主任审核: 本题 得分 a. 2-1 b. 1-2 c 2-2 本题 得分

南京工程学院试卷共5页第2页 2、试述平均温差法(LMTD法)和效能一传热单元数法(&-NTU法)在换热器传热计算中各自的特点?(8分) 3、简述吸液芯热管的工作过程。(8分)

南京工程学院试卷 共5页 第3页 4、对管壳式换热器来说,两种流体在下列情况下,何种走管内,何种走管外? ⑴清洁与不清洁的;(2)腐蚀性大与小的;⑶温度高与低的;(4)压力大与小的; (5)流 量大与小的;(6)粘度大与小的。 (8分) 1 名 ■ 1 1 i 1 i i i i i 姓 i 号 i i i i i ■ 1 i i i 学 ■级 1 i i i i i i 班 i I 1 i i i i 三、思考题(本题2小题,每题15分,共30 分) 1、在圆管外敷设保温层与在圆管外侧设置肋片从热阻分析的角度有什么异同?在什么情况 下加保温层反而会强化其传热然而加肋片反而会削弱其传热? ( 15分) 2、热水在两根相同的管内以相同流速流动,管外分别采用空气和水进行冷却。经过一段时 间后,两管内产生相同厚度的水垢。试问水垢的产生对采用空冷还是水冷的管道的传热系 数影响较大?为什么?( 15分)

热交换器原理与设计

绪论 1. 2.热交换器的分类: 1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等 2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式 4)按照传送热量的方法来分:间壁式,混合式,蓄热式 恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。 过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。 第一章 1.Mc1℃是所需的热量,用W表示。两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。 2.W—对应单位温度变化产生的流动流体的能量存储速率。 4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。 5.P(定义式P12) 物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。 6.R—冷流体的热容量与热流体的热容量之比。(定义式P12) 7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。 (P22 例1.1) 8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。 9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。意义:以温度形式反映出热、冷流体可用热量被利用的程度。 10.根据ε的定义,它是一个无因次参数,一般小于1。其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。 11.带翅片的管束,在管外侧流过的气体被限制在肋片之间形成各自独立的通道,在垂直于 流动方向上(横向)不能自由运动,也就不可能自身进行混合,

换热器设计指南汇总

换热器设计指南

1 总则 1.1 目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1.2 范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3 规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号(版次)的引用文件,其最新版本适用于本规定。 GB150-1999 钢制压力容器 GB151-1999 管壳式换热器 HTRI设计手册 Shell & tube heat exchangers——JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ——SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection——CHEVRON COP. (1989) HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers——TOTAL(2002) 管壳式换热器工程规定——SEI(2005) 2 设计基础 2.1 传热过程名词定义

2.1.1 无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2 沸腾过程 在传热过程中存在着相的变化—液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3 冷凝过程 部分或全部流体被冷凝为液相, 热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2 换热器的术语及分类 2.2.1 术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器;位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分; 管程数:介质沿换热管长度方向往、返的次数; 壳程数:介质在壳程内沿壳体轴向往、返的次数; 公称长度:以换热管的长度作为换热器的公称长度,换热管为直管时,取直管长度,换热管为U形管时取U形管直管段的长度; 计算换热面积:以换热管外径为基准,扣除伸入管板内的换热管长度后,计算得到的管束外表面积,对于U形管式换热器,一般不包括U形弯管段的面积;公称换热面积:经圆整后的计算换热面积;

离子交换设计计算书..

混合离子交换器 详 细 设 计 计 算 书 宜兴市华电环保设备有限公司

1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生 -含量为水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO 3 器除去重碳酸20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO 2 根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱

→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

换热器设计指南汇总

换热器设计指南 1总贝!I i.i目的 为规范本公司工艺设计人员设计管壳式换热器及校核管壳式换热器而编制。 1. 2范围 1.2.1本规定规定了管壳式换热器的选型、设计、校核及材料选择。 1.2.2本规定适用于本公司所有的管壳式换热器。 1.3规范性引用文件 下列文件中的条款通过本规定的引用而成为本规定的条款,凡注日期的应用文件,其随后所有的修改单或修改版均不适用本规定。凡不注日期或修改号 (版次)的引用文件,其最新版本适用于本规定。 GB150-1999钢制压力容器 GB151-1999管壳式换热器 HTRI设计手册 Shell & tube heat exchangers ------- JGC 石油化工设计手册第3卷——化学工业出版社(2002) 换热器设计手册——中国石化出版社(2004) 换热器设计手册——化学工业出版社(2002) Shell and Tube Heat Exchangers Technical Specification ---------- SHESLL (2004) SHELL AND TUBE HEAT EXCHANGERS——BP (1997) Shell and Tube Exchanger Design and Selection -------- HEVRON COP. (1989)

