优秀学生寒假必做作业121 任意角三角函数练习二

优秀学生寒假必做作业121  任意角三角函数练习二
优秀学生寒假必做作业121  任意角三角函数练习二

1、2、1 任意角三角函数

练习二

一、选择题

1.已知角α的正弦线的长度为单位长度,那么角α的终边( ) A.在x 轴上 B.在y 轴上

C.在直线y =x 上

D.在直线y =-x 上

2.如果4

π<θ<

2

π

,那么下列各式中正确的是( ) A.cos θ<tan θ<sin θ B.sin θ<cos θ<tan θ C.tan θ<sin θ<cos θ D.cos θ<sin θ<tan θ

3.若A 、B 是锐角△ABC 的两个内角,则P (cos B -sin A ,sin B -cos A )在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限

4.若sin αtan α>0,则α的终边在( )

A.第一象限

B.第四象限

C.第二或第三象限

D.第一或第四象限

5.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n 等于( )

A.2

B.-2

C.4

D.-4

二、填空题

6.若0≤θ<2π,则使tan θ≤1成立的角θ的取值范围是_________.

7.在(0,2π)内使sin x >|cos x |的x 的取值范围是_________.

三、解答题

8.比较下列各组数的大小: (1)sin 1和sin 3

π

; (2)cos 7π4和cos 7π

5; (3)tan 8π9和tan 7π9; (4)sin 5π和tan 5

π.

9.已知α是第三象限角,试判断sin(cosα)·cos(sinα)的符号.

10.求下列函数的定义域:

(1)y=)

lg(cos x;

(2)y=lgsin2x+2

.

9x

π)时,求证:sinα<α<tanα.

11. 当α∈(0,

2

12. 已知θ为正锐角,求证:

π;

(1)sinθ+cosθ<

2

(2)sin3θ+cos3θ<1.

π,2kπ+π)

13.已知角α的终边经过点P(-3cosθ,4cosθ),其中θ∈(2kπ+

2

(k∈Z),求角α的各三角函数值.

14.(1)已知角α的终边经过点P (3,4),求角α的六个三角函数值; (2)已知角α的终边经过点P (3t ,4t ),t ≠0,求角α的六个三角函数值.

15.已知角α终边上的一点P ,P 与x 轴的距离和它与y 轴的距离之比为3 :4,且0sin <α求:cos α和tan α的值.

答案:

一、选择题

1.B

2.D

3. D

4. D

5.A 二、填空题

6.[0,

4π]∪(2π,4π5]∪(2π3,2π) 7.(4

π,4π3)

三、解答题

8.分析:三角函数线是一个角的三角函数值的体现,从三角函数线的方向看出三角函数值的正负,其长度是三角函数值的绝对值.比较两个三角函数值的大小,可以借助三角函数线.

且-1<sin α<0.在此基础上可确定sin (cos α)与cos (sin α)的符号,进而即可确定sin (cos α)·cos (sin α)的符号.

解:∵α是第三象限角,∴-10.∴sin (cos α)·cos (sin α)<0. 10.解:(1)由lg (cos x )≥0,得cos x ≥1,又cos x ≤1, ∴cos x =1.

∴x =2k π,k ∈Z .故此函数的定义域为{x |x =2k π,k ∈Z }. (2)∵sin2x >0,∴2k π<2x <2k π+π(k ∈Z ).

∴k π

2

π

(k ∈Z ). ①

又9-x 2≥0,∴-3≤x ≤3.

故y =lgsin2x +29x -的定义域为{x |-3≤x <-2

π或0

π

}.

11. 分析:利用代数方法很难得证.若利用三角函数线借助几何直观建立面积不等式,则可迎刃而解.

解:如下图,在直角坐标系中作出单位圆,α的终边与单位圆交于点P ,α的正弦线、正切线为MP 、AT ,则MP =sin α,AT =tan α.

x ∵S △AOP =21

OA ·MP =21sin α,S 扇形AOP 2

2,S △OAT =21OA ·AT =21AT =2

1tan α. 又S △AOP <S 扇形AOP <S △AOT ,

∴21sin α<21α<2

1tan α,即sin α<α<tan α. 12. 证明:(1)设角θ的终边与单位圆交于P (x ,y ), 过点P 作PM ⊥Ox ,PN ⊥Oy ,M 、N 为垂足. ∵y =sin θ,x =cos θ,

x )y S △OAP =21|OA |·|PM |=21y =21sin S △OPB =2

1|OB |·|NP |=2

1x =2

1cos θ,

S 扇形OAB =4

π

4π2=R .

