空间几何体·体积计算

空间几何体·体积计算
空间几何体·体积计算

柱体、锥体、台体的表面积与体积

[知识链接]

1.棱柱的侧面形状是;棱锥的侧面是

;棱台的侧

面形状是

2.圆柱、圆锥、圆台的底面形状是.

3.三角形的面积S =

(其中a 为底,h 为高),圆的面积S =

(其中r 为半径),扇形的面积公式S =(l 为扇形的弧长,r 为扇形的

半径).

4.长方体的体积V =(其中a ,b ,c 为长、宽、高).

1.多面体的表面积

多面体的表面积就是各个面的面积的和,也就是展开图的面积.2.旋转体的表面积

名称图形公式圆柱底面积:S 底=2πr 2

侧面积:S 侧=2πrl 表面积:S =2πrl +2πr 2

圆锥底面积:S 底=πr 2

侧面积:S 侧=πrl 表面积:S =πrl +πr 2圆台上底面面积:S 上底=πr ′2下底面面积:S 下底=πr 2

侧面积:S 侧=πl (r +r ′)

表面积:

S =π(r ′2+r 2+r ′l +rl )

3.体积公式

(1)柱体:柱体的底面面积为S,高为h,则V=Sh.

Sh.

(2)锥体:锥体的底面面积为S,高为h,则V=1

3

(3)台体:台体的上、下底面面积分别为S′、S,高为h,则

V=1

(S′+S′S+S)h.

3

要点一空间几何体的表面积

例1如图所示,已知直角梯形ABCD,BC∥AD,∠ABC=90°,AB=5cm,BC=16cm,AD=4cm.求以AB所在直线为轴旋转一周所得几何体的表面积.

规律方法 1.圆柱、圆锥、圆台的相关几何量都集中体现在轴截面上,因此准确把握轴截面中的相关量是求解旋转体表面积的关键.

2.棱锥及棱台的表面积计算常借助斜高、侧棱及其在底面的射影与高、底面边长等构成的直角三角形(或梯形)求解.

跟踪演练1(2014·泸州高一检测)已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.

要点二空间几何体的体积

例2三棱台ABC-A1B1C1中,AB∶A1B1=1∶2,求三棱锥A1-ABC,三棱锥B-A1B1C,三棱锥C-A1B1C1的体积之比.

规律方法求几何体体积的常用方法

跟踪演练2如图所示的三棱锥P-ABC的三条侧棱两两垂直,且PB=1,PA=3,PC=6,求其体积.(一直线和一平面内两相交直线垂直,则直线与平面垂直)

要点三与三视图有关的表面积、体积问题

例3一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥侧面积和体积分别是()

A.45,8B.45,8

3

D.8,8 C.4(5+1),8

3

规律方法 1.解答此类问题的关键是先由三视图还原作

出直观图,然后根据三视图中的数据在直观图中求出计算体积所需要的数据.2.若由三视图还原的几何体的直观图由几部分组成,求几何体的体积时,依据需要先将几何体分割分别求解,最后求和.

跟踪演练3某几何体的三视图如图所示,则该几何体的体积是________.

球的体积和表面积

[知识链接]

1.长宽高分别为a、b、c的长方体的表面积S=2(ab+bc+ac),体积V=abc.

2.棱长为a的正方体的表面积S=6a2,体积V=a3.

3.底面半径为r,高为h,母线长为l的圆柱侧面积S侧=2πrh,表面积S=2πrh+2πr2,体积V=πr2h.

4.底面半径为r,高为h,母线长为l的圆锥侧面积S侧=πrl,表面积S=πr2

+πrl,体积V=1

3

πr2h.

[预习导引]

球的体积公式与表面积公式

(1)球的体积公式V=4

3

πR3(其中R为球的半径) (2)球的表面积公式S=4πR2

要点一球的表面积和体积

例1(1)已知球的表面积为64π,求它的体积.

(2)已知球的体积为500

3

π,求它的表面积.

规律方法 1.已知球的半径,可直接利用公式求它的表面积和体积.2.已知球的表面积和体积,可以利用公式求它的半径.

跟踪演练1一个球的表面积是16π,则它的体积是()

A.64π B.64π

3C.32π D.32

3

π

要点二球的截面问题

例2平面α截球O的球面所得圆的半径为1.球心O到平面α的距离为2,则此球的体积为()

A.6πB.43π

C.46πD.63π

规律方法有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的有关问题解决.

