电磁感应导体棒平动切割类问题

电磁感应导体棒平动切割类问题
电磁感应导体棒平动切割类问题

试卷第1页,总61页

2013-2014学年度北京师范大学万宁附属中学

电磁感应导体棒平动切割类问题训练卷

考试范围:电磁感应;命题人:孙炜煜;审题人:王占国

注意事项:

1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上

第I 卷(选择题)

请点击修改第I 卷的文字说明 一、选择题(题型注释)

1.图中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻器,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆,有均匀磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB ( )

A .匀速滑动时,I 1=0,I 2=0

B .匀速滑动时,I 1≠0,I 2≠0

C .加速滑动时,I 1=0,I 2=0

D .加速滑动时,I 1≠0,I 2≠0 【答案】D 【解析】

试题分析:当AB 切割磁感线时,相当于电源.电容器的特点“隔直流”,两端间电压变化时,会有充电电流或放电电流.匀速滑动,电动势不变,电容器两端间的电压不变,所以I 2=0,I 1≠0,故AB 均错误;加速滑动,根据E BLv 知,电动势增大,电容两端的电压增大,所带的电量要增加,此时有充电电流,所以I 1≠0,I 2≠0,故C 错误,D 正确.所以选D .

考点:本题考查导体切割磁感线时的感应电动势、闭合电路的欧姆定律及电容器对电流的作用.

2.如图所示,在匀强磁场中,MN 、PQ 是两根平行的金属导轨,而ab ?cd 为串有电压表和电流表的两根金属棒,同时以相同速度向右运动时,正确的有( )

A .电压表有读数,电流表有读数

B .电压表无读数,电流表有读数

C .电压表无读数,电流表无读数

试卷第2页,总61页

D .电压表有读数,电流表无读数 【答案】C 【解析】

试题分析:当两棒以相同的速度向右匀速运动时,回路的磁通量不变,没有感应电流产生,电流表没有读数.电压表是由电流表改装而成的,其核心是电流表,有电流通过电压表时,电压表即有示数,没有电流通过电压表时,指针不偏转,电压表就没有读数.故C 正确.

考点:本题考查感应电动势的产生条件、感应电流的产生条件及电表工作原理.

3.在磁感应强度为B 、方向如图所示的匀强磁场中,金属杆PQ 在宽为l 的平行金属导轨上以速度v 向右匀速滑动,若PQ 的电阻为R/3;则P 、Q 之间的电压及通过电阻R 的感应电流方向为( )

A .Blv ,a→b B.3Blv/4,a→b C .Blv/4,a→b D.Blv ,b→a 【答案】

B 【解析】

试题分析:由右手定则可以判断感应电流的方向为Q 到P ,所以流经电阻R

的感应电流方向a→b ,再由法拉第电磁感应定律E Blv =,由闭合电路欧姆定律

、Q 之间的电压3R U E I =-=34Blv ,故B 选项正确。

考点:右手定则 法拉第电磁感应定律 闭合电路欧姆定律

4.如图所示,固定于水平绝缘面上的很长的金属导轨,表面粗糙、电阻不计,导轨左端与一个定值电阻R 相连,金属棒ab 的质量为m ,电阻不计,整个装置放在匀强磁场中,磁场方向垂直导轨平面,则当棒ab 在水平恒力F 的作用下从静止起向右滑动的过程中

A.恒力F 做的功等于电路中产生的电能;

B.恒力F 与摩擦力的合力做的功等于电路中产生的电能;

C.克服安培力做的功等于电路中产生的电能;

D.恒力F 与摩擦力的合力做的功等于电路中产生的电能与棒ab 获得的动能之和。 【答案】CD

R

试卷第3页,总61页

【解析】

试题分析:由动能定理可得:恒力、安培力与摩擦力的合力功等于棒获得的动能,而安培力做功导致电路中的消耗电能,产生热能.故A 错误;由动能定理可得:恒力、安培力与摩擦力的合力功等于棒获得的动能,而安培力做功导致电路中的消耗电能,产生内能.故B 错误;安培力做功等于电路中产生的电能,从而产生热能.故C 正确;由动能定理可得:恒力、安培力与摩擦力的合力功等于棒获得的动能,而安培力做功导致电路中的消耗电能,产生热能.故D 正确;

考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化

5.如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一固定电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R.整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v 做匀速运动.令E 表示MN 产生的电动势,U 表示MN 两端的电压的大小,则( )

A .U =

12

Blv B .E =Blv

C .流过固定电阻R 的感应电流由b 到d

D .流过固定电阻R 的感应电流由d 到b 【答案】ABC 【解析】

试题分析:根据电磁感应定律,MN 产生的电动势 E =Blv ,由于MN 的电阻与外电路电阻相同,所以MN 两端的电压U =

12E =1

2

Blv ,根据右手定则,流过固定电阻R 的感应电流由b 到d 。

考点: 电磁感应定律 右手定则

6.如图所示,水平光滑的平行金属导轨,左端接有电阻R ,匀强磁场B 竖直向下分布在导轨所在的空间内,质量一定的金属棒PQ 垂直导轨放置。今使棒以一定的初速度v 0向右运动,当其通过位置a 、b 时,速率分别为v a 、v b ,到位置c 时棒刚好静止,设导轨与棒的电阻均不计,a 到b 与b 到c 的间距相等,则金属棒在由a 到b 和由b 到c 的两个过程中( )

A .回路中产生的内能不相等

试卷第4页,总61页

B .棒运动的加速度相等

C .安培力做功相等

D .通过棒横截面的电量相等 【答案】D 【解析】

试题分析:金属棒受到的安培力:22BLv B L v

F BLv B L R R

===

,金属棒受到的安培力水平向左,金属棒在安培力作用下做减速运动,速度v 越来越小,导体棒克服安培力

做功,把金属棒的动能转化为内能,由于ab 间距离与bc 间距离相等,安培力F 从a 到c 逐渐减小,由W Fs =定性分析可知,从a 到b 克服安培力做的功比从b 到c 克服安培力做的功多,因此在a 到b 的过程产生的内能多,故A 错误,C 错误;金属棒PQ 在

运动过程中所受到的合力是安培力,由牛顿第二定律得:22B L v

ma R

=,由于v 减小,

所以金属棒向右运动过程中,加速度逐渐减小,故B 错误;金属棒运动过程中,电路产生的感应电荷量E t S

q I t t B

R t R R R

?Φ??Φ?=??=

??=?==?,从a 到b 的过程中与从b 到c 的过程中,回路面积的变化量△S 相等,B 、R 相等,因此,通过棒横截面积的电荷

量相等,故D 正确;所以选D .

考点:本题考查导体切割磁感线时的感应电动势、法拉第电磁感应定律、电磁感应中的能量转化,同时考查综合运用电磁感应、电路知识、牛顿定律等知识的能力.

7. 如图所示平行的金属双轨与电路处在竖直向下的匀强磁场B 中,一金属杆放在金属双轨上在恒定外力F 作用下做匀速运动,则在开关S

A.闭合瞬间通过金属杆的电流增大 B 闭合瞬间通过金属杆的电流减小 C .闭合后金属杆先减速后匀速 D .闭合后金属杆先加速后匀速 【答案】A 、C 【解析】 试题分析:由题意可知金属杆所受恒定外力F 和安培力是对平衡力,当开关S 闭合瞬间,感应电动势不变,电路中总电阻减小,由I=ε/r 可知感应电流增大,所以A 正确;感应电流增大,安培力增大,合外力方向和运动方向相反,金属杆开始做减速运动,由ε=BLV ,可知感应电动势减小,感应电流减小,安培力减小,当安培力减小到和恒定外力F 相等时,金属棒做匀速运动,所以C 正确。 考点:本题主要考查安培力作用下导体的运动。

8.如图所示,电阻为r 的金属杆ab 以恒定的速率v 在光滑平行导轨上向右滑行(导轨电阻忽略不计),定值电阻R 与金属棒构成闭合回路,整个装置置于垂直纸面向里的匀强磁场中,下列叙述正确的是

试卷第5页,总61页

A .ab 杆中的电流强度与速率v 成正比

B .磁场作用于ab 杆的安培力与速率v 成正比

C .电阻R 上产生的电热功率与速率v 成正比

D .外力对ab 杆做功的功率与速率v 成正比 【答案】AB 【解析】

试题分析:杆中产生的感应电动势为E BLv =,杆中的电流强度BLv

I R r

=

+,所以ab 杆中的电流强度与速率v 成正比;磁场作用于ab 杆的安培力22B L v

F BIL R r

==+,所以

磁场作用于ab 杆的安培力与速率v 成正比;电阻R 上产生的电热功率

222

2

2

()B L R P I R v R r ==+,所以电阻R 上产生的电热功率与速率v 的平方成正比;外力对

ab 杆做功的功率222

B L v P Fv R r

==+,所以外力对ab 杆做功的功率与速率v 的平方成正

比。选项AB 正确。

考点:此题考查法拉第电磁感应定律及电功、电功率等知识点。

9.如图所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒ab 。导轨的一端连接电阻R ,其他电阻均不计,磁感应强度为B 的匀强磁场垂直于导轨平面向下,金属棒ab 在一水平恒力F 作用下由静止起向右运动。则 ( )

A .随着ab 运动速度的增大,其加速度也增大

B .外力F 对ab 做的功等于电路中产生的电能

C .当ab 做匀速运动时,外力F 做功的功率等于电路中的电功率

D .无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能 【答案】CD 【解析】

试题分析:随着ab 运动速度的增大,安培力增大,由F-BIL=ma 可知加速度减小,A 错;如果导体棒速度增大,外力F 对ab 做的功等于电路中产生的电能与动能变化量之和,B 错;当ab 做匀速运动时,由动能定理可知外力F 做功的功率等于电路中的电功率,C 对;同理由功能关系可知无论ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能,D 对,故选CD 考点:考查电磁感应与能量

点评:本题难度较小,巧妙应用动能定理和功能关系,克服安培力做了多少功就有多少

试卷第6页,总61页

电能产生

10.如图所示,在一匀强磁场中有一足够长的U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab 的一根导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则

A .ef 将向右匀减速运动

B .ef 运动的加速度越来越小

C .R 的热功率均匀减小

D .ef 减少的动能等于R 产生的热量 【答案】BD 【解析】

试题分析:金属棒向右运动时会切割磁感线产生电动势、电流,I E BLv

R R

=

=

,此时的安培力:22B L v

F BIL R ==安

根据牛顿第二定律:22 ma B L v

R

=

所以物体减速的过程中加速度随着速度v 的减小而减小,直到物体速度减为零,A 错误,

B 正确;根据公式2222

v B L P I R R

==可得R 的热功率不是均匀减小,C 错误;根据能

量守恒可得ef 减少的动能等于R 产生的热量,D 正确; 故选BD

考点:导体切割磁感线时的感应电动势;

点评:此类题目的解题关键点是能够灵活应用法拉第电磁感应定律与安培力公式,推导出适当的表达式判断物理量的变化.

