chapt7-MOS电容-清华大学半导体物理

MOSFET是现代数字集成电路的核心器件。

MOSFET剖面图

?MOSFET与半导体表面及半导体-绝缘层界面性质密切相关。

?MOSFET的核心部分是MOS(MIS)结构。

2

半导体表面以及半导体-绝缘层界面性质;表面电场效应(是MOSFEF工作的基础);MOS结构C-V特性。

4

由于晶格周期性在表面处中断

而出现的局(定)域于表面附近

的电子态——表面态

禁带中的电子态数等于表面原子

数,表面原子面密度~1015/cm 2,所

以表面能级准连续地分布在禁带

中。

总之,表面态起因于周期场在表面处中断;空间上定域于晶体表面;能级位于禁带中。7.1.1 表面态

§7.1 半导体表面和Si -SiO 2界面

界面性质。

量级;离子。

界面态起源于界面处的。界面态和表面态性质相似:位于Si-SiO

10

12

14

15

16

17

达到最大且基本不变;

19

清华大学微电子学本科生培养

首页->人才培养->本科生培养 一、简介 微纳电子系本科生一级学科名称为电子科学与技术,二级学科名称为微电子学。共有2003级本科生92人,2004级本科生66人,2005级本科生67人。2007年微纳电子系开设了21门本科生课程,其中专业核心课8门,专业限选课5门,平台课2门,专业任选课4门,新生研讨课2门。 二、课程设置 ?课程编号:30260093 课程名称:固体物理学 课程属性:专业核心课 任课教师:王燕 内容简介:固体物理学是固体材料和固体器件的基础。该课程主要研究晶体的结构及对称性,晶体中缺陷的形成及特征,晶格动力学,能带理论的基础知识以及晶体中的载流子输运现象等。是微纳电子专业的核心课。 ?课程编号:40260103 课程名称:数字集成电路分析与设计 课程属性:专业核心课 任课教师:吴行军 内容简介:本课程从半导体器件的模型开始,然后逐渐向上进行,涉及到反相器,复杂逻辑门(NAND,NOR,XOR),功能模块(加法器,乘法器,移位器,寄存器)和系统模块(数据通路,控制器,存储器)的各个抽象层次。对于这些层次中的每一层,都确定了其最主要的设计参数,建立简化模型并除去了不重要的细节。 ?课程编号:40260173

课程名称:数字集成电路分析与设计(英) 课程属性:专业核心课 任课教师:刘雷波 内容简介:数字集成电路的分析与设计,包括:CMOS反相器、组合和时序逻辑电路分析与设计、算术运算逻辑功能部件、半导体存储器的结构与实现、互连线模型与寄生效应的分析。并介绍常用数字集成电路的设计方法和流程。 ?课程编号:30260072 课程名称:微电子工艺技术 课程属性:专业核心课 任课教师:岳瑞峰 内容简介:本课程授课目的是使学生掌握微电子制造的各单项工艺技术,以及亚微米CMOS集成电路的工艺集成技术。本课程讲授微电子制造工艺各单项工艺的基本原理(包括氧化、扩散、离子注入、薄膜淀积、光刻、刻蚀、金属化工艺等),并介绍常用的工艺检测方法和MEMS加工技术、集成电路工艺集成技术和工艺技术的发展趋势等问题。另通过计算机试验,可学习氧化、扩散、离子注入等工艺设备的简单操作和模拟。 ?课程编号:40260033 课程名称:模拟集成电路分析与设计 课程属性:专业核心课 任课教师:王自强 内容简介:本课程介绍模拟集成电路的分析与设计方法,帮助学生学习基础电路理论,实现简单的模拟集成电路。课程分成3个部分:电路理论知识、电路仿真和版图介绍。课程以讲述电路理论为主,通过电路仿真对电路理论加以验证,最后介绍版图、流片方面的内容,使学生对全定制集成电路的设计流程有初步了解。 ?课程编号:40260054

高等半导体物理讲义

高等半导体物理 课程内容(前置课程:量子力学,固体物理) 第一章能带理论,半导体中的电子态 第二章半导体中的电输运 第三章半导体中的光学性质 第四章超晶格,量子阱 前言:半导体理论和器件发展史 1926 Bloch 定理 1931 Wilson 固体能带论(里程碑) 1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术的革命,同时也促进了半导体物理研究的蓬勃发展。从那以后的几十年间,无论在半导体物理研究方面,还是半导体器件应用方面都有了飞速的发展。 1954半导体有效质量理论的提出,这是半导体理论的一个重大发展,它定量地描述了半导体导带和价带边附近细致的能带结构,给出了研究浅能级、激子、磁能级等的理论方法,促进了当时的回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。 1958 集成电路问世 1959 赝势概念的提出,使得固体能带的计算大为简化。利用价电子态与原子核心态正交的性质,用一个赝势代替真实的原子势,得到了一个固体中价电子态满足的方程。用赝势方法得到了几乎所有半导体的比较精确的能带结构。 1962 半导体激光器发明 1968 硅MOS器件发明及大规模集成电路实现产业化大生产 1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥)