又四边形OAPB 被扇形OAB 所覆盖,

∴sin θ+cos θ<

2

π. (2)∵0<x <1,0<y <1, ∴0<cos θ<1,0<sin θ<1.

∵函数y =a x (0<a <1)在R 上是减函数, ∴cos 3θ<cos 2θ,sin 3θ<sin 2θ. ∴cos 3θ+sin 3θ<cos 2θ+sin 2θ. ∵sin 2θ+cos 2θ=x 2+y 2=1, ∴sin 3θ+cos 3θ<1. 13. 解:∵θ∈(2k π+2

π

,2k π+π)(k ∈Z ), ∴cos θ<0.

∴x =-3cos θ,y =4cos θ,r =22y x +=22)cos 4()cos 3(θθ+-=-5cos θ. ∴sin α=-5

4,cos α=5

3,tan α=-3

4,cot α=-4

3,sec α=3

5,csc α=-4

5. 14. 解:(1)由x =3,y =4,得r =2243+=5.

∴sin α=r y =54,cos α=r x =53,tan α=x y =34,cot α=y x =43,sec α=x r =35,csc α=y r =4

5. (2)由x =3t ,y =4t ,得r =22)4()3(t t +=5|t |. 当t >0时,r =5t .

因此sin α=5

4,cos α=5

3,tan α=3

4,cot α=4

3,sec α=3

5,csc α=4

5; 当t <0时,r =-5t .

因此sin α=-5

4,cos α=-5

3,tan α=3

4,cot α=4

3,sec α=-3

5,csc α=-4

5. 15. 设P(x ,y),则依题意知|y| :|x| =3 :4 ∵sin α<0

∴α终边只可能在第三、四象限或y 轴负半轴上 若P 点位于第三象限,可设P (-4k ,-3k ),(k>0)

∴r=5k ,从而54cos -=α,4

3

tan =α

若P 点位于第四象限,可设P (4k ,-3k ),(k>0)

∴r=5k ,从而54cos =α,4

3

tan -=α

又由于|y| :|x| =3 :4,故α的终边不可能在y 轴的负半轴上

综上所述:知cos α的值为5454-或,tan α的值为4

3

43或-

任意角的三角函数及基本公式

第 18 讲 任意角的三角函数及基本公式 (第课时) 任意角的三角函数? ? ?? ? ? ? ?? ??? ????? ?? ??????? ±±--?±?+????? ????? ??的函数关系与以及的函数关系 与以及的函数关系与的函数关系与诱导公式倒数关系式 商数关系式平方关系式系式同角三角函数的基本关任意角三角函数定义 弧度制角的概念的扩充三角函数的概念ααπαπααααααα232360180360k 重点:1.任意角三角函数的定义;2.同角三角函数关系式;3.诱导公式。 难点:1.正确选用三角函数关系式和诱导公式;2.公式的理解和应用。 2.理解任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;3.掌握同角三角函数的基本关系式;4. 掌握正弦、余弦的诱导公式。 ⑴ 角可以看成是一条射线绕着它的端点旋转而成的,射线旋转开始的位置叫做角的始边,旋转终止的位置叫做角的终边,射线的端点叫做角的顶点。 ⑵ 射线逆时针旋转而成的角叫正角。射线顺时针旋转而成的角叫负角。射线没有任何旋转所成的角叫零角。 2.弧度制 ⑴ 等于半径长的圆弧所对的圆心角叫做1弧度的角。用“弧度” 作单位来度量角的制度叫做“弧度制”。 注意:1sin 表示1弧度角的正弦,2sin 表示2弧度角的正弦,它们与?1sin 、?2sin 不是

一回事。 ⑵ 一个圆心角所对的弧长与其半径的比就是这个角的弧度数的绝对值。正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。 ⑶ 设一个角的弧度数为α,则 r l = α (l 为这角所对的弧长,r 为半径)。 ⑷ 所有大小不同的角组成的集合与实数集是一一对应的,这个对应是利用角的弧度制建立的。 ⑸ 1π=?弧度,1弧度?=)180 ( 。 设扇形的弧长为l ,扇形面积为S ,圆心角大小为α弧度,半径为r , 则 αr l = ,α22 1 21r lr S == 。 3.角的集合表示 ⑴ 终边相同的角 设β表示所有终边与角α终边相同的角(始边也相同),则 αβ+??=360k (也可记为 απβ+=k 2 Z k ∈) 。 ⑵ 区域角 介于某两条终边间的角叫做区域角。例如 ?+??<