11.下图是法拉第做成的世界上第一台发电机模型的原理图。将铜盘放在磁场中,让磁感线垂直穿过铜盘;图中a 、b 导线与铜盘的中轴线处在同一竖直平面内;转动铜盘,就可以使闭合电路获得电流。若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为 R ,从上往下看逆时针匀速转动铜盘的角速度为ω。则下列说法正确的是 ( )

试卷第7页,总61页

A .回路中有大小和方向作周期性变化的电流

B .回路中电流大小恒定,且等于2BL R ω

C .回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘

D .若将匀强磁场改为仍然垂直穿过铜盘的正弦变化的磁场,不转动铜盘,灯泡中也会有电流流过 【答案】C 【解析】

试卷第8页,总61页

D 、垂直穿过铜盘的正弦变化的磁场,铜盘中产生涡旋电场,但a 、b 间无电势差,灯泡中没有电流流过.故D 错误。故选

C

考点:导体切割磁感线时的感应电动势;闭合电路的欧姆定律

点评:本题是转动切割磁感线类型,运用等效法处理.导体中有无电流,要看导体两端是否存在电势差。这类题目常常需要把速度折算成重点的速度。

12.如图所示,一个绕圆心轴MN 匀速转动的金属圆盘,匀强磁场垂直于圆盘平面,磁感应强度为B ,圆盘中心和圆盘边缘通过电刷与螺线管相连,圆盘转动方向如图所示,则下述结论中正确的是

A .圆盘上的电流由圆心流向边缘

B .圆盘上的电流由边缘流向圆心

C .金属圆盘上各处电势相等

D .螺线管产生的磁场,F 端为N 极 【答案】A 【解析】

试题分析:当圆盘转动方向如图所示时,根据右手定则可判断出圆盘上的感应电流方向是从圆心流向边缘的,故A 是正确的;B 就是不对的;

由于圆盘上在感应电流,故其上的电势并不相等,C 不对;再对螺线管中的电流方向,由安培定则可判断出E 端为N 极,故D 也是不对的。 考点:利用右手定则判断感应电流的方向。 13.夏天将到,在北半球,当我们抬头观看教室内的电扇时,发现电扇正在逆时针转动。金属材质的电扇示意图如图,由于电磁场的存在,下列关于A 、O 两点的电势及电势差的说法,正确的是( )

A .A 点电势比O 点电势高

B .A 点电势比O 点电势低

C .A 点电势比O 点电势相等

D .扇叶长度越短,转速越快,两点间的电势差数值越大 【答案】A 【解析】

试题分析:在北半球地磁场的竖直分量竖直向下,由楞次定律可判断OA 电流方向由O 到A ,再根据在电源内部电流由负极流向正极,可知A 点为正极,电势高,A 对;由E=BLV 可知CD 错误;;

考点:考查了导体切割磁感线运动

点评:关键是根据楞次定律判断电流方向

14.如图所示,男女两位同学一起摇绳,男同学站在女同学们的正东方向,两位同学分别捏住绝缘的长金属导线的两端迅速摇动,若金属导线两端连接在一个灵敏电流表的两个接线柱上.下述说法中正确的是

F

E

试卷第9页,总61页

A .摇动过程中导线中的电流方向始终不改变

B .摇动过程中导线中的电流是交变电流

C .若两同学加快摇动金属导线,其他条件不变,则流过电流表的电流将变大

D .若两同学改为南北方向站立摇绳,其他条件不变 ,则流过电流表的电流将变大 【答案】BC 【解析】 试题分析:摇动过程中切割磁感线的方向在变,根据右手定则,感应电流的方向也在变,所以产生的是交变电流.故A 错误B 正确.加快摇动的速度,根据E=BLv ,知产生的感应电动势的大小在增大,所以感应电流增大.故C 正确.改为南北方向站立摇绳,不切割磁感线,不产生感应电流.故D 错误. 故选BC

考点:导体切割磁感线时的感应电动势;右手定则.

点评:解决本题的关键掌握感应电动势的大小公式E BLv =,以及会用右手定则判断感应电流的方向.

15.如图所示,在蹄形磁铁的两极间有一可以转动的铜盘(不计各种摩擦),现让铜盘转动.下面对观察到的现象描述及解释正确的是:

A .铜盘中没有感应电动势、没有感应电流,铜盘将一直转动下去

B .铜盘中有感应电动势、没有感应电流,铜盘将一直转动下去

C .铜盘中既有感应电动势又有感应电流,铜盘将很快停下

D .铜盘中既有感应电动势又有感应电流,铜盘将越转越快 【答案】C 【解析】

试题分析:因为铜盘转动会切割磁感线,就有感应电动势,有感应电流,就会受到反向的安培力,铜盘最终会停下来,故选C 考点:考查了导体切割磁感线运动

点评:基础题,比较简单,关键是知道铜盘的半径在做切割磁感线运动

16.飞机在北半球的上空以速度v 水平飞行,飞机机身长为a ,翼展为b ;该空间地磁场磁感应强度的水平分量为B 1,竖直分量为B 2;驾驶员左侧机翼的端点用A 表示,右侧机翼的端点用B 表示,用E 表示飞机产生的感应电动势,则( )

A.E=B 1vb ,且A 点电势低于B 点电势

B.E=B 1vb ,且A 点电势高于B 点电势

C.E=B 2vb ,且A 点电势低于B 点电势

D. 2E B vb =,且A 点电势高于B 点电势

【答案】D 【解析】

试题分析:当飞机在北半球水平飞行时,由于地磁场的存在,且地磁场的竖直分量方向竖直向下,则由右手定则可判定机翼左端A 的电势比右端B 的电势高.电动势大小为:

试卷第10页,总61页

2E B vb

故选D

考点:考查了导体切割磁感线运动

可判定机翼左端的电势比右端的电势高.

17.如图所示,在甲、乙、丙三图中,除导体棒ab 乙图中的电容器C 原来不带电,和导轨间的摩擦也不计,图中装置均在水平面内,导轨足够长,今给导体棒ab 一个向右的初速度v 0ab 的最终运动状态是( )

A 、三种情形下,导体棒ab 最终均做匀速运动

B 、乙、丙中,ab 棒最终将以相同速度做匀速运动;甲中,ab

C 、乙、丙中,ab 棒最终将以不同的速度做匀速运动;甲中,ab

D 、三种情形下导体棒ab 最终均静止 【答案】C 【解析】

试题分析:乙图中ab 棒产生感应电动势对C 充电,C 以金属杆最终处于左的匀速直线运动.由此得选项C 正确,ABD 故选:C

考点:考查了共点力平衡条件极其应用 点评:乙图最后是感应电动势与电容器两板间电压相等,最终静止;处于匀速直线运动.

18.半径为a 右端开小口的导体圆环和长为2a 环上以速度v 平行于直径CD 圆环中心O 开始,杆的位置由θ确定,如图所示。则

试卷第11页,总61页

A .θ=0时,杆产生的电动势为Bav 2

B .θ=

3

π

时,杆产生的电动势为Bav 3 C .θ=0时,杆受的安培力大小为()0233R av

B +π

D .θ=3

π

时,杆受的安培力大小为()02353R av B +π

【答案】AD

【解析】

试题分析:随着导体棒的移动,其切割磁感线的长度在变化,根据几何知识,导体棒切割磁感线的有效长度为2cos L a θ=,其产生的电动势为2cos E BLv Bav θ==, 当0θ=时,产生的电动势为2E Bav =,导体棒与左端圆环形成闭合回路,产生的电流为

(22)E

I a a R π=

+,杆受到的安培力

200

222(22)(1)Bav B av

F BIL B a a a R R ππ===++,A 正确,C 错误,

当3

π

θ=

时,产生的电动势为E Bav =,导体棒与左端圆环形成闭合回路,产生的电

流为000

11

55

(22)()(1)23

33

E

Bav Bv

I a a a R a a R R ππππ=

=

=

?