* 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理的研究 1971 第一个超晶格Al x Ga 1-x As/GaAs 制备,标志着半导体材料的发展开始进入人 工设计的新时代。 1980 德国的Von Klitzing发现了整数量子Hall 效应——标准电阻 1982 崔崎等人在电子迁移率极高的Al x Ga 1-x As/GaAs异质结中发现了分数量子 Hall 效应 1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移的量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起的激子光学非线性效应,为设计新一代光双稳器件提供了重要的依据。 1990 英国的Canham首次在室温下观测到多孔硅的可见光光致发光,使人们看到了全硅光电子集成技术的新曙光。 近年来,各国科学家将选择生成超薄层外延技术和精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新的物理现象和得到更好的器件性能。在器件长度小于电子平均自由程的所谓介观系统中,电子输运不再遵循通常的欧姆定律,电子运动完全由它的波动性质决定。人们发现电子输运的Aharonov-Bohm振荡,电子波的相干振荡以及量子点的库仑阻塞现象等。以上这些新材料、新物理现象的发现产生新的器件设计思想,促进新一代半导体器件的发展。 半导体材料分类: ?元素半导体, Si, Ge IV 族金刚石结构 Purity 10N9, Impurity concentration 10-12/cm3 ,

半导体物理知识点总结

半导体物理知识点总结 本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。 在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结构。(掌握能带结构特征)在1.7节,介绍Ⅲ-Ⅴ族化合物的能带结构,主要了解GaAs的能带结构。(掌握能带结构特征)本章重难点: 重点: 1、半导体硅、锗的晶体结构(金刚石型结构)及其特点; 三五族化合物半导体的闪锌矿型结构及其特点。 2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而且它的周期与晶格周期相同。 3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带的原因,半导体能带的特点: ①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

半导体物理知识点梳理

半导体物理考点归纳 一· 1.金刚石 1) 结构特点: a. 由同类原子组成的复式晶格。其复式晶格是由两个面心立方的子晶格彼此沿其空间对角线位移1/4的长度形成 b. 属面心晶系,具立方对称性,共价键结合四面体。 c. 配位数为4,较低,较稳定。(配位数:最近邻原子数) d. 一个晶体学晶胞内有4+8*1/8+6*1/2=8个原子。 2) 代表性半导体:IV 族的C ,Si ,Ge 等元素半导体大多属于这种结构。 2.闪锌矿 1) 结构特点: a. 共价性占优势,立方对称性; b. 晶胞结构类似于金刚石结构,但为双原子复式晶格; c. 属共价键晶体,但有不同的离子性。 2) 代表性半导体:GaAs 等三五族元素化合物均属于此种结构。 3.电子共有化运动: 原子结合为晶体时,轨道交叠。外层轨道交叠程度较大,电子可从一个原子运动到另一原子中,因而电子可在整个晶体中运动,称为电子的共有化运动。 4.布洛赫波: 晶体中电子运动的基本方程为: ,K 为波矢,uk(x)为一个与晶格同周期的周期性函数, 5.布里渊区: 禁带出现在k=n/2a 处,即在布里渊区边界上; 允带出现在以下几个区: 第一布里渊区:-1/2a

《半导体物理学》课程辅导教案

《半导体物理学》课程辅导教案 关于教案的几点说明: 教案的基本内容:包括课程的课程重点,课程难点,基本概念,基本要求,参考资料,思考题和自测题,教学进度及学时分配. 教材:采用高等学校工科电子类(电子信息类)规划教材《半导体物理学》,由刘思科,朱秉升,罗晋生等编写.本教材多次获奖,如全国高等学校优秀教材奖,电子类专业优秀教材特等奖,普通高等学校教材全国特等奖. 参考资料(书目) 叶良修(北大)《半导体物理学》 刘文明(吉大)《半导体物理学》 顾祖毅(清华)《半导体物理学》 格罗夫(美)A.S.Grove《半导体器件物理与工艺》 王家骅(南开)《半导体器件物理》 施敏(Sze.S.M美)《半导体器件物理》 施敏(Sze.S.M美)《现代半导体器件物理》 目录 第一章半导体中的电子状态 §1.1 晶体结构预备知识,半导体晶体结构 §1.2 半导体中的电子状态 §1.3 电子在周期场中的运动——能带论 §1.4 半导体中电子(在外力下)的运动,有效质量,空穴 §1.5 半导体的导电机构 §1.6 回旋共振 §1.7 硅和锗的能带结构 §1.8 化合物半导体的能带结构 第二章半导体中杂质和缺陷能级 §2.1 硅,锗晶体中的杂质能级 §2.2 化合物半导体中的杂质能级 §2.3 半导体中的缺陷能级(defect levels) 第三章半导体中热平衡载流子的统计分布