跟踪演练2已知半径为5的球的两个平行截面圆的周长分别为6π和8π,则这两个截面间的距离为________.

要点三球的组合体与三视图

例3某个几何体的三视图如图所示,求该几何体的表面积和体积.

规律方法 1.由三视图求球与其他几何体的简单组合体的表面积和体积,关键要弄清组合体的结构特征和三视图中数据的含义.

2.求解表面积和体积时要避免重叠和交叉.

跟踪演练3已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.

【空间几何体的直观图】

1.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法错误的是()

A.原来相交的仍相交B.原来垂直的仍垂直

C.原来平行的仍平行D.原来共点的仍共点

2.关于用斜二测画法得直观图,下列说法正确的是()

A.等腰三角形的直观图仍为等腰三角形

B.正方形的直观图为平行四边形

C.梯形的直观图可能不是梯形

D.正三角形的直观图一定为等腰三角形

3.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为()

A.平行四边形B.梯形

C.菱形D.矩形

4.如图,平行四边形O′P′Q′R′是四边形OPQR的直观图,若O′P′=3,O′R′=1,则原四边形OPQR的周长为________.

5.如图所示的直观图△A′O′B′,其平面图形的面积为________.

一、基础达标

1.用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y 轴,且∠A=90°,则在直观图中∠A′=()

A.45°B.135°

C.45°或135°D.90°

2.如图所示是水平放置的三角形的直观图,A′B′∥y′轴,则原图中△ABC 是()

A.锐角三角形B.直角三角形

C.钝角三角形D.任意三角形

3.利用斜二测画法画一个水平放置的平行四边形的直观图,得到的直观图是一个边长为1的正方形(如图所示),则原图形的形状是()

4.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在原△ABC 的三边及中线AD中,最长的线段是()

A.AB B.AD

C.BC D.AC

5.下列说法正确的个数是()

①相等的角在直观图中对应的角仍然相等;②相等的线段在直观图中对应的线段仍然相等;③最长的线段在直观图中对应的线段仍最长;④线段的中点在直观图中仍然是线段的中点.

A.1B.2

C.3D.4

6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.

7.画出水平放置的四边形OBCD(如图所示)的直观图.

二、能力提升

8.如图所示,△A′O′B′表示水平放置的△AOB的直观图,B′在x′轴上,A′O′和x′轴垂直,且A′O′=2,则△AOB的边OB上的高为()

A.2B.4

C.22D.42

9.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD,如图所示,∠ABC=45°,AB=AD=1,DC⊥BC,原平面图形的面积为________.

10.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积是________.

11.用斜二测画法画棱长为2cm的正方体ABCD-A′B′C′D′的直观图.

【柱体、锥体、台体的表面积与体积】

1.已知长方体的过一个顶点的三条棱长的比是1∶2∶3,对角线的长是214,则这个长方体的体积是()

A.6B.12

C.24D.48

2.已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是2的矩形,则该正方体的正视图的面积等于()

B.1

A.3

2

D.2

C.2+1

2

3.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为()

A.12πB.18π

C.24πD.36π

4.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于________.

5.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比为________.

一、基础达标

1.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于() A.πB.2π

C.4πD.8π

2.圆台的上、下底面半径分别是3和4,母线长为6,则其表面积等于() A.72B.42π

C.67πD.72π

3.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则三棱锥D1-ACD的体积是()

A.1 6

B.1 3

C.1

2

D.1 4.一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是()

A.16cm2B.10+42cm2

C.12+42cm2D.8+22cm2

5.某三棱锥的三视图如图所示,则该三棱锥的体积是()

A.

16

B.

13 C.23

D .1

6.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则它们的表面积之比为________.

7.如图是某几何体的三视图.

(1)画出它的直观图(不要求写画法);(2)求这个几何体的表面积和体积.

二、能力提升

8.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是(

)

A .54

B .54π

C .58

D .58π

9.某几何体的三视图如图所示,则该几何体的体积为()

A.

5603

B.

5803

C .200

D .240

10.半径为2的半圆卷成一个圆锥,则它的体积为________.

11.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.

(1)求该几何体的体积V ;(2)求该几何体的侧面积S .