+-++,所以杆受到的安培力为()200

3553(1)3

Bv B av

F BIL B a R R ππ===++,B 错误,D 正确,

考点:考查了导体切割磁感线运动,

点评:本题中导体切割磁感线的有效长度在变化,所以需要先求出有效长度的表达式,并且,随着杆的运动,电路中的电阻也在变化着,

19.如图4所示,有一用铝板制成的U 型框,将一质量为m 的带电小球用绝缘细线悬挂在框中,使整体在匀强磁场中沿垂直于磁场方向向左以速度v 匀速运动,悬挂拉力为F T ,则( )

试卷第12页,总61页

A .悬线竖直,F T =mg

B .悬线竖直,F T >mg

C .悬线竖直,F T

D .无法确定F T 的大小和方向 【答案】A

【解析】设两板间的距离为L ,由于向左运动的过程中竖直板切割磁感线,产生动生电动势,由右手定则判断下板电势高于上板,动生电动势大小E =BLv ,即带电小球处于电势差为BLv 的电场中,所受电场力F 电=qE 电=q

E L

=q BLv L =qvB.

设小球带正电,则所受电场力方向向上.

同时小球所受洛伦兹力F 洛=qvB ,方向由左手定则判断竖直向下,即F 电=F 洛,所以F T =mg.同理分析可知当小球带负电时,F T =mg.故无论小球带什么电,F T =mg.选项A 正确.

20.如图,在水平桌面上放置两条相距l 的平行光滑导轨ab 与cd ,阻值为R 的电阻与不计电阻的导轨的a 、c 端相连。不计电阻的滑杆MN 垂直于导轨并可在导轨上滑动。整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B 。滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一质量为m 的物块相连,绳处于拉直状态。若从静止开始释放物块,用i 表示回路中的感应电流,g 表示重力加速度,则在物块下落过程中物块的速度不可能 ( )

A .小于

22mgR B l B .等于22

mgR

B l

C .小于2l R mg

D .等于2l R

mg

【答案】C

【解析】最大速度时,,,A 正确;

,B 正确;根据能量有:

,C 错误;MN 产生的最大感应电动势为

,D 正确

21.如图所示,平行导轨间距为d ,一端跨接一个电阻R ,匀强磁场的磁感应强度为B ,

方向垂直于平行金属导轨所在平面.一根金属棒与导轨成θ角放置,金属棒与导轨的电阻均不计.当金属棒沿垂直于棒的方向以恒定的速度v 在金属导轨上滑行时,通过电阻R 的电流是 ( )

试卷第13页,总61页

A. Bdv

R

B. sin Bdv R θ

C. cos Bdv R

θ

D.

sin Bdv

R θ

【答案】D

【解析】电流应等于感应电动势除以电阻R ,问题在于感应电动势应如何计算.能够引起感应电流的电动势是MN 间产生的电动势,所以有效切割长度应为MN .而MN 用已知参数表示应为

sin d θ,所以有效切割长度l =sin d θ.则E =Blv =sin Bdv θ,I =E R

=sin Bdv

R θ,

所以选项D 正确.

22.如图所示,两根水平放置的相互平行的金属导轨ab 、cd ,表面光滑,处在竖直向上的匀强磁场中,金属棒PQ 垂直于导轨放在上面,以速度v 向右匀速运动,欲使棒PQ 停下来,下面的措施可行的是(导轨足够长,棒PQ 有电阻)( )

A.在PQ 右侧垂直于导轨再放上一根同样的金属棒

B.在PQ 右侧垂直于导轨再放上一根质量和电阻均比棒PQ 大的金属棒

C.将导轨的a 、c 两端用导线连接起来

D.在导轨的a 、c 两端用导线连接一个电容器 【答案】选C.

【解析】在PQ 棒右侧放金属棒时,回路中会有感应电流,使金属棒加速,PQ 棒减速,当获得共同速度时,回路中感应电流为零,两棒都将匀速运动,A 、B 项错误.当一端或两端用导线连接时,PQ 的动能将转化为内能而最终静止,C 项正确.若在a 、c 两端连接一个电容器,在电容器的充电过程中电路中有感应电流,导体棒在安培力的作用下减速,当导体棒的感应电动势与电容器两端的电压相等时,导体棒匀速运动.D 项错. 23.如图所示,在磁感应强度B=0.5T 的匀强磁场中,让导体PQ 在 U 形导轨上以v=10m/s 向右匀速滑动,两导轨间距离l=0.8m ,则产生的感应电动势的大小和PQ 中的电流方向分别是( )

A 4V ,由P 向Q

B 0.4V ,由Q 向P

C 4V ,由Q 向P

D 0.4V ,由P 向Q 【答案】C

【解析】根据公式=v E BL 得E=4v ,根据右手定则得电流方向有Q 流向P ,选C 。 24.一航天飞机下有一细金属杆,杆指向地心.若仅考虑地磁场的影响,则当航天飞机位于赤道上空( )

A .由东向西水平飞行时,金属杆中感应电动势的方向一定由上向下

试卷第14页,总61页

B .由西向东水平飞行时,金属杆中感应电动势的方向一定由上向下

C .沿经过地磁极的经线由南向北水平飞行时,金属杆中感应电动势的方向由下向上

D .沿经过地磁极的经线由北向南水平飞行时,金属杆中一定没有感应电动势 【答案】AD

【解析】当航天飞机位于赤道上空由东向西水平飞行时,地磁场水平分量由南指北,由楞次定律可知感应电流方向由上到下,A 对;当航天飞机位于赤道上空沿经过地磁极的经线由北向南水平飞行时,不切割磁感线,没有电动势产生

25.用同样粗细的铜、铝、铁做成三根相同长度的直导线,分别放在电阻不计的光滑水平导轨上,使导线与导轨保持垂直,匀强磁场方向如图所示。用外力使导线向右做匀速运动,且每次外力消耗的功率均相同,则:

A .铜导线运动速度最大

B .铁导线运动速度最大

C .三根导线上产生的感应电动势相同

D .在相同时间内,它们产生的热量相等 【答案】BD

【解析】同样粗细,由电阻定律可知,铁的电阻最大,拉力做功的功率转化为焦耳热功率,可知铁棒的电流最小,由F=BIL 可知,铁棒所受安培力最小,拉力最小,由功率P=Fv 可知铁棒的速度最大,A 错;B 对;感应电动势E=BLV 可知,铁棒的感应电动势最大,C 错;热功率相同,D 对;

26.如图所示,导体棒ab 两个端点分别搭接在两个竖直放置、电阻不计、半径相等的金属圆环上,圆环通过电刷与导线c 、d 相接,c 、d 两个端点接在匝数比5:1(左边比右边)的理想变压器圈两端,变压器副线圈接一滑动变阻器,匀强磁场的磁感应强度为B ,方向竖直向下。设导体棒ab 长为L (电阻不计),并绕与ab 平行的水平轴(也是两圆环的中心轴)OO '以角速度ω匀速转动。当变阻器的阻值为R 时,通过电流表的电流

为I ,则( )

A .变阻器两端的电压U=IR

B .变阻器上消耗的功率为P=25I 2

R C .导体棒ab 所受的最大安培力F=BIL

D .导体棒ab 在最高点时两端感应电动势为0 【答案】B

【解析】根据变压器电流与匝数成反比,可得电阻器上的电流为5I ,两端的电压为

U=5IR ,C 错误;消耗的功率为P=25I 2

R ,B 正确;安培表电流I 为有效值,电流最大值为I 2,则导体棒ab 所受的最大安培力F=B I 2L ,C 错误。导体棒ab 在最高点时,垂直切割磁感线,两端感应电动势最大,D 错误。

27.在匀强磁场中放置一个电阻不计的平行金属导轨,导轨跟大线圈M 相连,导轨上放一根导线ab ,磁感线垂直于导轨所在的平面,欲使M 所包围的小线圈N 产生顺时针方

试卷第15页,总61页

向的感应电流,则导线的运动情况可能是( )

A .匀速向右运动

B .减速向右运动

C .加速向右运动

D .减速向左运动 【答案】B

【解析】导体棒向右运动,产生的感应电流顺时针流过M ,如果速度减小,产生的电流减小,穿过N 的磁通量减小,在N 上产生的感应电流的磁场与原磁场方向相同,B 对; 28.如图所示,固定在水平面上的三角形导线框PQS 顶角为θ.处于垂直于纸面向里的匀强磁场中.一根用与导线框同样材料制作的导线棒MN 放在导线框上,保持MN ⊥QS .用水平力F 拉MN 向右匀速运动,MN 与导轨间的接触电阻和摩擦都忽略不计.则下列说法中正确的是( )

A .回路中的感应电流方向不变,大小逐渐增大

B .回路中的感应电流方向不变,大小逐渐减小

C .回路中的感应电流方向和大小都保持不变

D .水平力F 的大小保持不变 【答案】C

【解析】由右手定则知,回路的电流方向不变,MN 向右匀速运动,切割磁感线的长度为:θt a n vt L =,电阻为)

c o s

t a n (0θθvt

vt vt R R +

+=,产生的感应电流为)

cos 1

tan 1(tan )

cos tan (tan 00θ

θθθ

θθ++=

++==

R v B vt

vt vt R v Bvt R

E

I ,电流大小不变,C 正确;

根据安培力公式有:θtan BIvt BIL F ==,D 错误。

29.如图所示,MN 、PQ 是两条在水平面内、平行放置的光滑金属导轨,导轨的右端接理想变压器的原线圈,变压器的副线圈与阻值为R 的电阻组成闭合回路,变压器的原副线圈匝数之比n 1∶n 2 =k ,导轨宽度为L 。质量为m 的导体棒ab 垂直MN 、PQ 放在导轨上,在水平外力作用下,从t=0时刻开始往复运动,其速度随时间变化的规律是

v=v m sin(

2T

π

t),已知垂直轨道平面的匀强磁场的磁感应强度为B ,导轨、导体棒、导线和线圈的电阻均不计,电流表为理想交流电表,导体棒始终在磁场中运动。则下列说法中正确的是

试卷第16页,总61页

A .在t=

4T

B .导体棒两端的最大电压为BLv m

C .电阻R 上消耗的功率为222

2

2m

B L v k R

D .从t=0至t=4

T

的时间内水平外力所做的功为222

28m B L v k R T

【答案】ABC

【解析】导体棒ab 在水平外力作用下,从t=0时刻开始往复运动,其速度随时间变化的规律是v=v m sin(

2T πt),产生的感应电动势为E=BLv=BLv m sin(2T

π

t),为正弦交变电流,导体棒两端的最大电压为BLv m ,变压器原线圈输入电压有效值为U 1=BLv m 变压公式可得副线圈输出电压有效值U 2=BLv m ),输出功率为P=222