§3.1 载流子的统计分布函数及能量状态密度 §3.2 导带电子浓度和价带空穴浓度 §3.3 本征半导体的载流子浓度 §3.4 杂质半导体的载流子浓度 §3.5 一般情况下地载流子统计分布 §3.6 简并半导体 第四章半导体的导电性 §4.1 载流子的漂移运动,迁移率 §4.2 载流子的散射 §4.3 迁移率与杂质浓度和温度的关系 §4.4 电阻率及其与杂质浓度的关系 §4.6 强电场效应,热载流子 §4.7 耿氏效应,多能谷散射 第五章非平衡载流子 §5.1 非平衡载流子的注入 §5.2 非平衡载流子的复合和寿命 §5.3 准费米能级 §5.4 复合理论 §5.5 陷阱效应 §5.6 载流子的扩散运动 §5.7 载流子的漂移运动,爱因斯坦关系 §5.8 连续性方程及其应用 第六章p–n结 §6.1 p–n结及其能带图 §6.2 p–n结电流电压特性 §6.3 p–n结电容 §6.4 p–n结击穿 §6.5(*) p–n结隧道效应 第一章半导体中的电子状态(光14学时微14学时)§1.1 晶体结构预备知识半导体晶体结构 ◆本节内容:

清华大学校园部分景点介绍

清华大学校园部分景点介绍 清华主楼:1966年5月落成,建筑总面积近8万平方米,是由清华大学有关专业的师生结合毕业设计而自行设计的校园杰作之一。由“西主楼”、“东主楼”和“中央主楼”三部分组成,并以四个“过街楼”联成一个整体。整个建筑气势雄伟,浑然一体,是清华校园中规模最宏大的建筑群,体现了清华师生宽广的胸怀和豪迈的气魄。清华主楼不仅在教学、科研中发挥着重要作用,并且是学校举办重大活动、接待重要来宾的主要场所。美国总统布什、联合国秘书长安南等许多政界领袖和诺贝尔奖获得者等学术大师、著名跨国公司总裁等企业名流,都曾在中央主楼向清华师生发表演讲。 第六教学楼:由台湾裕元集团捐资800万美元,清华大学注入7500万元人民币兴建的第六教学楼,于2003年建成使用,命名为“裕元楼”。有7000多个座位,是目前清华规模最宏大、设施最先进的教学大楼。

新土木馆:由香港何善衡慈善基金会捐资兴建,1998年落成,命名为“何善衡楼”,又称新土木馆。该馆是清华土木工程学科教学与科研工作的一个重要基地。 综合体育中心:由香港曹光彪先生捐资兴建,清华建筑设计院设计,占地12600平方米,主要用于体育比赛、大型演出、集会和体育课,还可为校体育代表队的训练和同学的日常锻炼提供场所。主馆包括三个标准篮球场及5000个座位。2001年建成使用以来,每年的开学和毕业典礼均在这里举行。清华大学90周年校庆大会和21届世界大学生运动会的篮球比赛也曾在这里举行。

跳水馆:这是具有国际标准的比赛场馆,总建筑面积达到9400平方米,拱形建筑,由清华大学建筑设计院设计,包括一个游泳池和一个跳水池,共有1208个观众席位。21届世界大学生运动会跳水比赛在此举行。 紫荆学生公寓:总建筑面积近37万平方米,集运动、娱乐、住宿、生活于一体的现代化学生公寓,为学生营造了良好的学习生活的氛围。

高等半导体物理讲义

高等半导体物理 课程内容(前置课程: 量子力学,固体物理) 第一章能带理论,半导体中得电子态 第二章半导体中得电输运 第三章半导体中得光学性质 第四章超晶格,量子阱 前言:半导体理论与器件发展史 1926 Bloch 定理 1931 Wilson 固体能带论(里程碑) 1948 Bardeen, Brattain and Shokley 发明晶体管,带来了现代电子技术得革命,同时也促进了半导体物理研究得蓬勃发展。从那以后得几十年间,无论在半导体物理研究方面,还就是半导体器件应用方面都有了飞速得发展。 1954半导体有效质量理论得提出,这就是半导体理论得一个重大发展,它定量地描述了半导体导带与价带边附近细致得能带结构,给出了研究浅能级、激子、磁能级等得理论方法,促进了当时得回旋共振、磁光吸收、自由载流子吸收、激子吸收等实验研究。 1958 集成电路问世 1959 赝势概念得提出,使得固体能带得计算大为简化。利用价电子态与原子核心态正交得性质,用一个赝势代替真实得原子势,得到了一个固体中价电子态满足得方程。用赝势方法得到了几乎所有半导体得比较精确得能带结构。1962 半导体激光器发明 1968 硅MOS器件发明及大规模集成电路实现产业化大生产 1970 * 超晶格概念提出,Esaki (江歧), Tsu (朱兆祥) * 超高真空表面能谱分析技术相继出现,开始了对半导体表面、界面物理得研究 1971 第一个超晶格Al x Ga1x As/GaAs 制备,标志着半导体材料得发展开始进入人工设计得新时代。 1980 德国得V on Klitzing发现了整数量子Hall 效应——标准电阻 1982 崔崎等人在电子迁移率极高得Al x Ga1x As/GaAs异质结中发现了分数量子Hall 效应 1984 Miller等人观察到量子阱中激子吸收峰能量随电场强度变化发生红移得量子限制斯塔克效应,以及由激子吸收系数或折射率变化引起得激子光学非线性效应,为设计新一代光双稳器件提供了重要得依据。 1990 英国得Canham首次在室温下观测到多孔硅得可见光光致发光,使人们瞧到了全硅光电子集成技术得新曙光。近年来,各国科学家将选择生成超薄层外延技术与精细束加工技术密切结合起来,研制量子线与量子点及其光电器件,预期能发现一些新得物理现象与得到更好得器件性能。在器件长度小于电子平均自由程得所谓介观系统中,电子输运不再遵循通常得欧姆定律,电子运动完全由它得波动性质决定。人们发现电子输运得AharonovBohm振荡,电子波得相干振荡以及量子点得库仑阻塞现象等。以上这些新材料、新物理现象得发现产生新得器件设计思想,促进新一代半导体器件得发展。 半导体材料分类: ?元素半导体, Si, Ge IV 族金刚石结构 Purity 10N9, Impurity concentration 1012/cm3 , Dislocation densities <103 /cm3 Size 20 inches (50 cm) in diameter P V 族 S, Te, Se VI 族 ?二元化合物, 1.IIIV族化合物: GaAS系列,闪锌矿结构, 电荷转移 GaAs, 1、47 eV InAs 0、36 eV GaP, 2、23 eV GaSb, 0、68 eV GaN, 3、3 eV BN 4、6 eV AlN 3、8 eV