【球的体积和表面积】

1.直径为6的球的表面积和体积分别是()

A .36π,144π

B .36π,36π

C .144π,36π

D .144π,144π

2.若将气球的半径扩大到原来的2倍,则它的体积增大到原来的()

A .2倍

B .4倍

C .8倍

D .16倍

3.两个半径为1的实心铁球,熔化成一个球,这个大球的半径是________.4.一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.

5.某几何体的三视图如图所示,则其表面积为________.

一、基础达标

1.设正方体的表面积为24,那么其外接球的体积是()

A.43π

B.8π3

C .43π

D .323π

2.一个正方体的八个顶点都在半径为1的球面上,则正方体的表面积为

(

)A .8B .82C .83

D .42

3.如图是某几何体的三视图,则该几何体的体积为()

A.9

2π+12 B.9

2+18C .9π+42

D .36π+18

4.正方体的内切球与其外接球的体积之比为()

A .1∶3

B .1∶3

C .1∶33

D .1∶9

5.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是(

)

A.100π3

cm 3

B.208π3

cm 3

C.500π3

cm 3

D.

41613π3cm 3

6.已知一个正方体的所有顶点在一个球面上.若球的体积为9π

2

,则正方体的棱长为________.

7.盛有水的圆柱形容器的内壁底面半径为5cm ,两个直径为5cm 的玻璃小球都浸没于水中,若取出这两个小球,则水面将下降多少?

二、能力提升

8.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器厚度,则球的体积为(

)

A.500π3

cm 3

B.

866π3cm 3

C.

1372π3

cm 3

D.

2048π3

cm 3

9.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为(

)

10.圆柱形容器内盛有高度为8cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.

11.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =18,BC =24,AC =30,求球的表面积和体积.

三、探究与创新

12.如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积.(其中∠BAC=30°)

13.如图所示,一个圆锥形的空杯子上放着一个直径为8cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?

空间几何体的表面积及体积公式大全教学教材

空间几何体的表面积及体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧2 1= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S )(21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥 ② 圆锥

3、 台体 ① 棱台 ② 圆台 4、 球体 ① 球:r V 33 4π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(31 S S S S h V 下下 上 上 台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得:PF PE AB CD =

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )

空间几何体的表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱② 圆柱2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥: l c S 底圆锥侧2 1 = 3、 台体 ① 棱台: h c c S )(2 1‘下底 上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(31 S S S S h V 下下 上 上 台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得:PF PE AB CD = 即: h h h S S += 1 1 下 上(相似比等于面积比的算术平方根)

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

空间立体体积的计算方法(1)

数学积分求体积方法概述 摘要:定积分在大学数学学习及应用中起着非常重要的作用,一直以来定积分问题就是大学数学学习的重点,也是本科及研究生入学考试重点考察的内容之一,在我们的生活中起着很重要的作用!空间立体体积的计算在日常生活和学习中是十分重要的,对于规则的立体,中学里已有一些求解公式,对于不规则的立体,则需要用高等数学积分法加以解决。本文总结了几种常见的利用积分求立体体积的方法及案例,通过所学积分学知识建立了更为普遍的立体体积的求解方法和计算公式,同时也介绍了相关的物理方法,并从具体的例题入手充分挖掘了空间立体体积计算的一些思想和方法。 关键词:积分; 空间立体体积; 积分区域; 被积函数 引言 空间立体体积的计算是生活中常见的问题,对于规则的空间立体体积的计算在中学时就有具体的计算公式,但对于不规则的空间立体体积则难以计算。本文就主要针对各种形状的空间立体研究计算其体积的简便方法。 其实很多文献对空间立体体积的计算问题都进行了讨论,文献[1]就基本上包括了此问题的所有积分计算方法,并给出了相应的计算公式。文献[2]-[9]分别从不同方面对各种方法进行了细致说明,并对个别特例进行了深入分析,给出了特殊的积分计算方法。文献[10]则主要是对部分方法做出了总结,并列出了大量相关例题辅助理解。以上文献充分体现出积分思想在解题中应用广泛,特别是在计算空间立体体积领域。如果我们能够在积分学的基础上掌握空间立体体积的计算方法,则能使一些复杂的问题简单化,还易让人接受。所以我们要分析掌握积分法,以便于解决与此相关的各种复杂问题,特别是各种空间立体体积的计算问题。 空间立体体积的计算是高等数学积分法在几何上的主要应用,其主要思想是将体积表示成定积分或重积分,研究空间立体,确定积分区域及被积函数,然后综合考虑立体特征、积分区域及被积函数特点,选择恰当的积分方法,使空间立体体积的计算简单明了。本文在上述文献的基础上,总结了中学常见的空间立体体积的计算方法。同时又探讨了它们和其它不规则立体的多种积分计算方法,最后还介绍了求解空间立体体积的物理方法,充分展示了空间立体体积计算方法的多样性及灵活性,特别是积分思想在此领域的运用,有力地拓展了求解立体体积的思路。