《二倍角的三角函数》教案(1)(1)

二倍角的三角函数 一.教学目标: 1.知识与技能 (1)能够由和角公式而导出倍角公式; (2)能较熟练地运用公式进行化简、求值、证明,增强学生灵活运用数学知识和逻辑推理能力; (3)能推导和理解半角公式; 4)揭示知识背景,引发学生学习兴趣,激发学生分析、探求的学习态度,强化学生的参与意识. 并培养学生综合分析能力. 2.过程与方法 让学生自己由和角公式而导出倍角公式和半角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;通过例题讲解,总结方法.通过做练习,巩固所学知识. 3.情感态度价值观 通过本节的学习,使同学们对三角函数各个公式之间有一个全新的认识;理解掌握三角函数各个公式的各种变形,增强学生灵活运用数学知识、逻辑推理能力和综合分析能力.提高逆用思维的能力. 二.教学重、难点 重点:倍角公式的应用. 难点:公式的推导. 三.学法与教法 教法与学法:(1)自主+探究性学习:让学生自己由和角公式导出倍角公式,领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美,激发学生学数学的兴趣。 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 四.教学过程 (一)探究新知 1、复习两角和与差的正弦、余弦、正切公式: 2、提出问题:公式中如果β=α,公式会变得如何? 3、让学生板演得下述二倍角公式:

α-=-α=α-α=ααα=α2222sin 211cos 2sin cos 2cos cos sin 22sin ααα2tan 1tan 22tan -= [展示投影]这组公式有何特点?应注意些什么? 注意:1.每个公式的特点,嘱记:尤其是“倍角”的意义是相对的,如:4α是8α的倍角. 2.熟悉“倍角”与“二次”的关系(升角——降次,降角——升次) 3.特别注意公式的三角表达形式,且要善于变形: 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式今后常用. (二)[展示投影]例题讲评(学生先做,学生讲,教师提示或适当补充) 例1.(公式巩固性练习)求值: ①.sin22?30’cos22?30’=4 245sin 21=ο ②.=-π18 cos 22224cos =π ③.=π-π8cos 8sin 22 224cos -=π- ④.=ππππ12cos 24cos 48cos 48sin 8216sin 12cos 12sin 212cos 24cos 24sin 4=π=ππ=πππ 例2.化简 ①.=π-ππ+π)12 5cos 125)(sin 125cos 125(sin 2365cos 125cos 125sin 22 =π-=π-π ②.=α-α2sin 2cos 44α=α-αα+αcos )2 sin 2)(cos 2sin 2(cos 2222 ③.=α+-α-tan 11tan 11α=α -α2tan tan 1tan 22 ④.=θ-θ+2cos cos 21221cos 2cos 2122=+θ-θ+ 例3、已知),2 (,135sin ππ∈α= α,求sin2α,cos2α,tan2α的值。 解:∵),2(,135sin ππ∈α=α ∴1312sin 1cos 2-=α--=α

任意角的三角函数知识点复习

任意角的三角函数 任意点到原点的距离公式:d = x 2+y 2 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐 标为(,)x y ,它与原点的距离为(0)r r ==>,那么 sin y r α= ;cos x r α=;tan y x α=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。 求解三角函数值 一般角:利用三角函数的定义 特殊角:先化为0至360度之间的角 ) Z (tan )2tan()Z (cos )2cos() Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 例1已知角α的终边经过点(2,3)P -,求α的三角函数值。 练:已知角α的终边过点(,2)(0)a a a ≠,求α的四个三角函数值。 例2.求下列三角函数的值: (1)9cos 4π (2)11tan()6 π - ,

练: .____________tan600o 的值是 D 3.D 3.C 3 3 .B 33.A -- 例3.确定下列三角函数值的符号: (1)cos 250 ; (2)sin()4π-; (3)tan(672)- ; (4)11tan 3 π . 练: 确定下列三角函数值的符号 (1)cos250?; (2)sin()4 π -; (3)tan(672)?-; (4)tan 3π. 例4 若θ是第二象限角,则( ) A.sin 2 θ >0 B.cos 2 θ <0 C.tan 2 θ >0 D.cot 2 θ<0 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交 与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .

三角函数的二倍角公式.docx

三角函数的二倍角公式 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生〃知其然〃而且要使学生〃知其所以然"。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的"创设问题情境——提出数学问题——尝试解决问题——验证解决方法"为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化, 使教学目标体现的更加完美。 二、教材分析 三角函数的二倍角公式是普通高中课程标准实验教科书(人教A版)数学必修四,第三章第一节的内容,其主要内容是三角函数二倍角公式。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求为此本节内容在三角函数中占有非常重要的地位。 三、学情分析 本节课的授课对象是本校高一八班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。 四、教学目标 1、基础知识目标:理解公式的发现过程,掌握正弦、余弦、正切的二倍角公式; 2、能力训练目标:能正确运用公式; 3、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、

数形结合的数学思想,提高学生分析问题、解决问题的能力; 4、个性品质目标:通过公式的学习和应用,感受事物之间的普通联系规律,运用化 归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。 五、教学重点和难点 1、教学重点:理解并掌握公式; 2、教学难点:正确运用公式,求三角函数值,化简三角函数式。 六、教法学法以及预期效果分析 "授人以鱼不如授之以鱼",作为一名老师,我们不仅要传授给学生数学知识,更重要 的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究. 下面我从教法、学法、预期效果等三个方面做如下分析。 (一)、教法 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生"时间"、 "空间",由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦 (二)、学法 〃现代的文盲不是不识字的人,而是没有掌握学习方法的人",很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情

任意角的三角函数教案

1.2.1 任意角的三角函数 教学目标 1.知识与技能 (1)掌握任意角的三角函数的定义. (2)已知角α终边上一点,会求角α的各三角函数值. (3)记住三角函数的定义域. 2.过程与方法 (1)通过直角三角形中三角函数定义到单位圆中三角函数定义,最后到直角坐标系中一 般化的三角函数定义,培养学生发现数学规律的思维方法和能力. (2)树立映射观点,正确理解三角函数是以实数为自变量的函数. (3)通过对定义域介绍,提高学生分析、探究、解决问题的能力. 3.情感、态度与价值观 (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的 一种联系方式. (2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神. 重点、难点 教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号). 教学难点:利用角的终边上点的坐标刻画三角函数,三角函数的符号以及三角函数的几何意义. 授课类型:新授课 教学模式:启发、诱导发现教学. 新知探究 一、三角函数的定义: 提出问题 问题①:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题②:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗? 学习了弧度制,知道了角的集合与实数集是一一对应的,在此基础上,我们来研究任意角的三角函数.

图1 如图1,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离22b a >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b. 根据初中学过的三角函数定义,我们有 sinα=OP MP =r b ,cosα=OP OM =r a ,tanα=OP MP =a b . 讨论结果: ①锐角三角函数是以锐角为自变量,边的比值为函数值的三角函数. ②sinα=OP MP =r b ,cosα=OP OM =r a ,tanα=OM MP =a b . 提出问题 问题①:如果改变终边上的点的位置,这三个比值会改变吗?为什么? 问题②:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化? 最后可以发现,由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变. 过图形教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化. 此时sinα=OP MP =b,cosα=OP OM =a,tanα=OM MP =a b . 在引进弧度制时我们看到,在半径为单位长度的圆中,角α的弧度数的绝对值等于圆心角α所对的弧长(符号由角α的终边的旋转方向决定).在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.这样,上述P 点就是α的终边与单位圆的交点.锐角三角函数可以用单位圆上点的坐标表示. 同样地,我们可以利用单位圆定义任意角的三角函数. 图2 如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y 叫做α的正弦,记作sinα,即sinα=y; (2)x 叫做α的余弦,记作cosα,即cosα=x; (3)x y 叫做α的正切,记作tanα,即tanα=x y (x≠0). 所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数. 值得注意的是:(1)正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.(2)sinα不是sin 与α的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“tan”等是没有意义的. 二、例题讲解

《任意角的三角函数一》 教案苏教版

数学:1.2.1《任意角的三角函数(一)》教案(苏教版必修4) 第 3 课时:§1.2.1 任意角的三角函数(一) 【三维目标】: 一、知识与技能 1.掌握任意角的正弦、余弦、正切的定义; 2.掌握正弦、余弦、正切函数的定义域和这三种函数的值在各象限的符号。 3.树立映射观点,正确理解三角函数是以实数为自变量的函数; 二、过程与方法 1.通过网络载体,利用几何画板的直观演示,培养学生主动探索、善于发现的创新意识和创新精神; 2.在学习过程中通过相互讨论培养学生的团结协作精神; 3.通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 三、情感、态度与价值观 1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式; 2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;