清华大学介绍

清华大学介绍 清华大学的前身是清华学堂,始建于1911年,1912年更名为清华学校,1925年设立大学部,开始招收四年制大学生,1928年更名为 “国立清华大学”,并于1929年秋开办研究院。1937年抗日战争爆发后,南迁长沙,与北京大学、南开大学联合办学,组建国立长沙临时 大学,1938年迁至昆明,改名为国立西南联合大学。1946年,清华大 学迁回清华园原址复校,设有文、法、理、工、农等5个学院,26个系。 1952年,全国高校院系调整后,清华大学成为一所多科性的工业 大学,重点为国家培养工程技术人才,被誉为“工程师的摇篮”。 1978年以来,清华大学进入了一个蓬勃发展的新时期,逐步恢复理科、经济、管理和文科类学科,并成立了研究生院和继续教育学院。1999年,原中央工艺美术学院并入,成为清华大学美术学院。在国家和教 育部的大力支持下,经过“211工程”建设和“985计划”的实施,清 华大学在学科建设、人才培养、师资队伍建设、科研开发以及整体办 学条件方面均跃上了一个新的台阶。当前,清华大学已成为一所设有理、工、文、法、医、经济、管理和艺术等学科的综合性大学。 全国重点学科49个;本科专业58个,硕士学位授权点159个, 博士学位授权点123个,博士后科研流动站27个。学校现有国家重点 实验室11个,国家专业实验室2个,教育部重点实验室14个、体育 总局社会科学研究基地1个、科技部重点实验室1个、教育部网上合 作研究中心6个、教育部人文社科重点研究基地3个,教育部网上研 究中心6个。学校藏书400余万册。学校占地面积400余公顷,建筑 面积230余万平方米。出版物有《清华大学学报》(分自然科学版、 英文版、哲学社会科学版)、《世界建筑》、《装饰》、《清华大学 教育研究》等。 清华大学治学严谨,有着较高的学术水平和教学质量。清华大学 传承“培养具有为国家社会服务之健全品格的人才”的教育理念,建

清华大学微电子本科生培养课程设置.

一、简介 微纳电子系本科生一级学科名称为电子科学与技术,二级学科名称为微电子学。 二、课程设置 课程编号:30260093 课程名称:固体物理学 课程属性:专业核心课开课学期:09秋 任课教师:王燕 内容简介:固体物理学是固体材料和固体器件的基础。该课程主要研究晶体的结构及对称性,晶体中缺陷的形成及特征,晶格动力学,能带理论的基础知识以及晶体中的载流子输运现象等。是微纳电子专业的核心课。 课程编号:40260103 课程名称:数字集成电路分析与设计 课程属性:专业核心课开课学期:09秋 任课教师:吴行军 内容简介:本课程从半导体器件的模型开始, 然后逐渐向上进行, 涉及到反相器, 复杂逻辑门 (NAND , NOR , XOR , 功能模块(加法器,乘法器,移位器,寄存器和系统模块(数据通路,控制器,存储器的各个抽象层次。对于这些层次中的每一层,都确定了其最主要的设计参数,建立简化模型并除去了不重要的细节。 课程编号:40260173 课程名称:数字集成电路分析与设计(英 课程属性:专业核心课开课学期:09秋 任课教师:刘雷波

内容简介:数字集成电路的分析与设计,包括:CMOS 反相器、组合和时序逻辑电路分析与设计、算术运算逻辑功能部件、半导体存储器的结构与实现、互连线模型与寄生效应的分析。并介绍常用数字集成电路的设计方法和流程。 课程编号:30260072 课程名称:微电子工艺技术 课程属性:专业核心课开课学期:09秋 任课教师:岳瑞峰 内容简介:本课程授课目的是使学生掌握微电子制造的各单项工艺技术, 以及亚微米 CMOS 集成电路的工艺集成技术。本课程讲授微电子制造工艺各单项工艺的基本原理(包括氧化、扩散、离子注入、薄膜淀积、光刻、刻蚀、金属化工艺等,并介绍常用的工艺检测方法和 MEMS 加工技术、集成电路工艺集成技术和工艺技术的发展趋势等问题。另通过计算机试验,可学习氧化、扩散、离子注入等工艺设备的简单操作和模拟。 课程编号:40260054 课程名称:半导体物理与器件 课程属性:专业核心课开课学期:09春 任课教师:许军 内容介绍:主要讲授半导体材料的基本物理知识,半导体器件的工作原理以及现代半导体器件的新进展。主要内容包括:半导体中的电子态和平衡载流子统计,载流子的输运(非平衡载流子,产生和复合,载流子的漂移、扩散,电流连续性方程, PN 结二极管和双极型晶体管,场效应晶体管,半导体光电器件,纳电子器件基础。 课程编号:40260033 课程名称:模拟集成电路分析与设计 课程属性:专业核心课开课学期:09春 任课教师:王自强