2

2m

B L v k R ,电阻R 上消耗的功率为222

22m B L v k R ,

选项ABC 正确;由能量守恒定律,从t=0至t=

4

T

的时间内水平外力所做的功为W=PT/4+12m 2m v =222

2

8m B L v k R T+12

m 2

m v ,选项D 错误。 30.如图所示,相距为l 的光滑平行金属导轨ab 、cd 放置在水平桌面上,阻值为R 的

电阻与导轨的两端a 、c 相连。滑杆MN 质量为m ,垂直于导轨并可在导轨上自由滑动,不计导轨、滑杆以及导线的电阻.整个装置放于竖直方向的范围足够大的匀强磁场中,磁感应强度的大小为B .滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与另一质量也为m 的物块相连,绳处于拉直状态.现将物块由静止释放,当

物块达到最大速度时,物块的下落高度22

4

2()

m gR h BL =,用g 表示重力加速度,则在物块由静止开始下落至速度最大的过程中

A .物块达到的最大速度是2

()mgR

Bl B .通过电阻R 的电荷量是232()m gR Bl

试卷第17页,总61页

C .电阻R 放出的热量为32242()m g R Bl

D .滑秆MN 产生的最大感应电动势为mgR

Bl

【答案】ABD

【解析】最大速度时,R v l B F mg 22==,2)(Bl mgR

v =,A 正确;

2

2)(2Bl gR

m R Blh R BS t I q =

===,

B

2

2232

)()2(21Bl R g m v m mgh Q =-=,C 错误;MN 产生的最大感应电动势为

Bl

mgR

Blv E =

=,D 正确 31.在图甲、乙、丙三图中,除导体棒ab 可动外,其余部分均固定不动,甲图中的电容器C 原来不带电。设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计,图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长。今给导体棒ab 一个向右的初速度v 0,在甲、乙、丙三种情形下导体棒ab 的最终运动状态是

A .甲、丙中,ab 棒最终将以不同的速度做匀速运动;乙中,ab 棒最终静止

B .甲、丙中,ab 棒最终将以相同的速度做匀速运动;乙中,ab 棒最终静止

C .三种情形下导体棒ab 最终均做匀速运动

D .三种情形下导体棒ab 最终均静止 【答案】A 【解析】(1)在图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,当电容器C 极板间电压与导体棒产生的感应电动势相等时,电路中没有电流, ab 棒向右做匀速运动; (2)在图乙中,导体棒向右运动切割磁感线产生感应电流,通过电阻R 转化为内能, 当ab 棒的动能全部转化为内能时,ab 棒静止;

(3)在图丙中,导体棒先受到向左的安培力作用做减速运动, 速度减为零后再在安培力作用下向左做加速运动, 当导体棒产生的感应电动势与电源的电动势相等时,电路中没有电流,ab 棒向左做匀速运动。 综上所述,A 正确。

32.如图所示,一个闭合线圈穿入蹄形磁铁由1位置经2位置到3位置,最后从下方S 极拉出,则在这一过程中,线圈的感应电流的方向是

A .沿abcd 不变

B .沿dcba 不变

C .先沿abcd ,后沿dcba

D .先沿dcba ,后沿abcd

试卷第18页,总61页

【答案】D

【解析】通过线圈的磁场先是向右增强,根据楞次定律,感应电流的磁场向左,根据右手定则感应电流方向沿dcba ,同理从S 极拉出时,向右的磁场减弱,根据楞次定律,感应电流的磁场向右,根据右手定则感应电流方向沿abcd ,选D

33.右图中MN 、GH 为足够长光滑平行金属导轨,金属棒AB 、CD 垂直放在两导轨上,整个装置在同一水平面内。匀强磁场垂直于导轨所在的平面,方向如图。若给CD 杆一个水平向右的速度,则

A .A

B 、CD 最终都处于静止状态

B .AB 、CD 最终以相同的速度保持匀速直线运动状态

C .AB 、C

D 最终保持匀速直线运动状态,但v CD > v AB D .AB 、CD 不断做往复运动 【答案】B

【解析】根据电磁感应定律和牛顿第二定律:对AB 棒有:ma L r

BLv

B = 对CD 棒有:ma L r

BLv

B

=-一个加速一个减速,当二者共速时,磁通量不变,没有感应电动势产生,不再受安培力,二者将匀速运动。所以选B.

34.如图3所示,MN 、PQ 为互相平行的金属导轨与电阻R 相连.粗细均匀的金属线框用Oa 和O ′b 金属细棒与导轨相接触,整个装置处于匀强磁场中,磁感强度B 的方向垂直纸面向里.当线框OO ′轴转动时

A .R 中无电流通过

B .线框中有直流电

C .R 中有交变电流通过

D .线框中电流强度的最大值与转速成无关 【答案】A

【解析】线框oo ’轴转动时,闭合回路中磁通量没有发生变化,所以回路中没有感应电流产生,故A 对。

35.如图,匀强磁场方向垂直纸面向里,导体棒AB 在金属框上向右运动;以下说法正确的是

A 、A

B 中无电流

B 、AB 中有电流,方向由A 向B

试卷第19页,总61页

C 、AB 中有电流,方向由B 向A

D 、AB 中有电流,方向时而由A 向B ,时而由B 向A 【答案】C

【解析】AB 棒向右运动,切割磁感线产生感应电动势,根据右手定则可知AB 中有电流,方向由B 向A 故选C

36.如图所示,用铝板制成“U”形框,将一质量为m 的带电小球用绝缘细线悬挂在框的上方,让整个装置在水平方向的磁场中向左以速度V 匀速运动,若悬线拉力为F ,则

A 、悬线竖直,F=mg

B 、悬线竖直,F <mg

C 、适当选择V 的大小可使F=0

D 、因条件不足,F 与mg 的大小关系无法确定 【答案】A

【解析】,整体移动中,铝板产生感应电流为上到下,把铝板看成一个电源,则下为正,上为负极。设小球带正点荷,则小球受竖直向下的洛仑磁力,向上的电场力,U/d=Blv/l 所以Eq=Bvq,方向相反,合力为0,。即小球只受重力。 故选A

37.如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端跨接一个定值电阻R ,导轨电阻不计。现将金属棒沿导轨由静止向右拉,若保持拉力F 值定,经时间tl 后速度为v ,加速度为al ,最终以速度2v 做匀速运动;若保持拉力的功率恒定,棒由静止经时间t2后速度为v ,加速度为a2,最终也以速度2v 做匀速运动,则( )

A .t2= t1

B .t1> t2

C .a2=2a1

D .a2= 3a1 【答案】BD

【解析】解:由于两种情况下,最后都是匀速运动故有:F=BIL =222B L R

ν

当拉力恒定时:F-22B L R ν=ma 1 ②由①②解得:a 1=22m B L R

ν

若保持拉力的功率恒定,设速度为V 时,拉力为F 1,则有:P=F 2V=F 1V ,所以:

F 1=224B L R ν, F 1-22B L R

ν

=ma 2,解得:a 2=223m B L R ν,所以有a 2=3a 1,

试卷第20页,总61页

当拉力的功率恒定时,随着速度增大,拉力逐渐减小,最后匀速运动时拉力最小,且最小值和第一种情况下拉力相等,因此最后都达到速度2V 时,t 1>t 2,

点评:本题可以和机车启动的两种方式进行类比解答,只不过机车启动时阻力不变,而该题中阻力为安培力,是不断变化的.

38.如图示,在匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻. ef 为垂直于ab 、cd 的一根导体杆,可以在ab 、cd 上无摩擦地滑动. 杆ef 及线框的电阻均不计. 开始时,给ef 一个向右的初速度v0,则

A. ef 将减速向右运动,但不是匀减速

B. ef 将匀减速向右运动,最终停止

C. ef 将匀速向右运动

D. ef 将往返运动 【答案】A 【解析】

考点:导体切割磁感线时的感应电动势;共点力平衡的条件及其应用.

分析:金属棒向右运动时会切割磁感线产生电动势、电流,所以金属杆ef 受到向左的安培力做减速运动,速度减小会造成电动势、电流减小,安培力也随之减小,所以物体做减速运动的加速度会减小,直到速度为零时金属杆静止. 解答:解:金属棒向右运动时会切割磁感线产生电动势、电流,

I=

R

=

BLv

R

此时的安培力:F 安=BIL=22B L v

R

根据牛顿第二定律:22B L v

R

=ma

所以物体减速的过程中加速度随着速度v 的减小而减小,直到物体速度减为零,故A 正确,BCD 错误. 故选:A

点评:此类题目的解题关键点是能够灵活应用法拉第电磁感应定律与安培力公式,推导出适当的表达式判断物理量的变化.