3.让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 【教学重点与难点】: 重点:任意角三角函数的定义(包括这三种三角函数的定义域和函数值在各象限的符号)。 难点:任意角的三角函数概念的建构过程 【学法与教学用具】: 1. 学法: 2. 教学用具:多媒体、实物投影仪. 3. 教学模式:启发、诱导发现教学. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题 用与用坐标均可表示圆周上点,那么,这两种表示有什么内在的联系?确切地说, ● 用怎样的数学模型刻画与之间的关系? 二、研探新知 1.三角函数的定义 【提问】:初中锐角的三角函数是如何定义的? 在平面直角坐标系中,设的终边上任意一点的坐标是,它与原点的距离是。当为锐角时,过作轴,垂足为,在中,,,

任意角的三角函数教学设计

《任意角的三角函数》第一课时教学设计 会宁县第二中学数学教研组曹蕊 一、教学内容分析 本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。二、学生情况分析 本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。 三、教学目标 知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。 方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。 情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。 四、教学重、难点分析: 重点:理解任意角三角函数(正弦、余弦、正切)的定义。 难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。 五、教学方法与策略: 教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学. 六、教具、教学媒体准备: 为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维. 七、教学过程 (一)教学情景 1.复习锐角三角函数的定义 问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

高中数学任意角的三角函数教案

§1.2.1 任意角的三角函数 教学目标 <一> 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函数的定义域和诱导公式(一)。 <二> 能力目标 1、理解并掌握任意角的三角函数的定义。 2、树立映射观点,正确理解三角函数是以实数为自变量的函数。 3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 <三> 德育目标 1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。 2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。 教学重难点 任意角的正弦、余弦、正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。 教学过程 问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗? 在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆 即:锐角三角函数可以用单位圆上的点的坐标来表示 推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切) 任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则: 正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为: 我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1: 解: 例2: 事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

三角函数最全知识点总结

三角函数、解三角形 一、任意角和弧度制及任意角的三角函数 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角. ①正角:按__逆时针__方向旋转形成的角. ②负角:按__顺时针__方向旋转形成的角. ③零角:如果一条射线__没有作任何旋转__,我们称它形成了一个零角. (2)终边相同角:与α终边相同的角可表示为:{β|β=α+2kπ,k∈Z},或{β|β=α+k·360°,k∈Z}. (3)象限角:角α的终边落在__第几象限__就称α为第几象限的角,终边落在坐标轴上的角不属于任何象限. 象限角 轴线角 2.弧度制 (1)1度的角:__把圆周分成360份,每一份所对的圆心角叫1°的角__. (2)1弧度的角:__弧长等于半径的圆弧所对的圆心角叫1弧度的角__. (3)角度与弧度的换算: 360°=__2π__rad,1°=__π 180__rad,1rad=(__180 π__)≈57°18′. (4)若扇形的半径为r,圆心角的弧度数为α,则此扇形的弧长l=__|α|·r__, 面积S=__1 2|α|r 2__=__1 2lr__.

3.任意角的三角函数定义 (1)设α是一个任意角,α的终边上任意一点(非顶点)P的坐标是(x,y),它与 原点的距离为r,则sinα=__y r__,cosα=__ x r__,tanα=__ y x__. (2)三角函数在各象限的符号是: (3)三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的__正弦__线、__余弦__线和__正切__线. 4.终边相同的角的三角函数 sin(α+k·2π)=__sinα__, cos(α+k·2π)=__cosα__, tan(α+k·2π)=__tanα__(其中k∈Z), 即终边相同的角的同一三角函数的值相等.