高等半导体物理参考答案

习题参考答案 第一章 1) 求基函数为一般平面波、哈密顿量为自由电子系统的哈密顿量时,矩阵元1?1H 和2?1H 的值。 解:令r k i e V ?= 111,r k i e V ?=212,222??-=m H ,有: m k r d e e mV k r d e V m e V H r k i V r k i r k i V r k i 221)2(11?121202122201111 =?=?-=??-??-??021)2(12?121210222220=?=?-=??-??-??r d e e mV k r d e V m e V H r k i V r k i r k i V r k i 2) 证明)2(πNa l k =,)2(πNa l k ' =',l '和l 均为整数。 证:由Bloch 定理可得: )()(r e R r n R ik n ψψ?=+ 考虑一维情况,由周期性边界条件,可得: π πψψψ221 )()()(Na l k l Na k e r e r Na r Na ik Na ik =?=??=?==+??? 同理可证)2(πNa l k ' = '。

3) 在近自由电子近似下,由 022122?11?1=--E H H H E H 推导出0)()(002 1=--εεεεk n n k V V 。 解:令r k i e V ?= 111,r k i e V ?=212, V r V V m V V r V m r V m H -++?-=-++?-=+?-=)(2)(2)(2?22 2222 V m V k V V V m V k r d e V e V r d e r V e V V m V k r d e V V r V V m e V H r k i V r k i r k i V r k i r k i V r k i +=-++=-++=-++?-=??-??-??-???2)2(1)(1)2(1])(2[11?121221200212220111111 令V mV k k += 22 1201 ε,即有01 1?1k H ε=。 同理有: 02 2?2k H ε=。 n r k i V r k i r k i V r k i V r d e r V e V r d e V r V m e V H =+=+?-=??-??-?? 2121)(101)](2[12?10 220 其中r d e r V e V V r k i V r k i n ??-? =21)(10 ,是周期场V(x)的第n 个傅立叶系数。 同理,n V H =1?2。 于是有: 0) ()(0021=--εεεεk n n k V V 。

北大微电子专业课参考书

北大微电子-专业课参考书 北大微电子与固体电子学专业考研可以选考《半导体物理》和《数字与模拟电路》,两门课任选,跟录取没有任何关系。从最近几年考题分析来看,数字与模拟电路考题相对简单,得高分比较容易。但建议大家兴趣为主,尽量选择自己熟悉的专业课复习,最终目标是把初试分数提高。 半导体物理参考书: 《半导体物理》叶良修 1983版高等教育出版社(这本书已经不再出版,想办法电子版的吧) 《半导体物理学》刘恩科第四版(好像是最新的了吧) 数模电参考书: 早年公布的参考书是:康华光的《电子技术基础(数字与模拟两册)》,但分析最近几年题来看,康书的内容有些少,覆盖面不够。建议与北大本科生教材靠拢。 北大微电子系本科生数模电教材: 数电:(二选一) 1.《数字电子技术基础》阎石高等教育出版社版本无所谓(这本书很经典,也蛮基础) 2.数字设计:原理与实践,第四版,Wakerly著,林生等译,机械工业出版社,2007(这本书内容覆盖得比较全,但也蛮厚,复习起来很费时)

模电: 《模拟电路》老师推荐的教材是:(二选一) 1.《模拟电子技术基础》童诗白/华成英高等教育出版社 2.《电子线路基础》高文焕,李冬梅第二版高等教育出版社 + 《模拟电子技术基础》杨素行第三版 之所以有二选一情况发生,是因为本科上课分两个教学班,授课老师不一样,指定教材不一样。北大数字与模拟电路模电的考研重点知识点(这里从略)电路分析老师推荐的教材是: 《电路分析方法》胡薇薇陈江北京大学出版社教材难买到可以参考讲义 试题分数分布(根据以往大概统计): 《电子线路》电分10-30分;模电65-70;数电55-65 软件与微电子学院参考书目