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

空间几何体的体积

历庄高级中学高一数学导学案 总编号:017 空间几何体的体积 教学目标:1.了解的体积公式的推导过程,掌握球体的体积公式并会利用其熟练解题;会解球体与柱、棱、台组合体的体积有关的问题; 2.通过实际动手操作,理解公式由来的过程,感知数学在实际中的应用通过数学活动,感受实际生活对数学的需要. 教学重点:灵活运用球体的体积公式,并能应用于实践. 教学难点:球体的体积公式的推导过程及其应用. 教学过程: 一、问题情境 如图,一个底面半径为R 的圆柱形量杯中装有适量的水,若放入一个半径为r 的实心铁球,水面高度恰好上升r ,问: R :r 的值是多少? 二、学生活动 (1)倒沙试验: 一个底面半径和高都等于R 的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,用沙粒充满后,再将其所容纳的沙粒倒入一个半径为R 的半球内,结果刚好也能充满半球.说明两者体积相等. (2)计算上图中的等高截面的体积: 上图中,取相同的高度h ,试计算出等高截面的面积,并观察它们的关系.并阅读课本,问:可用什么知识解释此问题? 三、建构数学 1、球体的公式:V =长方体 . 由上图可推出: 223112=233 V R R R R R πππ-= 球. 所以 V =球 亦可由“准椎体”推出:3124111= 3333 R V RS RS RS π=++???=球球面 2、球的表面积:=S 球面 . 即:球的表面积是球的大圆面积的 倍. 球面被经过球心的平面截得的圆叫做球的大圆,大圆的半径等于球的半径. 思维点拨:公式的推导过程使用了“分割—求近似值—得准确值”的积分思想,让学生在探究的过程中体会并感受“无穷”、“极限”的思想. 四、数学运用 例1 如图是一个奖杯的三视图(单位:cm ),试画出它的直观图,并计算这个奖杯的体积.(精确到0.01 cm )

立体几何体积的求解方法

立体几何体积的求解方法 重要知识 立体几何体体积的求解始终要谨记一个原则:找到易于求解的底面(面积)和高(椎体就是顶点到底面的距离)。而这类题最易考到的就是椎体的体积(尤其是高的求解)。 求椎体体积通常有四种方法: (1)直接法:直接由点作底面的垂线,求垂线段的长作为高,底面的面积是底面积。(2)转移法(等体积法):更换椎体的底面,选择易于求解的底面积和高。 (3)分割法(割补法):将一个复杂的几何体分成若干易于计算的椎体。 (4)向量法:利用空间向量的方法(理科)。 典型例题 方法一:直接法 例1、(2014南充一模)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D 为AC的中点,A1A=AB=2,BC=3.求四棱锥B﹣AA1C1D的体积. 例2、如图已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.若M是PC的中点,求三棱锥M﹣ACD的体积.

变式1、(2014漳州模拟)如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD上的点且,PH为△PAD中AD边上的高.若PH=1,,FC=1,求三棱锥E﹣BCF的体积. 变式2、(2015安徽)如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°。求三棱锥P﹣ABC的体积; 方法二:转移法 例3、(2015重庆一模)如图,已知三棱锥A﹣BPC中,AP⊥PC,AC⊥BC,M为AB中点,D 为PB中点,且△PMB为正三角形.若BC=4,AB=20,求三棱锥D﹣BCM的体积.