39.两个线圈A 、B 绕在一个铁芯的两侧,分别跟电流表和导轨相连,导轨上垂直搁置一根金属棒ab ,垂直导轨平面有一个匀强磁场,如图7所示.在下列情况下能使电流计中有电流通过的是 ( ) A .ab 向右作匀速运动. B .ab 向左作匀速运动. C .ab 向右作加速运动. D .ab 向左作加速运动.

a

d

导线切割磁感线时的感应电动势(新、选)

第六讲 上课时间:2014年9月23日星期二 课时:两课时 总课时数:12课时 教学目标:1.掌握导线切割磁感线时的感应电动势计算方法, 2.掌握导体切割磁感线时产生的感应电动势。 3.掌握导体切割磁感线时产生的感应电动势大小的表达式。会计算B、l、v三者相互垂直的情况下,导体切割磁感线时产生的感应电动势的大小。 教学重点:本节重点是导体切割磁感线时产生的感应电动势大小的计算 教学难点:本节重点是导体切割磁感线时产生的感应电动势大小的计算 教具:电子白板 教学过程: 一、组织教学 检查学生人数,填写教室日志,组织学生上课秩序。 二、复习导入 1.磁场中的几个基本物理量。 2.电磁力的大小计算公式及方向的判定。 三、讲授新课: (一)电磁感应 电流和磁场是不可分的,有电流就能产生磁场,同样,变化的磁场也能产生电动势和电流。通常把利用磁场产生电流的现象称为电磁感应现象。 在电磁感应现象中产生的电动势叫做感应电动势。用字母e表示,国际单位伏特,简称伏,用符号V表示。 直导体切割磁感线时产生的感应电动势;螺旋线圈中磁感线发生变化时产生的感应电动势。 (二)直导体切割磁感线时产生的感应电动势 直导体切割磁感线时产生的感应电动势的大小可用下面公式计算: e=BL vsinθ 式中:e---感应电动势,单位伏特,简称伏,用符号V表示。 B――为磁感应强度,单位为特斯拉,简称特,用符号T表示。 L――导体在垂直于磁场方向上的长度,单位为米,用符号m表示。 v----导体切割磁感线速度,单位为米/秒,用符号m/s表示。 θ-----为速度v方向与磁感应强度B方向间的夹角。 上式说明:闭合电路中的一段导线在磁场中作切割磁感线时,导线内所产生的感应电动势与磁场的磁感应强度、导线的有效长度和导线切割磁感线的有效速度的乘积成正比。 由上式可知:当B⊥v时,θ=90o, sin90o=1,感应电动势e最大,最大为BL v;当θ=0o时,sin0o=0,感应电动势e最小为0. 感应电动势的方向可用右手定则来判断:平伸右手,大拇指与其余四指垂直,并与手掌在同一平面内,手心对准N极,让磁感线垂直穿入手心,大拇指指向导体运动的方向,则其余四指所指的方向就是感应电动势的方向。 产生感应电动势的实质:穿过回路的磁通量发生变化。 穿过闭合回路的磁通量发生变化,就会在回路中产生电流,该电流称为感应电流。 注意:1.公式用于匀强磁场 2.公式中v为瞬时速度,e为瞬时感应电动势;v为平均速度,e为平均感应电动势。

电磁感应导体棒平动切割类问题综述

试卷第1页,总61页 2013-2014学年度北京师范大学万宁附属中学 电磁感应导体棒平动切割类问题训练卷 考试范围:电磁感应;命题人:孙炜煜;审题人:王占国 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.图中EF 、GH 为平行的金属导轨,其电阻可不计,R 为电阻器,C 为电容器,AB 为可在EF 和GH 上滑动的导体横杆,有均匀磁场垂直于导轨平面.若用I 1和I 2分别表示图中该处导线中的电流,则当横杆AB ( ) A .匀速滑动时,I 1=0,I 2=0 B .匀速滑动时,I 1≠0,I 2≠0 C .加速滑动时,I 1=0,I 2=0 D .加速滑动时,I 1≠0,I 2≠0 【答案】D 【解析】 试题分析:当AB 切割磁感线时,相当于电源.电容器的特点“隔直流”,两端间电压变化时,会有充电电流或放电电流.匀速滑动,电动势不变,电容器两端间的电压不变,所以I 2=0,I 1≠0,故AB 均错误;加速滑动,根据E BLv 知,电动势增大,电容两端的电压增大,所带的电量要增加,此时有充电电流,所以I 1≠0,I 2≠0,故C 错误,D 正确.所以选D . 考点:本题考查导体切割磁感线时的感应电动势、闭合电路的欧姆定律及电容器对电流的作用. 2.如图所示,在匀强磁场中,MN 、PQ 是两根平行的金属导轨,而ab ?cd 为串有电压表和电流表的两根金属棒,同时以相同速度向右运动时,正确的有( ) A .电压表有读数,电流表有读数 B .电压表无读数,电流表有读数 C .电压表无读数,电流表无读数

导体棒绕固定点转动切割磁感线专题 高考物理

导体棒绕固定点转动切割磁感线问题研究 一、基本知识。 导体棒在磁场中转动切割磁感线时,由于各点切割的线速度不同,不能直接用E=BLVsin θ来计算,然导体棒绕定轴转动时依V=r ω可知各点的线速度随半径按线性规律变化,因此通常用中点的线速度来替代,即ω2L V =或2B A V V V += 二、例题讲解。 例1:一根导体棒oa 长度为L ,电阻不计,绕o 点在垂直于匀强磁场B 的平面内以角速度ω做匀速圆周运动,求其产生的电动势。 解法:利用法拉第电磁感应公式的导出公式E=Blv 求解。 由于杆上各点的线速度都不相同,并且各点的线速度大小正比于该点到o 点的距离。o 点速度为零,a 点速度最大,为ωl,则整个杆的平均速度为2ωl,相当于棒中点瞬时速度的大小。产生的电动势 由右手定则可以判断电动势的方向为o→a,a 点的电势高于o 点的电势,即a 点相当于电源的正极。 拓展1:存在供电电路 例2:金属棒长为l ,电阻为r ,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R ,圆环电阻不计,求Uoa 。 解析:图中装置对应的等效电路如图6 所示。由题根可知,oa 切割磁感线产生的电动势为:,注意,由于棒有内阻。由全电路欧姆定律: (因为a 点电势高于o 电势)。 点评:①见到这些非常规电路画等效电路是很必要也很有效的方法。②之所以题目设计为求Uoa ,是为了体现求解电势差的注意点。 拓展2:磁场不是普通的匀强磁场 例3:其他条件同例3,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt ,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa 。 解析:由于B 变化,棒oa 切割磁感线产生的电动势不再是恒定值,而是随时间作周期性变化的交变值,由题根可知:

导体切割磁感线专题

导体切割磁感线专题 1.如图所示,MM′和NN′为一对足够长的平行光滑倾斜导轨,导轨平面的倾角θ=30°,导轨相距为L,上端M 、N和定值电阻R用导线相连,并处于垂直导轨平面向上的匀强磁场中,磁场的磁感应强度大小为B。质量为m的金属棒ab垂直导轨放置在M、N附近。从静止开始下滑,通过的路程为d时,速度恰好达到最大。设金属棒的电阻为r,导轨和导线的电阻不计,求: (1)金属棒的最大加速度; (2)金属棒的最大速度v m; (3)金属棒下滑d过程中金属棒上产生的电热Q。 (4)电阻R上通过的电量q。 d θ 2.如图6所示,质量为m1的金属棒P在离地h高处从静止开始沿弧形金属平行导轨MM′、NN′下滑,水平轨道所在的空间有竖直向上的匀强磁场,磁感强度为B。水平导轨上原来放有质量为m2的金属杆Q,已知两杆质量之比为3∶4,导轨足够长,不计摩擦,m1为已知。求: (1)两金属杆的最大速度分别为多少? (2)在两杆运动过程中释放出的最大电能是多少?

a B 0 R F k 3. 如图所示:长为L ,电阻r =0.3Ω,质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻, 量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 两端,垂直导轨平面的云强磁场向下穿过导轨平面。现以水平向右的恒力F 使金属棒向右移动,当金属棒以υ=2m/s 的速度在导轨上匀速运动时,观察到电路中一电表正好满偏,而另一电表未满偏。 问: (1)此满偏的表示是么表?说明理由 (2)拉动金属的外力F 是多大? (3)此时撤去此外力F ,金属棒将逐渐慢 下来,最终停止在导轨上,求从撤去外力到金属 棒停止运动的过程中通过电阻R 的电量 4、如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感强度大小为B 0。导轨上端连接一阻值为R 的电阻和电键K ,导轨电阻不计。两金属棒a 和b 的电阻都为R ,质量分别为m a =0.02kg 和m b =0.01kg ,它们与导轨接触良好,并可沿导轨无摩擦地运动,g 取10m/s 2。 (1)若将b 棒固定,电键K 断开,用一竖直向上的恒力F 拉a 棒,稳定后a 棒以v 1=10m/s 的速度向上匀速运动。此时再释放b 棒,b 棒恰能保持静止。求拉力F 的大小。 (2)若将a 棒固定,电键K 闭合,让b棒自由下滑,求b 棒滑行的最大速度v 2。 (3)若将a 棒和b 棒都固定,电键K 断开,使磁感强度从B 0随时间均匀增加,经0.1s 后磁感强度增大到2B 0时,a 棒所受到的安培力大小正好等于a 棒的重力,求两棒间的距离h 。 5.如图所示,有上下两层水平放置的平行光滑导轨,间距是L ,上层导轨上搁置一根质量为m ,

导体棒切割磁感线问题

导体棒切割磁感线问题 1、如图所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接 一阻值的电阻。导轨上跨放着一根长为,每米长电阻的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用下以速度 向左做匀速运动时,试求: (1)电阻R中的电流强度大小和方向; (2)使金属棒做匀速运动的拉力; (3)金属棒ab两端点间的电势差; (4)回路中的发热功率。 2、如图所示,水平平行放置的导轨上连有电阻R,并处于垂直轨道平面的匀强磁场中,今从静止起用力拉金属棒ab(ab与导轨垂直),若拉力恒定,经时间 后ab的速度为v,加速度为,最终速度可达;若拉力的功 率恒定,经时间后ab的速度也为v,加速度为,最终速度可达 。求和满足的关系。 例1:金属棒长为l,电阻为r,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R,圆环电阻不计,求Uoa。 拓展其他条件同例题,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。

例2:如图所示,一金属圆环和一根金属辐条构成的轮子,可绕垂直于圆环平面的水平轴自由转动,金属环与辐条的电阻不计,质量忽略,辐条长度为L0,轮子处在与之垂直的磁感应强度为B 匀强磁场中,磁场方向垂直纸面向里,一阻值为R 的定值电阻通过导线与轮子的中心和边缘相连,轮子外缘同时有绝缘绳绕着,细绳下端挂着质量为m 的重物,求重物下落的稳定速度。 变式1:如果把原题中的辐条由一根变成四根,如图10所示,且相邻两根辐条的夹角是90°,辐条电阻不计,求重物最终下落的稳定速度。 变式(2):如果把变式(1)中的四根辐条变成一金属圆盘,且不计金属圆盘内阻,求重物最终下落的稳定速度?(如图11 所示) 变式(3):如果变式(1)中的四根辐条的电阻都是r,则重物下落的最终稳定速度为多少?