清华大学校史

清华大学校史 清华大学是一所历史悠久的学校,可溯至民国前一年(公元一九一一年)的「清华学堂」。最初之酝酿,是在前清光绪三十年至三十一年间,我国驻美公使梁诚,因美国国务卿海约翰(John Hay)氏有「美国所收庚子赔款原属过多」之语,一方面分向美当局劝请核减,一方面上书清廷请以此款设学育才。中间虽因发生粤汉铁路废约之关系而生阻,但梁氏努力不懈,卒得美国国会之赞同,将处置赔款全权付与总统罗斯福。照条约我国应付美国赔款二千四百四十四万七百七十八元八角一分,经总统决定将当时尚未付足之一千零七十八万五千二百八十六元一角二分,从一九0九年一月起退还我国。 光绪三十四年(公元一九0八年)七月十一日,美国核减赔款之文告由驻华公使柔克义送达我国,我外务大臣庆亲王答复上述公文说:「体会新近贵国总统希望鼓励我国学生赴美入学校及求高深学问之诚意,并有鉴于以往贵国教育对于我国之成效,大清帝国政府谨诚恳表示此后当按年派送学生到贵国承受教育。」同日,外务部致美国公使馆函称:「从赔款退还之年起,前四年我国将次第派送一百学生;迨四年终局,我国将有四百学生在美,从第五年起,直至赔款完毕之年,每年至少派送五十名学生。」并派唐绍仪为特使赴美表示谢意。 民国前三年(宣统元年,公元一九0九年)是为美国退还赔款之第一年,外

务部与美国驻华公使柔克义商定学生游美细则后,会同学部奏请设立「游美学务处」及附设「肄业馆」。六月初四日游美学务处奉准设立,派外务部丞参周自齐为总办,主事唐国安及学部郎中范源廉为会办,驻美公使馆参赞容揆为驻美学生监督。初赁北京东城侯位胡同民房一所为办公处,后又迁入史家胡同。九月奏准将北京西直门外「清华园」作为游美学务处兴建「肄业馆」馆舍之用。是为清华得名之始。清华园原系道光帝赐其第五子惇亲王(奕综)之赐园,俗称小五爷园。惇亲王死后,长子载濂袭爵为王。庚子之乱,拳匪曾集于园中设坛,事后载濂被削职,赐园为内务府收回。因外务部在呈奏游美学生办法内,建议在京城外清旷地方设立肄业馆,中堂那桐等颇表赞同,派员各处觅地,认为清华园比较相宜,即拨作馆址。面积凡五百三十亩。择定清华园为肄业馆馆址后,即着手修理及建筑,原希望一九一0年秋可以使用,不料工人罢工数月,耽误时期。迨至馆舍相继完成,将肄业馆改称「清华学堂」,于民国前一年(公元一九一一年)四月初一日(阳历为四月二十九日,是为清华校庆日之由来)正式开学,在工字厅举行开学仪式。游美学务处亦迁入工字厅办公。首任教务长为胡敦复。清华学堂成立之初,乃由正副监督三人管理,即是由游美学务处之总办与会办担任。同年十月,武昌起义开始,学生纷纷请假回家,清华学堂被迫停课。 经过一阵惊心动魄的革命,清帝宣统于公元一九一二年三月三十日退位,中华民国建立。民国成立之后,将「清华学堂」改名为「清华学校」,于五月一日重行开课,并裁撤「游美学务处」,使之隶属外交部。任命唐国安为清华学校第

半导体物理习题及答案

半导体物理习题及答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

复习思考题与自测题 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。 当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么

清华历史简介

站在清华大学校门时,一种激动的心情无语言表。一直都很向往的大学就这样矗立在我的眼前,犹如心中的一块圣地。站在门口,我对孩子说,清华大学是1911年建立的,到现在是95载春秋的发展历程,清华大学有着独特的魅力和深厚的文化底蕴。“自强不息、厚德载物”的校训、“行胜于言”的校风和“严谨、勤奋、求实、创新”的学风构成了清华精神的核心内涵,也激励和鼓舞着一代代清华人为了中华民族的崛起与腾飞做出不息的努力。 进清华大学的校址原来也是圆明园的一部分,前身是清华学堂,是清政府利用美国政府“退还”的部分“庚子赔款”,于1911年办起来的留美预备学校。辛亥革命后更名为清华大学。“导游”一边缓缓开车,一边为我们讲解。“导游”把车开到了清华大学校内的校门(也称二门)时,停了下来,叫我们下车照相留念,参观的人很多,照相的更多,我知道,大家的心情是一样的,都想在这里留下自己的身影,圆自己的清华梦。 清华园是清华大学校本部,它占地395公顷(近6000亩),建筑面积118万平方米,地处北京西北郊名胜风景园林区,明朝时为一私家花园,清朝康熙年间成为圆明园一部分,称熙春园,道光年间分为熙春园和近春园,咸丰年间改名为清华园。周围高等学府和名园古迹林立,园内苍松翠柏、水清木华,清澈的万泉河从腹地蜿蜒而过,勾连成一处处湖泊、小溪,同时也滋养着清华学子特有的志趣和气质。 看着眼前的一池青绿的荷塘,满眼翠绿的荷叶呈现在我们面前。难道这就是著名的散文家朱自清先生所写的《荷塘月色》?正在我满眼诱惑的时候,“导游”开口了——这就是有名的“荷塘月色”。“是朱自清先生笔下的荷塘吗?”“正是这个荷塘。美吧?”“哇!太美了!”我沿着湖岸情不自禁地跑起来,一边跑,一边用眼尽情地饱览着这副早在中学时代就映入脑子里的荷塘和荷叶了。 “曲曲折折的荷塘上面,弥望的是田田的叶子。叶子出水很高,象亭亭的舞女的裙。层层的叶子中间,零星地点缀着些白花,有袅娜地开着的,有羞涩地打着朵的;正如一粒粒的明珠,又如天里的星星。