8.空间几何体的表面积和体积练习题

一、选择题(每小题5分,共计60分。请把选择答案填在答题卡上。) 1.以三棱锥各面重心为顶点,得到一个新三棱锥,它的表面积是原三棱锥表面积的 A.31 B.41 C.91 D.161 2.正六棱锥底面边长为a ,体积为323a ,则侧棱与底面所成的角等于 A. 6π B.4π C.3 π D.125π 3.有棱长为6的正四面体S-ABC ,C B A ''',,分别在棱SA ,SB ,SC 上,且S A '=2,S B '=3,S C '=4,则截面C B A '''将此正四面体分成的两部分体积之比为 A.91 B.81 C.41 D.31 4.长方体的全面积是11,十二条棱长的和是24,则它的一条对角线长是 A .32. B. 14 C. 5 D.6 5.圆锥的全面积是侧面积的2倍,侧面展开图的圆心角为α,则角α的取值范围是 A .(]??90,0 B (]??270,180 C (]??180,90 D Φ 6. 正四棱台的上、下底面边长分别是方程01892=+-x x 的两根,其侧面积等于两底面积的和,则其斜高与高分别为 A .25与2 B.2与2 3 C.5与 4 D.2与3 7.已知正四面体A-BCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体E-FGH 的表面积为T ,则S T 等于 A .91 B.94 C. 41 D.31 8. 三个两两垂直的平面,它们的三条交线交于一点O ,点P 到三个平面的距离比为1∶2∶3,PO=214,则P 到这三个平面的距离分别是 A .1,2,3 B .2,4,6 C .1,4,6 D .3,6,9 9.把直径分别为cm cm cm 10,8,6的三个铁球熔成一个大铁球,这个大铁球的半径是 A .cm 3 B.cm 6 C. cm 8 D.cm 12 9. 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方 形,且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该 多面体的体积为 A.3/2 B.33 C.34 D.23 10.如图,在四面体ABCD 中,截面AEF 经过四面体的 内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别交于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的 表面积分别是21S S 、,则必有 A.S 1S 2 C. S 1=S 2 D.21S 与S 的大小关系不能确定 D B A O E F

空间几何体的表面积与体积练习题及答案

空间几何体的表面积与体积专题 一、选择题 1.棱长为2的正四面体的表面积是( C ). B .4 C .4 3 D .16 解析 每个面的面积为:12×2×2×3 2= 3.∴正四面体的表面积为:4 3. 2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 倍 倍 解析 由题意知球的半径扩大到原来的2倍,则体积V =4 3πR 3,知体积扩大到原来的22倍. 3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). 解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13 ×? ?? ??12×2×2×2= 284 3 . 4.某几何体的三视图如下,则它的体积是( A) A .8- 2π3 B .8-π 3 C .8-2π 解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半 径为1,高为2的圆锥,所以V =23-13×π×2=8-2π 3 . 5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π 2 据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分 别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12 ×3=24-3π2. 6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )

cm 2 cm 2 cm 2 cm 2 解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、 下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1- π 4 =30-π4;中间部分的表面积为2π×1 2 ×1=π,下面部分的表面 积为2×4×4+16×2-π4=64-π4.故其表面积是94+π 2. 7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C). A .3 3 B .2 3 D .1 解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD = 3 3 x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以 3 3 x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =1 3S △ABD ×4= 3. 二、填空题 8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×3 4×22×3= 3. 9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______. 解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r =2πr 3 ,球的体积是43πr 3 ,所以圆柱的体积和球的体积的比是2πr 34 3 πr 3=3∶2. 10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___2 6 _____.

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )( 21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1 、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥

② 圆锥 3、 ① 棱台 ② 圆台 4、 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1

立体几何 空间几何体的表面积与体积

第2讲空间几何体的表面积与体积 考点 考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大. 【复习指导】 本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题. 基础梳理 1.柱、锥、台和球的侧面积和体积 面积} 体积 圆柱S 侧 =2πrh V=Sh=πr2h 圆锥S 侧=πrl V= 1 3Sh= 1 3πr2h= 1 3 πr2l2-r2 圆台S 侧=π(r1+r2)l V= 1 3(S上+S下+S上S下)h= 1 3 π(r21+r22+r1r2)h 】 直棱柱S侧=Ch V=Sh 正棱锥S 侧= 1 2Ch′V= 1 3Sh 正棱台S 侧= 1 2(C+C′)h′V= 1 3(S上+S下+S上S下)h 球… S球面=4πR2V=4 3πR3 2. (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.