HEAT EXCHANGERS——FLUOR DANIEL (1994) Shell and Tube Heat Exchangers ------- TOTAL (2002) 管壳式换热器工程规定——SEI (2005) 2设计基础 2. 1传热过程名词定义 2.1.1无相变过程 加热:用工艺流体或其他热流体加热另一工艺流体的过程。 冷却:用工艺流体、冷却水或空气等冷剂冷却另一工艺流体的过程。 换热:用工艺流体加热或冷却另外一股工艺流体的过程。 2.1.2沸腾过程 在传热过程中存在着相的变化一液体加热沸腾后一部分变为汽相。此时除显热传递外,还有潜热的传递。 池沸过程:用工艺流体、水蒸汽或其他热流体加热汽化大容积设备中的工艺流体过程。 流动沸腾:用工艺流体、水蒸汽或其他热流体加热汽化狭窄流道中的工艺流体过程。 2.1.3冷凝过程 部分或全部流体被冷凝为液相,热流体的显热和潜热被冷流体带走,这一相变过程叫冷凝过程。 纯蒸汽或混合蒸汽冷凝:用工艺流体、冷却水或空气,全部或部分冷凝另一工艺流体。 有不凝气的冷凝:用工艺流体、冷却水或空气,部分冷凝工艺流体和同时冷却不凝性气体。 2.2换热器的术语及分类 2.2.1术语及定义 换热器装置:为某个可能包括可替换操作条件的特定作业的一个或多个换热器; 位号:设计人员对某一换热器单元的识别号; 有效表面:进行热交换的管子外表面积; 管程:介质流经换热管内的通道及与其相贯通部分; 壳程:介质流经换热管外的通道及与其相贯通部分;

离子交换器工作原理

工作原理就是离子的交换。 运行时:阳树脂(H-R)+(M+)-->:(M-R)+(H+) 阴树脂(OH-R)+(X-)-->:(X-R)+(OH-) 其中M+为金属离子,X-为阴离子。 再生过程为其逆过程。 离子交换器的失效控制 离子交换除盐水处理最简单的流程为阳床-阴床组成的一级复床除盐系统。有的一级复床除盐系统采用单元制,即每套一级复床除盐系统包括阳床、(除碳器)、阴床各一台,在离子交换除盐运行过程中,无论是阳床还是阴床先失效,都是同时再生;还有的一级复床除盐系统采用母管制,即阳床与阳床或阴床与阴床是并联运行的,哪一台交换器失效就再生哪一台。 1 检测和控制原理 强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,H+.最后被其他阳离子置换下来,当保护层穿透时,首先泄漏的是最下层的Na+;因此监督阳离子交换器失效是以漏钠为标准的;其反应方程为(A代表金属阳离子,R 为树脂基团): An+ +nRH=RnA+n H+ HCO3- + H+ =H2O+CO2↑ 强碱性阴树脂对水中各种阴离子的吸附顺序为: SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,OH-.被其他阴离子置换下来,当保护层穿透时,首先泄漏的是最下层的HSiO3-;因此监督阴离子交换器失效是以漏硅为标准的;其反应方程为(B代表酸根阴离子,R为树脂基团): Bm- +mROH=RmB+mOH- 2 控制点和控制方法 由于母管制系统包含了单元制系统,而且它具有能充分使用树脂、提高交换器的出水能力、降低酸碱消耗等优点,我们在研究中主要讨论以这种结构为基础的离子交换除盐水处理系统。 以成都生物制品研究所蛋白分离车间纯水站为例,该系统为母管制水处理系统,系统的结构为:砂滤-活性炭过滤-粗滤-阳床- 一阴-二阴-混床-精滤-纯水罐,系统产水能力为5 t/h,在系统的失效控制研究中,我们提出单元失效控制概念,也就是充分利用了母管制制水系统的优点对系统进行失效控制。 (1)RO对各有机溶质的去除率大于NF膜。(2)不同有机溶质的去除率不相同,有的甚至相差很大(例如,RO和NF膜对乙酸的吸光度去除率分别为95.34%、81.45%,而对苯胺的吸光度去除率则分别为61.50%、46.82%)。 3 出水水质 原水经一级复床除盐后,电导率(25℃)低于10μS/cm,水中硅含量低于100μg/