2018年高考物理二轮复习 100考点千题精练 第十章 电磁感应 专题10.9 转动切割磁感线问题

专题10.9 转动切割磁感线问题 一.选择题 1. (2018洛阳联考)1831年,法拉第在一次会议上展示了他发明的圆盘发电机(图甲).它是利用电磁感应的原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C 、D 分别与转动轴和铜盘的边缘良好接触.使铜盘转动,电阻R 中就有电流通过.若所加磁场为匀强磁场,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,下列说法中正确的是 ( ) A. 铜片D 的电势高于铜片C 的电势 B. 电阻R 中有正弦式交变电流流过 C. 铜盘转动的角速度增大1倍,流过电阻R 的电流也随之增大1倍 D. 保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中有电流产生 【参考答案】C 【名师解析】根据右手定则,铜片中电流方向为D 指向C ,由于铜片是电源,所以铜片D 的电势低于铜片 C 的电势,选项A 错误;电阻R 中有恒定的电流流过,选项B 错误;铜盘转动的角速度增大1倍,,根据转 动过程中产生的感应电动势公式E =12BL 2 ω,产生是感应电动势增大1倍,根据闭合电路欧姆定律,流过电 阻R 的电流也随之增大1倍,选项C 正确;保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中没 有电流产生,选项D 错误。 2.如图所示为一圆环发电装置,用电阻R =4 Ω的导体棒弯成半径L =0.2 m 的闭合圆环,圆心为O ,COD 是一条直径,在O 、D 间接有负载电阻R 1=1 Ω。整个圆环中均有B =0.5 T 的匀强磁场垂直环面穿过。电阻 r =1 Ω的导体棒OA 贴着圆环做匀速运动,角速度ω=300 rad/s ,则( )

“导体棒切割磁感线”题型与归类

“导体棒切割磁感线”问题的题型与归类 问题一:电磁感应现象中的图象 在电磁感应现象中,回路产生的感应电动势、感应电流及磁场对导线的作用力随时间的变化规律,也可用图象直观地表示出来.此问题可分为两类(1)由给定的电磁感应过程选出或画出相应的物理量的函数图像;(2)由给定的有关图像分析电磁感应过程,确定相关的物理量. 1.判断函数图象 如果是导体切割之动生电动势问题,通常由公式:E=BLv确定感应电动势的大小随时间的变化规律,由右手定则或楞次定律判断感应电流的方向;如果是感生电动势,则由法拉弟电磁感应定律确定E的大小,由楞次定律判断感应电流的方向。 题型1-1-1:例1、如图甲所示,由均匀电阻丝做成的正方形线框abcd的电阻为R1,ab=bc=cd=da=l,现将线框以与ab垂直的速度v匀速穿过一宽度为2l、磁感应强度为B的匀强磁场区域,整个过程中ab、cd两边始终保持与边界平行.令线框的cd边刚与磁场左边界重合时t=O,电流沿abcda流动的方向为正. (1)在图乙中画出线框中感应电流随时间变化的图象. (2)在图丙中画出线框中a、b两点间电势差Uab随时间t变化的图象. 分析:本题是电磁感应知识与电路规律的综合应用,要求我们运用电磁感应中的楞次定律、法拉第电磁感应定律及画出等效电路图用电路规律来求解,是一种常见的题型。 解答:(1)令I0=Blv/R,画出的图像分为三段(如下图所示) t=0~l/v,i=-I0 t= l/v~2l/v,i=0 t=2l/v~3l/v,i=-I0 (2)令U ab=Blv,面出的图像分为三段(如上图所示)

小结:要求我们分析题中所描述的物理情景,了解已知和所求的,然后将整个过程分成几个小的阶段,每个阶段中物理量间的变化关系分析明确,最后规定正方向建立直角坐标系准确的画出图形 例2、如图所示,一个边长为a ,电阻为R 的等边三角形,在外力作用下以速度v 匀速的穿过宽度均为a 的两个匀强磁场,这两个磁场的磁感应强度大小均为B ,方向相反,线框运动方向与底边平行且与磁场边缘垂直,取逆时针方向为电流的正方向,试通过计算,画出从图示位置开始,线框中产生的感应电流I 与沿运动方向的位移x 之间的函数图象 分析:本题研究电流随位移的变化规律,涉及到有效长度问题. 解答:线框进入第一个磁场时,切割磁感线的有效长度在均匀变化.在位移由0到a/2过程中,切割有效长度由0增到2 3a ;在位移由a/ 2到 a 的过程中,切割有效长度由23a 减到 0.在x=a/2时,,I=R avB 23,电流为正.线框穿越两磁场边界时,线框在两磁场中切割 磁感线产生的感应电动势相等且同向,切割的有效长度也在均匀变化.在位移由a 到3a/2 过程中,切割有效长度由O 增到23a 。 ;在位移由3a/2到2a 过程中,切割有效长度由 2 3a 减到0.在x=3a/2时,I=R avB 3电流为负.线框移出第二个磁场时的情况与进入第 一个磁场相似,I 一x 图象如右图所示. 1、长度相等、电阻均为r 的三根金属棒AB 、CD 、EF 用导线相连,如图所示,不考虑导线电阻,此装置匀速进入匀强磁场的过程(匀强磁场垂直纸面向里,宽度大于AE 间距离),AB 两端电势差u 随时间变化的图像可能是:( ) A C E

电磁感应定律应用之杆切割类转动切割问题

考点4.4杆切割类之转动切割问题 1.当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v -=12 Bl 2ω,如图所示. 2.导体的一部分旋转切割磁场,如图所示,设ON =l 1,OM =l 2,导体棒上任意一点到轴O 的间距为r ,则导体棒OM 两端电压为E =B (l 2-l 1)·ω l 2+l 1 2=Bωl 222-Bωl 212 ,其中(l 2-l 1)为处在磁场中的长度,ω· l 2+l 1 2 为MN 中点即P 点的瞬时速度. 3.其他的电量与能量问题求解与单杆模型类似。 1. 一直升机停在南半球的地磁极上空,该处地磁场的方向竖直向上,磁感应强度为B ,直升机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图所示.如果忽略a 到转轴中心线的距离,用E 表示每个叶片中的感应电动势,则( A ) A. E =πfl 2B ,且a 点电势低于b 点电势 B. E =2πfl 2B ,且a 点电势低于b 点电势 C. E =πfl 2B ,且a 点电势高于b 点电势 D. E =2πfl 2B ,且a 点电势高于b 点电势 2. 如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图

中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大 小的电流,磁感应强度随时间的变化率ΔB Δt 的大小应为( C ) A.4ωB 0π B.2ωB 0π C.ωB 0π D.ωB 02π 3. (多选)如下图所示是法拉第做成的世界 上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘;图中a 、b 导线与铜盘的中轴线处在同一平面内;转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看逆时针匀速转动铜盘的角速度为ω.则下列说法正确的是( BC ) A . 回路中有大小和方向作周期性变化的电流 B . 回路中电流大小恒定,且等于BL 2ω2R C . 回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘 D . 若将匀强磁场改为仍然垂直穿过铜盘的按正弦规律变化的磁场,不转动铜盘,灯泡 中也会有电流流过 4. 如图所示,半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆 时针方向匀速转动,则通过电阻R 的电流的方向和大小是(金属圆盘的电阻不计,R 左侧导线与圆盘边缘接触,右侧导线与圆盘中心接触)( D ) A.由c 到d ,I =Br 2ωR B.由d 到c ,I =Br 2ωR C.由c 到d ,I =Br 2ω2R D.由d 到c ,I =Br 2ω2R 5. 如图所示,半径为a 的圆环电阻不计,放

导体棒切割磁感线动态分析专题

姓名: 导体棒切割磁感线动态分析专题 1.如图所示,宽度为L=2 m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=。一根质量为m=的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计。现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10 m/s,在运动过程中保持导体棒与导轨垂直。求: (1)在闭合回路中产生的感应电流的大小和方向; (2)导体棒MN两端的电压; (3)作用在导体棒上的拉力的大小和方向; (4)当导体棒移动30cm时撤去拉力,求整个过程中电阻R上产生的热量。 2.如图,固定在同一水平面内的两根长直金属导轨的间距为L=1m,其右端接有阻值为R=Ω的电阻,整个装置处在竖直向上、磁感应强度大小为B=1T的匀强磁场中,一质量为m= (质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ=。现杆在水平向左、垂直于杆的恒力F=2N作用下从静止开始沿导轨运动,当杆运动的距离为d=时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r=Ω,导轨电阻不计,重力加速度为g。求此过程中:(1)杆的速度的最大值;(2)通过电阻R上的电量;(3)电阻R上的发热量 3. 水平面上两根足够长的金属导轨平行固定放置,问距为L,一端通过导线与阻值为R的电阻连接;导轨上放一质量为m的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动。当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v与F的关系如右下图。(g=10m/s2) (1)金属杆在匀速运动之前做什么运动 (2)若m=,L=,R=Ω;磁感应强度B为多大 (3)由v—F图线的截距可求得什么物理量其值为多少 B F a b r R v B R M N