半导体物理究极版.doc

试卷结构: 一、选择题(每小题2分,共30分) 二、填空题(每空2分,共20分) 三、简答题(每小题10分,共20分) 四、证明题(10分)(第六章) 五、计算题(20分)(第五章) §1.1锗和硅的晶体结构特征金刚石结构的基本特征(重点)

§1.2 半导体中的电子状态和能带 电子共有化运动概念:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原子转移到相邻的原子上去,因而,电子将可以在整个晶体中运动,这种运动称为电子的共有化运动。 绝缘体、半导体和导体的能带特征: 几种常用半导体的禁带宽度:硅1.12eV ,锗0.67eV ,砷化镓1.43eV 本征激发的概念:价带上的电子激发成为准自由电子,即价带电子激发成为导带电子的过程,称为本征激发。 §1.3 半导体中电子的运动 有效质量 导带底和价带顶附近的E(k)~k 关系:()()2 *2n k E k E m 2h -0=; 半导体中电子的平均速度:dE v hdk = ; 有效质量的公式:2 22*11dk E d h m n =。 窄带、宽带与有效质量大小关系:窄大宽小 §1.4本征半导体的导电机构 空穴 空穴的特征:带正电;p n m m ** =-;n p E E =-;p n k k =- §1.6 硅和锗的能带结构 硅和锗的能带结构特征:(1)导带结构:导带底的吸收峰位置、个数;(2)

价带结构:价带顶的位置,重空穴带、轻空穴带以及自旋-轨道耦合分裂出来的能带。 硅和锗是间接带隙半导体 §2.1 硅、锗晶体中的杂质能级 施主杂质:V 族杂质在硅、锗中电离时,能够释放电子而产生导电电子并形成正电中心,称它们为施主杂质或n 型杂质。它释放电子的过程叫做施主电离。 受主杂质:因III 族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负电中心,所以称它们为受主杂质或p 型杂质。空穴挣脱受主杂质束缚的过程称为受主电离。 杂质的电离能:施主杂质电离能2 00r n D E m m E ε* =?,受主杂质电离能20 0r p A E m m E ε*=? 杂质的补偿作用(重点):

北京大学各院系课程设置一览

北京大学各院系课程设置一览 前言 很多同学希望了解在北京大学各院系的某个年级要学习哪些课程,但又不容易查到课程表。本日志充当搬运工作用,将各院系开设课程列于下方,以备查询。 查询前必读 注释: ※在课程名称后标注含义如下: 标注(必)表示此课程为专业必修课,是获得学士学位必须通过的课程; 标注(限)表示此课程为专业任选课(原称专业限选课),各院系规定需在所有专业任选课中选修足够的学分(通常为30~40)以获取学士学位; 标注(通)表示此课程为通选课,非本院系本科生可选修此类课程,并计入通选课所需总学分;通选课无年级限制; 标注(公)表示此课程为全校任选课(原称公共任选课),此类课程不与学位挂钩,公选课无年级限制。 标注(体)表示此课程为体育课,每名学生必须且仅能选修4.0学分体育课;男生必须选修“太极拳”,女生必须选修“健美操”。 ※实际上,多数专业必修课及专业选修课也没有年级限制。对应的年级是“培养方案”推荐的修该门课程的适当年级。 ※不开设任何专业必修课的院系为研究生院或其他不招收本科生的部门,如马克思主义学院、武装部等。 ※由于在某些院系下有不同专业方向,标注为必修课的课程可能并不对于所有学生均为必修(如外国语学院的各个语种分支)。相关信息请咨询相应院系教务。 ※多数课程可以跨院系选修,但可能需缴纳额外学费。 ※院系编号为学号中表示院系字段的数字,因院系调整原因,编号并不连续。“系”可能为院级单位,具体以相应主页标示为准。 ※课程名称后标注数字表示学分。一般情况下,对于非实验课及非习题课,每学分表示平均每周有一节50分钟时长课程,16-18周。 ※院系设置的课程不一定由本院系开设。 ※医学部课程仅包含在本部的课程内容。 ※本一览表不包括政治课、军事理论课、英语课、文科计算机基础、辅修及双学位课程。※本一览表不提供上课地点及主讲教师信息,请与相应院系教务联系。 001 数学科学学院 https://www.360docs.net/doc/465555838.html,/ 一年级秋季学期 数学分析(I)(必)5.0 数学分析(I)习题(必)0.0 高等代数(I)(必)5.0 高等代数(I)习题(必)0.0 几何学(必)5.0 几何学习题(必)0.0 一年级春季学期 数学分析(II)(必)5.0