两种方法 (1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. 】 (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. 双基自测 1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是(). A.4πS B.2πS C.πSπS 解析设圆柱底面圆的半径为r,高为h,则r=S π, 又h=2πr=2πS,∴S 圆柱侧 =(2πS)2=4πS. 答案A 2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为(). A.3πa2B.6πa2C.12πa2D.24πa2 ( 解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为2a2+a2+a2 =6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S 球 =4πR2=6πa2. 答案B

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积=底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。

4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积 :S 全 2a ; (2)体积 : V=312; (3)对棱中点连线段的长 : d= 2 a ; (4)对棱互相垂直。 (5)外接球半径 : R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. 2.5 C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( ) A. π288 3cm B. π192 3cm C. π288 3cm 或 π192 3cm D. π1923cm 8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A. 4s π B. S π2 C. S π D. S π332

空间几何体·体积计算

柱体、锥体、台体的表面积与体积 [知识链接] 1.棱柱的侧面形状是;棱锥的侧面是 ;棱台的侧 面形状是 . 2.圆柱、圆锥、圆台的底面形状是. 3.三角形的面积S = (其中a 为底,h 为高),圆的面积S = (其中r 为半径),扇形的面积公式S =(l 为扇形的弧长,r 为扇形的 半径). 4.长方体的体积V =(其中a ,b ,c 为长、宽、高). 1.多面体的表面积 多面体的表面积就是各个面的面积的和,也就是展开图的面积.2.旋转体的表面积 名称图形公式圆柱底面积:S 底=2πr 2 侧面积:S 侧=2πrl 表面积:S =2πrl +2πr 2 圆锥底面积:S 底=πr 2 侧面积:S 侧=πrl 表面积:S =πrl +πr 2圆台上底面面积:S 上底=πr ′2下底面面积:S 下底=πr 2 侧面积:S 侧=πl (r +r ′) 表面积: S =π(r ′2+r 2+r ′l +rl )

3.体积公式 (1)柱体:柱体的底面面积为S,高为h,则V=Sh. Sh. (2)锥体:锥体的底面面积为S,高为h,则V=1 3 (3)台体:台体的上、下底面面积分别为S′、S,高为h,则 V=1 (S′+S′S+S)h. 3 要点一空间几何体的表面积 例1如图所示,已知直角梯形ABCD,BC∥AD,∠ABC=90°,AB=5cm,BC=16cm,AD=4cm.求以AB所在直线为轴旋转一周所得几何体的表面积. 规律方法 1.圆柱、圆锥、圆台的相关几何量都集中体现在轴截面上,因此准确把握轴截面中的相关量是求解旋转体表面积的关键. 2.棱锥及棱台的表面积计算常借助斜高、侧棱及其在底面的射影与高、底面边长等构成的直角三角形(或梯形)求解. 跟踪演练1(2014·泸州高一检测)已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.

高三数学高考复习必备精品教案:空间几何体的表面积和体积

空间几何体的表面积和体积 一.【课标要求】 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.【命题走向】 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2010年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.【要点精讲】 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式

V πr 2h(即πr 2 l) 31πr 2 h 31πh(r 21+r 1r 2+r 2 2) 3 4πR 3 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径 四.【典例解析】 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。

立体图形的体积计算

立体图形的体积计算 立体图形的体积计算教学目标:1、复习长方体、正方体、圆柱、圆锥体积的计算公式,加深学生对立体图形的认识,使学生对所学的知识进一步系统化和概括化。2、通过实际操作,培养学生的动手操作能力。3、进一步培养学生的空间观念和渗透转化的数学思想。4、使学生在解决实际问题中,感受数学与生活的密切联系。教学重难点:1、分析、归纳各立体图形体积计算公式间的内在联系。2、运用所学的知识解决生活中的实际问题。教具准备:多媒体课件,实物投影学具准备1、每个学习小组准备长方体、正方体、圆柱、圆锥各一个2、每人准备一张长,宽cm的长方形纸教学过程:一、情景导入1、师:相信很多同学都知道《乌鸦喝水》的故事,乌鸦为什么能喝到瓶

子里的水呢?2、师:这说明小石子也有一定的体积,那什么叫做物体的体积呢?(指名答、板书)3、师:今天我们一起复习有关立体图形的体积计算二、知识系统整理1、师:我们在小学阶段学过了哪几种立体图形的体积?2、师:你能说出每种立体图形的体积计算公式吗?它们是怎样推导出来的?这些体积计算公式的推导之间有什么联系?请你用喜欢的方法归纳整理这些立体图形的体积计算公式,要求能清楚地表示这四种立体图形体积推导之间的关系。3、展示优秀的知识网络图,并请该小组代表说说想法。学生可能根据正方体是长、宽、高都相等的长方体,长方体的体积=长×宽×高,所以正方体的体积=棱长×棱长×棱长,长方体的体积计算公式推导出圆柱的体积计算公式,再圆柱的体积计算公式推导出圆锥的体积计算公式。教师板书示意图5、归纳长方体、正方体、圆柱统一的体积计算公式。师:计算长方体、正