动量定理动量守恒在电磁感应中导轨与导体棒的应用解析版

A B R v0 B 导轨与导体棒问题一、单棒问题 【典例1】如图所示,AB杆受一冲量作用后以初速度v0=4m/s沿水平面内的固定轨道运动,经一段时间后而停止.AB的质量为m=5g,导轨宽为L=,电阻为R=2Ω,其余的电阻不计,磁感强度B=,棒和导轨间的动 摩擦因数为μ=,测得杆从运动到停止的过程中通过导线的电 量q=10﹣2C,求:上述过程中(g取10m/s2)(1)AB杆运动的距离;(2)AB 杆运动的时间; (3)当杆速度为2m/s时,其加速度为多大 【答案】(1);(2);(3)12m/s2. (2)根据动量定理有:﹣(F安t+μmgt)=0﹣mv0 而F安t=BLt=BLq,得:BLq+μmgt=mv0, 解得:t= (3)当杆速度为2m/s时,由感应电动势为:E=BLv 安培力为:F=BIL,而I= 然后根据牛顿第二定律:F+μmg=ma 代入得: 解得加速度:a=12m/s2, 25.(20分)如图(a),超级高铁(Hyperloop)是一种以“真空管道运输”为理论核心设计的交通工具,它具有超高速、低能耗、无噪声、零污染等特点。

如图(b),已知管道中固定着两根平行金属导轨MN、PQ,两导轨间距为r;运输车的质量为m,横截面是半径为r的圆。运输车上固定着间距为D、与导轨垂直的两根导体棒1和2,每根导体棒的电 阻为R,每段长度为D的导轨的电阻也为R。其 他电阻忽略不计,重力加速度为g。 (1)如图(c),当管道中的导轨平面与水平面 成θ=30°时,运输车恰好能无动力地匀速下滑。求运输车与导轨间的动摩擦因数μ; (2)在水平导轨上进行实验,不考虑摩擦及空气阻力。 ①当运输车由静止离站时,在导体棒2后间距为D处接通固定在导轨上电动势为E的直流电源,此时导体棒1、2均处于磁感应强度为B,垂直导轨平向下的匀强磁场中,如图(d)。求刚接通电源时运输车的加速度的大小;(电源内阻不计,不考虑电磁感应现象) ②当运输车进站时,管道内依次分布磁感应强度为B,宽度为D的匀强磁场,且相邻的匀强磁场的方向相反。求运输车以速度vo从如图(e)通过距离D后的速度v。 【典例3】如图所示,水平放置的光滑平行金属导轨上有一质量为m的金属棒ab.导轨的一端连接电阻R,其他电阻均不计,磁感应强度为B的匀强磁场垂直于导轨平面向下,金属棒ab在一水平恒力F作用下由静止开始向右运动.则 ( ) A.随着ab运动速度的增大,其加速度也增大 B.外力F对ab做的功等于电路中产生的电能

导体棒切割磁感线问题分类解析

导体棒切割磁感线问题分类解析 电磁感应中,“导体棒”切割磁感线问题是高考常见命题。解此类型问题的一般思路是:先解决电学问题,再解决力学问题,即先由法拉第电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,求出安培力,再往后就是按力学问题的处理方法,如进行受力情况分析、运动情况分析及功能关系分析等。 导体棒切割磁感线的运动一般有以下几种情况:匀速运动、在恒力作用下的运动、恒功率运动等,现分别举例分析。 一、导体棒匀速运动 导体棒匀速切割磁感线处于平衡状态,安培力和外力等大、反向,给出速度可以求外力的大小,或者给出外力求出速度,也可以求出功、功率、电流强度等,外力的功率和电功率相等。 例1. 如图1所示,在一磁感应强度B=0.5T的匀强磁场中,垂直于磁场方向水平放置着两根相距为h=0.1m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3Ω的电阻。导轨上跨放着一根长为L=0.2m,每米长电阻r=2.0Ω/m的金属棒ab,金属棒与导轨正交放置,交点为c、d,当金属棒在水平拉力作用于以速度v=4.0m/s 向左做匀速运动时,试求: 图1 (1)电阻R中的电流强度大小和方向; (2)使金属棒做匀速运动的拉力; (3)金属棒ab两端点间的电势差; (4)回路中的发热功率。 解析:金属棒向左匀速运动时,等效电路如图2所示。在闭合回路中,金属棒cd部分相当于电源,内阻r cd=hr,电动势E cd=Bhv。

图2 (1)根据欧姆定律,R 中的电流强度为I E R r Bhv R hr cd cd =+=+=0.4A ,方向从N 经R 到Q 。 (2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F =F 安=BIh =0.02N 。 (3)金属棒ab 两端的电势差等于U ac 、U cd 与U db 三者之和,由于U cd =E cd -Ir cd ,所以U ab =E ab -Ir cd =BLv -Ir cd =0.32V 。 (4)回路中的热功率P 热=I 2 (R +hr )=0.08W 。 点评:①不要把ab 两端的电势差与ab 棒产生的感应电动势这两个概念混为一谈。 ②金属棒匀速运动时,拉力和安培力平衡,拉力做正功,安培力做负功,能量守恒,外力的机械功率和回路中的热功率相等,即P Fv W W 热×===0024008..。 二、导体棒在恒力作用下由静止开始运动 导体棒在恒定外力的作用下由静止开始运动,速度增大,感应电动势不断增大,安培力、加速度均与速度有关,当安培力等于恒力时加速度等于零,导体棒最终匀速运动。整个过程加速度是变量,不能应用运动学公式。 例2. 如图3所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 。M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下。导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。 图3

电磁感应定律应用之线框切割类问题

考点4.3线框切割类问题 1.线框的两种运动状态 (1)平衡状态——线框处于静止状态或匀速直线运动状态,加速度为零; (2)非平衡状态——导体棒的加速度不为零. 2.电磁感应中的动力学问题分析思路 (1)电路分析:线框处在磁场中切割部分相当于电源,感应电动势相当于电源的电动势,感应电流I= Blv R. (2)受力分析:处在磁场中的各边都受到安培力及其他力,但是根据对称性,在与速度平行方向的两个边所受的安培力相互抵消。安培力F安=BIl= B2l2v R,根据牛顿第二定律列动力学方程:F合=ma. (3)注意点:①线框在进出磁场时,切割边会发生变化,要注意区分;②线框在运动过程中,要注意切割的有效长度变化。 3. 电磁感应过程中产生的焦耳热不同的求解思路(1)焦耳定律:Q=I2Rt; (2)功能关系:Q=W克服安培力(3)能量转化:Q=ΔE其他能的减少量 4. 电磁感应中流经电源电荷量问题的求解:(1)若为恒定电流,则可以直接用公式q=It;(2)若为变化电流,则依据 = N E t q I t t t N R R R ?Φ ?Φ ? =?=??= 总总总 1.如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、 边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则(A) A.Q1>Q2,q1=q2 B.Q1>Q2,q1>q2 C.Q1=Q2,q1=q2 D.Q1=Q2,q1>q2 2.一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区

专题:电磁感应导体棒问题

F 1 图专题:电磁感应导体棒问题 电磁感应导体棒问题涉及力学、功能关系、电磁学等一系列基本概念、基本规律和科学思维方法。分清不同性质的导轨,熟悉各种导轨中导体的运动性质、能量转化特点和极值规律,对于吃透基本概念,掌握基本规律,提高科学思维和综合分析能力,具有重要的意义。 主干知识 一、发电式导轨的基本特点和规律 如图1所示,间距为l 的平行导轨与电阻R 相 连,整个装置处在大小为B 、垂直导轨平面向上的匀强磁场中,质量为m 、电阻为r 的导体从静止 开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。 求:棒下滑的最大速度. 1、 电路特点 导体为发电边,与电源等效,当导体的速度为v 时,其中的电动势为 E=Blv 2、 安培力的特点 安培力为运动阻力,并随速度按正比规律增大。 F B =BI l =v r R v l B l r R Blv B ∝+=+22 3、 加速度特点 加速度随速度增大而减小,导体做加速度减小的加速运动 m r R v l B mg mg a ) /(cos sin 22+--= θμθ 4、 两个极值的规律

f a R b e B d c r 当v=0时,F B =0,加速度最大为a m =g (sin θ-μcos θ) 当a=0时,ΣF=0,速度最大,根据平衡条件有 mgsin θ=μmgcos θ+) (2 2r R v l B m + 所以,最大速度为 :2 2) )(cos (sin l B r R mg v m +-= θμθ 5、 匀速运动时能量转化规律 当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。 P G =P F +P f ?? ?????=+=+====θμθ cos )(sin 2 2 m f m m m m m m F m G mgv P r R I r R E E I v F P mgv P 当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这是发电导轨在匀速运动过程中,最基本的能量转化和守恒规律。 mgv m sin θ=F m v m =I m E m )(2 2 r R I r R E m m +=+= 例1、如图所示,两根平行金属导轨abcd,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在的平面垂直,导轨的电阻可忽略不计。一阻值为R 的电阻接在导轨的bc 端。在导轨上放一根质量为 m ,长为L ,电阻为r 的导体棒ef ,它可在导轨上无摩擦滑动,滑动过程中与导轨接触良好并保持垂直。 (1)若导体棒从静止开始受一恒定的水平外力F 的作用求:导体棒获得的最大速度时,ef 的位移为S,整个过程中回路产生的焦耳热。(2)若金属棒ef 在受到平行于导轨,功率恒为P 的水平外力作用下从静止开始运动。求:金属棒ef 的速度为最大值一半时的加速度a 。