巩固练习_任意角的三角函数_基础

【巩固练习】 1.角θ的终边经过点12? ? ? ??? ,那么tan θ的值为( ) A .12 B .- C . D .2.若角0420的终边上有一点()a ,4-,则a 的值是( ) A .34 B .34- C .34± D .3 3.下列三角函数值结果为正的是( ) A .cos100° B .sin700° C .2tan 3π??- ??? D .9sin 4π??- ??? 4.化简0sin 390的值是( ) A . 12B .12-C .5.若42π π θ<<,则下列不等式成立的是( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C .sin θ>tan θ>cos θ D .tan θ>sin θ>cos θ 6.设α角属于第二象限,且2cos 2cos α α -=,则2 α角属于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.若θ为锐角且2cos cos 1-=--θθ,则θθ1cos cos -+的值为( ) A .22 B .6 C .6 D .4 8.若cos θ>0,且sin2θ<0,则角θ的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.5sin90°+2cos0°―3sin270°+10cos180°=________。 10.若α为第二象限角,则|sin |cos sin |cos | αααα-=________。 11.已知角α的终边经过点(230,2cos30)P sin -o o ,则cos α=。 12.已知角α的终边在直线2y x =上,则sin α=。

高一数学三角函数二倍公式

黄冈中学高一数学三角函数二倍角公式 1、二倍角的正弦、余弦、正切 在和角公式S(α+β)、C(α+β)、T(α+β)中,令α=β就可以得出对应的二倍角的三角函数公式. 点拨:(1)倍角公式是和角公式的特例.(2)因为sin2α+cos2α=1所以公式C2α还可变形为:cos2α=2cos2α-1或 cos2α=1-2sin2α. (3)公式成立的条件:C2α中α∈R;S2α中α∈R;T2α中α≠(k∈Z)时,显然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式,即: . (4)理解二倍角的含义:二倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于 诸于将4α作为2α的2倍,将α作为的2倍;将作为的2倍;将3α作为的2倍;将 的2倍等等情况. (5)注意公式的逆用:例如: 2、半角的正弦、余弦、正切:在倍角公式cos2α=1-2sin2α、cos2α=2cos2α-1中以α代替2α, 以代替α,即得:cosα=1-2sin2,cosα=2cos2-1,所以有 即得: 称之为半角公式

点拨:(1)半角公式中正、负号的选取由所在象限确定. (2)称公式为降幂公式. (3)可看做的半角;可看做3α的半角;可看做α的半角;2α可看做4α的半角等等. (4)公式成立的条件为:α≠2kπ+π(k∈Z). (5)k∈Z. 说明:半角公式不要求记忆. 3、积化和差与和差化积公式:将公式S(α+β)加上S(α-β)即可得: ,另外将公式S(α+β)减去S(α-β)、C(α+β)加上C(α-β)、C(α+β)减去C(α-β)可得出另三个公式,即得积化和差公式如下: 在上述公式中令α+β=θ,α-β=φ可得以下和差化积公式: 点拨:(1)积化和差公式的推导,用了“解方程组”的思想,和差化积公式的推导用了“换元”的

3知识讲解_任意角的三角函数_基础

任意角的三角函数 【学习目标】 1.理解任意角的三角函数(正弦、余弦、正切)的定义,能由三角函数的定义求其定义域、函数值的符号. 2.理解单位圆、正弦线、余弦线、正切线的概念及意义. 3.会应用三角函数的定义解决相关问题。 【要点梳理】 要点一:三角函数定义 设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦,记做sin α,即sin y α=; (2)x 叫做α的余弦,记做cos α,即cos x α=; (3)y x 叫做α的正切,记做tan α,即tan (0)y x x α= ≠. 要点诠释: 三角函数的值与点P 在终边上的位置无关,仅与角的大小有关. 我们只需计算点到原点的距离r = 那么sin α= ,cos α=,tan y x α=。 要点二:三角函数在各象限的符号 三角函数在各象限的符号: 正切、余切 余弦、正割 正弦、余割 在记忆上述三角函数值在各象限的符号时,有以下口诀:一全正,二正弦,三正切,四余弦。 要点诠释: 口诀的含义是在第一象限各三角函数值为正;在第二象限正弦值为正,在第三象限正切值为正,在第四象限余弦值为正。 要点三:诱导公式一 终边相同的角的同一三角函数的值相等 sin(2)sin k απα+?=,其中k Z ∈ cos(2)cos k απα+?=,其中k Z ∈ tan(2)tan k απα+?=,其中k Z ∈ 要点诠释: 该组公式说明了终边相同的角的同一三角函数的值相等这个结论。要注意在三角函数中,角和三角函