北大清华大学校史简介

北大清华校史简介 北京大学的校园又称燕园,建立在“九大园林”基础上:勺园历史上,这里曾是一片荒地,明代书法家米万钟在此修建了一处园林。取“海淀一勺”之意,所以被起名为勺园。畅春园原址是明朝明神宗的外祖父李伟修建的“清华园”。清代,康熙利用清华园残存的水脉山石,在其旧址上仿江南山水营建畅春园,作为在郊外避暑听政的离宫。蔚秀园其初为圆明园附园,称“含芳园”。咸丰八年(1858年)转赐醇亲王奕譞,御书“蔚秀园”。承泽园当年曾被誉为京西五大邸园之一。原来和镜春园同属春熙园,是圆明园附属园林之一。乾隆年间,被赐予驾前宠臣和珅为园,成为淑春园的一部分。(北大清华校史简介)镜春园 未名湖畔,曾是春熙园的一部分,是圆明园附属园林之一。嘉庆七年春熙园的东部改为镜春园,被赐予了庄静公主。朗润园原名“春和园”,曾是圆明园的附属园之一,赐给奕欣始称朗润园。载涛对保护园中文物做出了巨大贡献。 图书馆 简介原为京师大学堂藏书楼。西楼建于1975年,1998年,北京大学百年校庆之际,由香港实业家李嘉诚先生捐资兴建的新馆(东楼)落成,在建筑规模上成为亚洲第一大高校图书馆。邓小平同志亲自为图书馆题写馆名“北京大学图书馆”,江泽民同志为北京大学图书馆题词“百年书城”。藏书到2011年底,总、分馆文献资源累积量约1,100余万册(件)。其中纸质藏书800余万册,各类数据库、电子期刊、电子图书和多媒体资源约300余万册。现有古籍150万册,其中善本书17万册,金石拓片约24000种,56000份,绝大部分是石刻文字拓片,其数量居全国前列。被国务院批准为首批国家重点古籍保护单位。 著名馆长著名学者李大钊于1918年至1921年任图书部主任。他主张各类图书兼容,中外文化并存。与此同时(1917-1918年),毛泽东也曾担任过北京大学图书部助理员。 博雅塔 简介博雅塔原是一座水塔,仿照通州燃灯塔,下部为须弥座。高三十七米,十三级,内中空,有旋梯,井深64尺,时喷水高于地面十余尺,除基座外全是用钢筋水泥建筑,建于1924年,初为燕京大学提供生活用水。 命名主要由当时学校哲学系教授博晨光的叔父JamesPorter捐资兴建,1930年前,燕京大学校内的文物都是以捐款人的姓氏命名的,故取名“博雅”特色为维护燕园结构布局,

清华考研辅导班-2020清华大学832半导体器件与电子电路考研真题经验参考书

清华考研辅导班-2020清华大学832半导体器件与电子电路考研真题 经验参考书 清华大学832半导体器件与电子电路考试科目,2020年初试考试时间为12月22日下午14:00-17:00进行笔试,清华大学自主命题,考试时间3小时。 一、适用院系及专业 清华大学026微电子与纳电子学系085400电子信息专业学位 二、考研参考书目 清华大学832半导体器件与电子电路2019年没有官方指定的考研参考书目,盛世清北根据专业老师指导及历年考生学员用书,推荐使用如下参考书目: 《电子线路基础》高教出版社,1997 高文焕,刘润生 《数字电子技术基础》高等教育出版社,第4版阎石 《半导体物理与器件》(第三版)电子工业出版社,ISBN: 7-121-00863-7 (美) Donald A. Neamen著; 赵毅强, 姚素英, 谢晓东等译 盛世清北建议: 参考书的阅读方法 目录法:先通读各本参考书的目录,对于知识体系有着初步了解,了解书的内在逻辑结构,然后再去深入研读书的内容。 体系法:为自己所学的知识建立起框架,否则知识内容浩繁,容易遗忘,最好能够闭上眼睛的时候,眼前出现完整的知识体系。 问题法:将自己所学的知识总结成问题写出来,每章的主标题和副标题都是很好的出题素材。尽可能把所有的知识要点都能够整理成问题。 三、考研历年真题 2018年清华大学832半导体器件与电子电路考研真题(回忆版) 今年的题整体来看与往年风格略不同 半器四道题 证明费米能级 给半导体掺杂浓度算内建电场,画载流子分布 画n+n结的能带图计算接触电势 老生常谈的mos管电流计算

数电4道题 给真值表化简并画电路图 3-8译码+数据选择器的真值表 求一个组合逻辑的表达式并画状态转换图 最要吐槽的就是这个!流水线给延时求周期 模电也与往年风格略不同 3道题 分别是电流镜、集成运放以及波特图。 2010年清华大学832半导体器件与电子电路考研真题(回忆版) 选择天空全是半导体与电子器件的概念 大题: 1、算二极管参数 2、算MOS阈值电压 3、MOS放大2级算静态工作电流电压增益米勒电容去零点电阻 4、负反馈 5、集成预防搭电路 6、二进制数反补原+ 运算 7、卡诺图 8、2个电阻2个非门组合问工作原理电压传输曲线正负阈值电压 9、D触发器时序图 10、画COMS 异或门 盛世清北建议: 认真分析历年试题,做好总结,对于考生明确复习方向,确定复习范围和重点,做好应试准备都具有十分重要的作用。分析试题主要应当了解以下几个方面:命题的风格(如难易程度,是注重基础知识、应用能力还是发挥能力,是否存在偏、难、怪现象等)、题型、题量、考试范围、分值分布、考试重点、考查的侧重点等。考生可以根据这些特点,有针对性地复习和准备,并进行一些有针对性的练习,这样既可以检查自己的复习效果,发现自己的不足之处,以待改进;又可以巩固所学的知识,使之条理化、系统化。 四、全年复习规划

相关文档
最新文档