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

离子交换器计算书

项目除盐水处理系统计算书 设计原则 1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO3-含量为20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO2 器除去重碳酸根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,

增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括:10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

换热器设计

一、工艺设计 1、作出流程简图。 2、按生产任务计算换热器的换热量Q。 3、选定载热体,求出载热体的流量。 4、确定冷、热流体的流动途径。 5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。 6、初算平均传热温度差。 7、按经验或现场数据选取或估算K值,初算出所需传热面积。 8、根据初算的换热面积进行换热器的尺寸初步设计。包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。 9、核算K。 10、校核平均温度差D。 11、校核传热量,要求有15-25%的裕度。 12、管程和壳程压力降的计算。 二、机械设计 1、壳体直径的决定和壳体壁厚的计算。 2、换热器封头选择。 3、换热器法兰选择。 4、管板尺寸确定。 5、管子拉脱力计算。 6、折流板的选择与计算。 7、温差应力的计算。 8、接管、接管法兰选择及开孔补强等。

9、绘制主要零部件图。 三、编制计算结果汇总表 四、绘制换热器装配图 五、提出技术要求 六、编写设计说明书 第二节列管式换热器的工艺设计 一、换热终温的确定 换热终温对换热器的传热效率和传热强度有很大的影响。在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。 为合理确定介质温度和换热终温,可参考以下数据: 1、热端温差(大温差)不小于20℃。 2、冷端温差(小温差)不小于5℃。 3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。 二、平均温差的计算 设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。 1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算: (2—1) 式中,、分别为大端温差与小端温差。当时,可用算术平均值。 2、对于错流或折流的换热过程,若无相变化,则要进行温差校正,即用公式(2-2)进行计算。

热交换器原理与设计

热交换器原理与设计复习提纲 题型:概念题,问答题,计算。 0.绪论 1.热交换器的分类 2.content of heat exchanger desing.(P6) 1.热交换器热计算的基本原理 1.1.1热计算基本方程式 Q=KF△t ------Heat Transfer Equation 1.1.2热平衡方程式 Heat balance equation Q=M1(I1’-I1”)=M2(I2”-I2’) 1.2平均温差(图) 对数平均温差△tm或LMTD表示,公式1.11 (for counter flow and parallel flow)(主要用这个) 算术平均温差(看)△tm=ψ△tlm,c ψ----修正系数 correction factor ψ=f(P、R) P,R公式及物理意义 1.3.1 传热有效度的定义 1.3.2 LMTD及NTU 两种算法 P24-34 2.管壳式热交换器 shell-and-tube heat exchanger(计算较多) 2.1.1 types(4种) and standards (国标GB151-1999,P43表示法) 2.1.2管子在管板上的固定与排列 Tube bundle type: https://www.360docs.net/doc/461285737.html,bined 1)管子在管板上的固定 2)管子在管板上的排列 tube layout Triangular layout Square layout Circular layout Rotated square layout 3)换热管中心距:管板上两根管子中心线的距离称为换热管中心距。 2.1.5 折流板 baffle-----一个重要的附件 折流板的作用除了使流体横过管束流动外,还有支撑管束、防止管束振动弯曲的作用。 Baffle arrangement:水平,数值,转角 Baffle types:segmental baffle(弓形)、disc-and-ring baflle Baffle fixing 2.1.7 防冲板 2.3 管壳式热交换器的传热计算 2.3.1 传热系数的确定(确定管内面积还是管外面积) 对光滑圆管,以外表面积为准时: 以内表面积为准时: 公式2.25,,2.26, do≈di,可用公式2.27: 2.3.2 换热系数的计算 了解贝尔法 Nu=αl/λ Re=ωl/γ Pr=Cpμ/λ P60 表格 2.4.1 管程阻力计算(压力计算,参考流体力学)注意:入口,出口,转弯处

相关文档
最新文档