数值的对应关系是多值对应关系,即给定一个角,它的三角函数值是唯一确定的(除不存在的情况);反之,给定一个三角函数值,有无穷多个角和它对应. 要点四:单位圆中的三角函数线 圆心在原点,半径等于1的圆为单位圆.设角α的顶点在圆心O ,始边与x 轴正半轴重合,终边交单位圆于P ,过P 作PM 垂直x 轴于M ,作PN 垂直y 轴于点N.以A 为原点建立y '轴与y 轴同向,与α的终边(或其反向延长线)相交于点T (或T '),则有向线段0M 、0N 、AT(或AT ')分别叫作α的余弦线、正弦线、正切线,统称为三角函数线.有向线段:既有大小又有方向的线段. 要点诠释: 三条有向线段的位置: 正弦线为α的终边与单位圆的交点到x 轴的垂直线段; 余弦线在x 轴上; 正切线在过单位圆与x 轴的正方向的交点的切线上; 三条有向线段中两条在单位圆内,一条在单位圆外. 【典型例题】 类型一:三角函数的定义 例1.已知角α的终边经过点P (-4a ,3a )(a ≠0),求sin α,cos α,tan α的值。 【思路点拨】先根据点P (-4a ,3a )求出OP 的长;再分a >0,a <0两种情况结合任意角的三角函数的定义即可求出结论 【答案】35,45-,34-或35-,45,34 - 【解析】 5||r a ==。 若a >0,则r=5a ,α是第二象限角,则 33sin 55 y a r a α= ==, 44cos 55 x a r a α-===-, 33tan 44 y a x a α===--, 若a <0,则r=-5a ,α是第四象限角,则 3sin 5α=-,4cos 5α=,3tan 4α=-。 【总结升华】 本题主要考查三角函数的定义和分类讨论的思想。三角函数值的大小与点在角的终边上的位置无关,只与角的大小有关。要善于利用三角函数的定义及三角函数的符号规律解题。 举一反三: 【变式1】已知角α的终边在直线y =上,求sin α,cos α,tan α的值。 【答案】1221,22 --

任意角的三角函数和弧度制 基础练习(含解析)

任意角的三角函数和弧度制 基础练习 一、选择题 1.下列选项中与-80°终边相同的角为( ) A. 100° B. 260° C. 280° D. 380° 2.在平面直角坐标系中,角 3πα+ 的终边经过点P (1,2),则sin α=( ) 3.若5sin 13α=- ,且α为第四象限角,则tan α的值等于( ) A. 125 B. 512- C. 512 D. 125 - 4.小明出国旅游,当地时间比中国时间晚一个小时,他需要将表的时针旋转,则转过的角的弧度数是 ( ) A. π3 B. π6 C. -π3 D. -π6 5.已知角α的终边经过点(sin 48,cos48)P ??,则 sin(12)α?-=( ) A. 12 C. 12- D. 6.若12cos 13x = ,且x 为第四象限的角,则tanx 的值等于 A 、125 B 、-125 C 、512 D 、-512 7.若函数 ()cos 2()6f x x xf π=+',则()3f π-与()3f π的大小关系是( ) A. ()()33f f π π-= B. )3()3(ππf f <- C. )3()3(π πf f >- D. 不确定 8.若θ是第四象限角,则下列结论正确的是( ) A .sin 0>θ B .cos 0<θ C .tan 0>θ D .sin tan 0>θθ 9.一扇形的中心角为2,对应的弧长为4,则此扇形的面积为( ) A .1 B .2 C .3 D .4 10.已知tan 2α ,其中α为三角形内角,则cos α=() A. 5 - D.

二、填空题 11.若扇形的面积是1 cm 2,它的周长是4 cm,则扇形圆心角的弧度数为______. 12.已知角2α的终边落在x 轴下方,那么α是第 象限角. 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=1 3,则 sin β=_________. 14.已知一扇形所在圆的半径为10cm ,扇形的周长是45cm ,那么这个扇形的圆心角为 弧度. 15.弧长为3π,圆心角为135°的扇形,其面积为____. 三、解答题 16.已知角α的终边经过点P (54,5 3-). (1)求 sin α的值. (2) 17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个 同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的 半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度). (1)求θ关于x 的函数关系式; (2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为 9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最 大值?