方体、圆柱的体积能不能用哪个统一的计算公式来表示?小组讨论。师引导观察每个立体图形,说说ab、a2、πr2各是求出了哪个面的面积? 6、教师小结:正方体、长方体和圆柱,它们的上、下底面是完全相同的。像这样从上到下一样大小的直直的形体,一般都叫做柱体。从上面统一的公式可以看出,这样形体的体积,都可以用底面积乘高计算。三、综合运用提升第一关:判断题圆锥体的体积是圆柱体积的三分之一。等底等高的长方体和圆柱体积一定相等。棱长是6分米的正方体的体积和表面积相等。第二关:联系生活,巩固应用1、填写表格。名称正方体纸板箱圆柱形水壶圆锥形零件长方体砖块已知条件体积棱长5分米底面积,高20 cm 底面积19 cm2,高12 cm 长24厘米,宽12厘米,厚6厘米2、有一个正方体木箱,棱长5分米,在水箱高4分米处有一个小洞。这只水箱能

空间几何体表面积和体积练习题

空间几何体的表面积和体积练习题 题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面半径之比为( ) A.49 B.94 C.427 D.274 题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长为6,则此球的体积为________. 题3 一空间几何体的三视图如图所示,则该几何体的体积为( ) A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+233 题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( ) A .与x ,y 都有关 B .与x ,y 都无关 C .与x 有关,与y 无关 D .与y 有关,与x 无关 题5 直角梯形的一个底角为45°,下底长为上底长的32 ,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积. 题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( ) A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球的表面积. 题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积;(Ⅱ)求正四棱台的体积. 题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积. 题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥C A DD ''-的体积与剩余部分的体积之比. 题11 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所

空间立体几何体的表面积和体积

第二节空间几何体的表面积和体积 [备考方向要明了] [归纳·知识整合] 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式

[探究] 1.柱体、锥体、台体的体积公式之间有什么联系? 提示: 2.如何求不规则几何体的体积? 提示:常用方法:分割法、补体法、转化法.通过计算转化得到基本几何体的体积来实现. [自测·牛刀小试] 1.棱长为2的正四面体的表面积是( ) A.3 B .4 C .43 D .16 解析:选C 正四面体的各面为全等的正三角形,故其表面积S =4× 34 ×22 =4 3. 2.(2012·上海高考)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为________. 解析:由已知条件得圆柱的底面半径为1,所以S 表=S 侧+2S 底=cl +2πr 2=2π×2+2π=6π. 答案:6π 3.(教材习题改编)一个球的半径扩大为原来的3倍,则表面积扩大为原来的______倍;体积扩大为原来的______倍. 解析:设原球的半径为1,则半径扩大后半径为3, 则S 1=4π,S 2=4π×32=36π,即S 2S 1=9,所以表面积扩大为原来的9倍.由V 1=4 3π,V 2 =43π×33=12π,即V 2 V 1 =27,所以体积扩大为原来的27倍. 答案:9 27 4.(2012·辽宁高考)一个几何体的三视图如图所示,则该几何体的体积为________.

解析:由三视图可知该组合体的上方是一个高为1,底面直径为2的圆柱,下方是一个长、宽、高分别为4、3、1的长方体,如图所示,它的体积V =1×π+4×3×1=12+π. 答案:12+π 5.(教材习题改编)如图,用半径为2的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的容积是________. 解析:由于半圆的圆弧长等于圆锥底面圆的周长,若设圆锥底面圆半径为r ,则得2π=2πr ,解得r =1,又圆锥的母线长为2,所以高为3,所以这个圆锥筒的容积为1 3π×12×3 =33π. 答案: 33 π [例1] (2012·北京高考)某三棱锥的三视图如图所示,该三棱锥的表面积是( )

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析 一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。二.命题走向----用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt△A 1NA≌Rt△A 1MA,∴A 1M=A 1N ,从而OM=ON 。∴点O 在∠BAD 的平分线上。

相关文档
最新文档