电磁感应中地单杆切割问题

电磁感应单杆切割问题 (2013·16)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10m/s2,sin37°=0.6)(B) A.2.5m/s 1W B.5m/s 1W C.7.5m/s 9W D.15m/s 9W (2013全国Ⅰ·16)如图,在水平面(纸面)有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触。下列关于回路中电流i与时间t的关系图线.可能正确的是(D) (2013·17)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度V向右匀速滑动, MN中产生的感应电动势为E l;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E l:E2分别为(C) A.c→a,2:1 B.a→c,2:1 C.a→c,1:2 D.c→a,1:2 (2013·15)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v0刷卡时,在线圈中产生感应电动势。其E-t关系如右图所示。如果只将刷卡速度改为v0/2,线圈中的E-t关系可能是(D)

导体棒绕固定点转动切割磁感线专题----高考物理教学提纲

导体棒绕固定点转动切割磁感线专题---- 高考物理

导体棒绕固定点转动切割磁感线问题研究 一、基本知识。 导体棒在磁场中转动切割磁感线时,由于各点切割的线速度不同,不能直接用E=BLVsinθ来计算,然导体棒绕定轴转动时依V=rω可知各点的线速度随半径按线性规律变化,因此通常 用中点的线速度来替代,即 ω 2 L V= 或2 B A V V V+ = 二、例题讲解。 例1:一根导体棒oa 长度为L,电阻不计,绕o 点在垂直于匀强磁场B 的平面内以角速度ω做匀速圆周运动,求其产生的电动势。 解法:利用法拉第电磁感应公式的导出公式E=Blv 求解。 由于杆上各点的线速度都不相同,并且各点的线速度大小正比于该点到o点的距离。o点速度为零,a点速度最大,为ωl,则整个杆的平均速度为2ωl,相当于棒中点瞬时速度的大小。产 生的电动势 由右手定则可以判断电动势的方向为o→a,a 点的电势高于o 点的电势,即a 点相当于电源的正极。 拓展1:存在供电电路 例2:金属棒长为l,电阻为r,绕o 点以角速度ω做匀速圆周运动,a 点与金属圆环光滑接触,如图5 所示,图中定值电阻的阻值为R,圆环电阻不计,求Uoa。

解析:图中装置对应的等效电路如图6 所示。由题根可知,oa 切割磁感线产生的电动势为:,注意,由于棒有内阻。由全电路欧姆定律: (因为a 点电势高于o 电势)。 点评:①见到这些非常规电路画等效电路是很必要也很有效的方法。②之所以题目设计为求Uoa,是为了体现求解电势差的注意点。 拓展2:磁场不是普通的匀强磁场 例3:其他条件同例3,空间存在的匀强磁场随时间作周期性变化,B=B0sinAt,其中A 为正的常数,以垂直纸面向里为正方向,求Uoa。 解析:由于B 变化,棒oa 切割磁感线产生的电动势不再是恒定值,而是随时间作周期性变化的交变值,由题根可知: 此电势差也随时间作周期性变化。

导体切割磁感线产生感应电动势的理解与例题分析

导体切割磁感线产生感应电动势的理解与例题分析 一、知识概观 1.导体切割磁感线时产生感应电动势那部分导体相当于电源。在电源内部,电流从负极流向正极。不论回路是否闭合,都设想电路闭合,由楞次定律或右手定则判断出感应电流方向,根据在电源内部电流从负极到正极,就可确定感应电动势的方向。 2. 导体棒平动切割 公式:E=BLv ,由法拉第电磁感应定律可以证明。 公式的几点说明: (1)公式仅适用于导体棒上各点以相同的速度切割匀强的磁场的磁感线的情况。如匀强磁场和大小均匀的辐向磁场。 (2)公式中的B 、v 、L 要求互相两两垂直,即L ⊥B ,L ⊥v 。而v 与B 成 θ夹角时,可以将导体棒的速度v 分解为垂直于磁场方向的分量和沿磁场方向的分量,如图1所示,显然对感应电动势没有贡献。所以,导体 棒中感应电动势为θsin BLv BLv E ==⊥。 . (3)公式中v 为瞬时速度,E 为瞬时感应电动势, v 为平均速度,E 为 平均感应电动势。 (4)若导体棒是曲线,则公式中的L 为切割磁感线的导体棒的有效长度,有效长度的长度为曲线两端点的边线长度。 3. 导体棒转动切割 长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,产生的感应电动势: 4.线圈匀速转动切割 n 匝面积为S 的线圈在B 中以角速度ω绕线圈平面内的任意轴,产生的感应电动势: 线圈平面与磁感线平行时,感应电动势最大:(n 为匝数)。 线圈平面与磁感线垂直时,E=0 线圈平面与磁感线夹角为θ时, θωsin nBs E =(与面积的形状无关)。 《 二、例题分析 【例题1】如图2所示,将均匀电阻丝做成的边长为l 的正方形线圈abcd 从磁感应强度为B 的匀强磁场中以速度v 向右匀速拉出的过程中,线圈中产生了感应电动势。相当于电源的是 边, 端相当于电源的正极,ab 边上 产生的感应电动势E = 。ab 边两端的电压为 ,另3边每边 两端的电压均为 。 【解释】将线圈abcd 从磁场中拉出的过程中,仅ab 边切割磁感线, 相当于电源的是ab 边,由右手定则知b 端电势高,相当于电源的正 极,如图3所示,ab 边上产生的感应电动势E =Blv ,另3边相当于外 电路。ab 边两端的电压为3Blv /4,另3边每边两端的电压均为Blv /4。 【答案】ab ;b ;Blv ;3Blv /4;Blv /4。 图1 图3

(完整版)应用动量定理与动量守恒定律解决双导体棒切割磁感线问题

高考复习专题:应用动量定理与动量守恒定律解决双导体棒切割磁感线问题 1.如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L,导轨上平行放置两根导体棒ab和cd,构成矩形回路。已知两根导体棒的质量均为m、电阻均为R,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd静止、ab有水平向右的初速度v0,两导体棒在运动中始终不接触。求:(1)开始时,导体棒ab中电流的大小和方向;(2)从开始到导体棒cd达到最大速度的过程中,矩形回路产生的焦耳热;(3)当ab棒速度变为3v0/4时,cd棒加速度的大小。 如图所示,两根足够长的平行金属导轨固定放置于水平面内, 导轨平面处于竖直向下的匀强磁场中,磁感应强度大小为0.3T.导轨间距为1m,导轨右端接有R=3Ω的电阻,两根完全相同的导体棒L1、L2垂直跨接在导轨上,质量均为0.1kg,与导轨间的动摩擦因数均为0.25.导轨电阻不计,L1、L2在两导轨间的电阻均为3Ω.将电键S闭合,在导体棒L1上施加一个水平向左的变力F,使L1从t=0时由静止开始以2m/s2的加速度做匀加速运动.已知重力加速度为10m/s2.求: (1)变力F随时间t变化的关系式(导体棒L2尚未运动); (2)从t=0至导体棒L2由静止开始运动时所经历的时间T; (3)T时间内流过电阻R的电量q; (4)将电键S打开,最终两导体棒的速度之差△v. 2.如图,相距L的光滑金属导轨,半径为R的圆弧部分竖直放置、直的部分固定于水平地面,MNQP范围内有方向竖直向下、磁感应强度为B的匀强磁场.金属棒ab和cd垂直导轨且接触良好,cd静止在磁场中, ab从圆弧导轨的顶端由静止释放,进入磁场后与cd没有接触.已知ab的质量为m、电阻为r, cd的质量为3m、电阻为r.金属导轨电阻不计,重力加速度为g. (1)求:ab到达圆弧底端时对轨道的压力大小 (2)在图中标出ab刚进入磁场时cd棒中的电流方向 (3)若cd离开磁场时(即只有ab在磁场中)的速度是此刻ab速度的 一半,求:cd离开磁场瞬间,ab受到的安培力大小

电磁感应中的单杆切割问题

电磁感应单杆切割问题 (2013安徽·16)如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1Ω。一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0、5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0、8T。将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10m/s2,sin37°=0、6)(B) A.2.5m/s 1W B.5m/s 1W C.7.5m/s 9W D.15m/s 9W (2013全国Ⅰ·16)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac与MN,其中ab、ac在a点接触,构成“V”字型导轨。空间存在垂直于纸面的均匀磁场。用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且与导轨保持良好接触。下列关于回路中电流i与时间t的关系图线、可能正确的就是(D) (2013北京·17)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度V向右匀速滑动, MN中产生的感应电动势为E l;若磁感应强度增为2B,其她条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比E l:E2分别为(C) A.c→a,2:1 B.a→c,2:1 C.a→c,1:2 D.c→a,1:2

(2013浙江·15)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v 0刷卡时,在线圈中产生感应电动势。其E-t 关系如右图所示。如果只将刷卡速度改为v 0/2,线圈中的E-t 关系可能就是(D ) A. B. C. D. 根据感应电动势公式E =BLv 可知,其她条件不变时,感应电动势与导体的切割速度成正比,只将刷卡速度改为20v ,则线圈中产生的感应电动势的最大值将变为原来的21。磁卡通过刷卡器的时间v s t 与速率成反比,所用时间变为原来的2倍.故D 正确。 (2013全国Ⅰ·25)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。导轨上端接有一平行板电容器,电容为C 。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g 。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。

相关文档
最新文档