三角函数公式大全2

三角函数公式大全 一谜槢痌激乼2014-11-28 优质解答 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示, 即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切

江苏省启东中学人教A版高中数学必修4教案(无答案):121任意角的三角函数

§1.2.1任意角 的三角函数(1) 主备人: 教学目标 1、掌握任意角的三角函数的定义,理解角与2k βπα=+()k Z ∈的同名三角函数值相等。 2、通过启发根据三角函数的定义,确定三角函数在各象限的符号,并熟练地处理一些问题。 【温故习新·导引自学】 一、任意角三角函数的定义 在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点的距离是r (r =x 2+y 2>0),那么 名称 定义 定义域 正弦 sin α= R 余弦 cos α= R 正切 tan α= ?????? ??? ?α? ?? α≠π 2+k π,k ∈Z 思考1:对于确定的角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 思考2:若P 为角α与单位圆的交点,sin α,cos α,tan α的值怎样表示? 二、三角函数在各象限的符号

1.若角α的终边经过点P ? ???? 22,-22,则sin α=________;cos α=________; tan α=________. 2.(1)若α在第三象限,则sin αcos α________0;(填“>”“<”) (2)cos 3tan 4________0.(填“>”“<”) 【交流质疑·精讲点拨】 三角函数的定义及应用 【例1】 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 跟踪训练1.已知角θ终边上一点P (x ,3)(x ≠0),且cos θ= 10 10x ,求sin θ,tan θ. 三角函数值的符号 【例2】 (1)若α是第四象限角,则点P (cos α,tan α)在第________象限. (2)判断下列各式的符号: ①sin 183°;②tan 7π 4;③cos 5.

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

任意角的三角函数知识点

2.1任意角的三角函数 课前复习: 1. 特殊角的三角函数值记忆 新课讲解: 任意点到原点的距离公式: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y , 它与原点的距离为(0)r r == >,那么 (1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α 的大小,只表明与α的终边相同的角所在的位置; ②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z π απ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等 于0,所以tan y x α= 无意义;同理当()k k Z απ=∈时,y x =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值 y r 、x r 、y x 、x y 分别是一个确定的实数。 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。

当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。 有向线段: 坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。 规定:与坐标轴方向一致时为正,与坐标方向相反时为负。 有向线段:带有方向的线段。 2.三角函数线的定义: 设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点 P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T . 由四个图看出: 当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有 sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OA α==== 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。 (Ⅳ) (Ⅲ)

三角函数的二倍角公式及应用

三角函数的二倍角公式及应用 一. 考点要求 1、 熟记二倍角的正弦、余弦、正切公式,并能灵活应用; 2、 领会从一般化归为特殊的数学思想,体会公式所蕴涵的和谐美 3、 公式应用的方法与技巧。 二、公式再现; 1、二倍角公式; sin2a= 2sinacosa 。 cos2a =22cos sin αα- = 22cos 1α-= 21sin α- tan2a= 22tan 1tan αα - 2、降幂公式;2 2cos 1sin ,2 2cos 1cos 22α αα α-= += 三;闯关训练 A 、类型一 公式逆用 逆用公式,换个角度豁然开朗,逆过来看茅塞顿开,这种在原有基础上的变通是创新意识的体现; 1、求下列各式的值 ();??cos15sin151 ()8 s i n 8 c o s 22 2 π π - () ? -?5.22tan 15.22tan 32 ; ()15.22cos 242 -? B 、、类型二----公式正用 从题设条件出发,顺着问题的线索,正用三角公式,通过对信息的感

知、加工、转换,运用已知条件和推算手段逐步达到目的。 2、已知(),5 3 sin -=-απ求α2cos 的值。 3、已知?? ? ??∈-=ππ ααα,2 ,sin 2sin ,求αtan 的值。 C 、、类型三----化简 ()()()2 4441sin cos ;2cos sin a a θθ +-、 四.能力提升; 1, 已知,128,5 4 8 cos παπα <<-=求4 tan ,4 cos ,4 sin α αα的值 2、已知,2 4,1352sin π απα<<=求ααα4tan ,4cos ,4sin 的值。 3、化简 ()() 11 1sin cos cos 2;2; 1tan 1tan x x x θθ--+ 4.x x - 5. 求值:(1)0000sin13cos17cos13sin17+ (2)0 1tan 751tan 75+- (3)2 2 cos sin 8 8 π π - 6.已知a ,β都是锐角,cosa=17 ,cos ()αβ+=11 14 -,求cos β的值。 7、 已知tan()3,tan()5αβαβ+=-=求tan2a 及tan 2β的值。 8、求值0000tan 70tan1070tan10- 9、.已知函数 2cos cos x x x +,求函数f(x)的最小正周期及单调递增区间。 五;高考链接

相关文档
最新文档