数学分析(一)第一章复习题

数学分析(一)第一章复习题
数学分析(一)第一章复习题

第一章复习题

一.填空

1、数集,...}2,1:)1({=-n n

n

的上确界为 ,下确界为 。 2、 =∈-=E R x x x E sup ,|][{则 , =E inf ;

3、)(lim 2n n n n -+∞

→ = _______________。 4、设数列}{n a 递增且 a a n n =∞

→lim (有限). 则有a = . 5. 设,2

12,212212n n n n n n x x +=-=- 则 =∞→n n x lim 二. 选择题

1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( )。

A、是单调递增函数; B、是单调递减函数;

C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定.

2、在数列极限的“δε-”极限定义中,ε与δ的关系是( )

A 、 先给定ε后唯一确定δ;

B 、 先给定ε后确定δ,但δ的值不唯一;

C 、 先给定δ后确定ε;

D 、 δ与ε无关.

3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( )

A 、}1{2n a ;

B 、}1{a n

; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( )

(A) 必不存在; (B) 至多只有有限多个;

(C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个.

5.设a x n n =∞

→||lim ,则 ( ) (A) 数列}{n x 收敛; (B) a x n n =∞

→lim ; (C) a x n n -=∞

→lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( )

(A) ∞=∞→n n x lim ; (B) +∞=∞

→n n x lim ;

(C) -∞=∞→n n x lim ; (D) 存在}{n x 的一个子列}{k n x ,使得∞=∞

→k n k x lim 7.设数列}{n x 收敛,数列}{n y 发散,则数列}{n n y x ( )

(A) 收敛; (B) 发散;

(C) 是无穷大; (D)可能收敛也可能发散。

8. {n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c ,则

( )

A. {n a }和{n b }都收敛时,{n c }收敛;

B. {n a }和{n b }都发散时,{n c }发散;

C. {n a }和{n b }都有界时,{n c }有界;

D. {n b }有界时,{n a }和{n c }都有界;

9. “对任意给定的)1,0(∈ε,总存在正整数N ,当N n ≥时,恒有ε2||≤-a x n ”是数列}{n x 收敛于a 的( )

(A) 充分条件但非必要条件; (B) 必要条件但非充分条件;

(C) 充分必要条件; (D) 既非充分又非必要条件。

10. 设2

sin πn n x n =,则数列}{n x 是 ( ) (A) 收敛列; (B) 无穷大;

(C) 发散的有界列; (D) 无界但不是无穷大

三.写出下列各式精确的分析定义

1. lim n n a a →∞

2.根据柯西准则叙述lim n n a →∞存在的充要条件

四.计算题

1.)1(lim 33n n n -+∞→

2.2221

2

lim()12n n

n n n n →∞++++++L

3.312lim n n

n →∞+++L

4.n

5.552221

lim .1n n n n n →∞+--+

6.21lim 1.4n

n n →∞?

?+ ???

7.设0>a ,}{n x 满足:,00>x 11

(),

0,1,2,2n n n

a

x x n x +=+=L

证明:}{n x 收敛,并求。n n x ∞→lim

五.1.求数集{}22s x x =<的上、下确界,并依定义加以验证;

2. 求函数[]() 1 2, 0 . 1n f x x n x ==∈L (,)的上确界[]

)(sup 1.0x f x ∈

六.证明题

1.用极限的定义证明235

233lim 22=--+∞→n n n n 。

2证明:若lim n n a A →∞=,则lim n n a A →∞

=. 当且仅当A 为何值时反之也成立?

3.,lim ,lim b b a a n n n n ==∞→∞→且,b a <证明:存在N ,当n>N 时,有.n n b a <

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

18数学分析-1复习题试题及参考答案

18数学分析-1复习题参考答案 一、选择题 1.函数1 ()ln(2) f x x = -的连续区间是 ( B ) A. (2,)+∞ ; B. (2,3)(3,)?+∞; C. (,2)-∞ ; D. (3,)+∞. 2.若函数x x x f = )(,则=→)(lim 0 x f x ( D ). A.0 ; B.1- ; C.1 ; D.不存在. 3.下列变量中,是无穷小量的为( C ). A.1ln (0)x x +→; B.cos (0)x x →;C.ln (1)x x → ;D.22(2)4 x x x -→-. 4. 1lim(1)1 n n n →∞ + =+( B ). 1 2.1 ...-A B e C e D e 5.1lim(1)1 →∞ + =-n n n ( B ). 12.1...-A B e C e D e 6.下列两个函数是同一函数的是 ( C ) A. ()3,()f x x x ?=+=41 ()ln ,()ln 4 f x x x x ?== ; C. 2 2 ()sin cos ,()1f x x x x ?=+= ; D. 2 (1)(),()11 x f x x x x ?-= =-- . 7.22 39 lim 712 x x x x →-=-+ ( C ) A.0 ; B.25- ; C.6- ; D. 7 6 . 8.0sin 2lim →=x x x ( D ) A. 0 ; B. 1 ; C. 3 ; D . 2 . 9.=→x x x 1 sin lim 2 ( C ). 1 1A B C D ∞-

数值分析第1章习题

(A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解..14159.3==*πx ,1103142.0?=a 时,1=m ,3102 1...00041.0)(-*?≤ =-=a x a E m-n= -3,所以n=4,即有4位有效数字。当1103141.0?=a 时,1=m , 2102 1005.0...00059.0)(-*?=≤=-=a x a E ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式19992001-时,应该改为 199920012+计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于2001和1999相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算123460.60.612345++- B.计算 25612520000450?- C.计算10.99994- D.计算11x x +- 解:A 会有大数吃掉小数的情况C 中两个相近的数相减,D 中两个相近的数相减也会增大误差 (D)4.若误差限为5105.0-?,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:51021)(-?= a E 即m-n= -5,2103400.0-?=a ,m= -2,所以n=3,即有3位有效数字 (A)5.设*x 的近似数为40.32710a =?,如果a 具有3位有效数字,则a 的相对误差限为 ()(有效数字与相对误差的关系) A . 35103-g B. 33105-g C. 53105-g D. 5103 g -2 解:因为40.32710a =?所以31=a ,因为a 有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a 的相对误差限为 31103510.5--?== n r a δ

数学分析专题研究试题及参考答案

数学分析专题研究试题及参考答案 一、填空题(每小题3分,共18分) 1.集合X 中的关系R 同时为反身的,对称的,传递的,则该关系R 为 . 2.设E 是非空数集,若存在实数β,满足1)E x ∈?,有β≥x ;2) ,则称β是数集E 的下确界。 3.函数)(x f y =在点0x 的某个邻域内有定义,若 存在,则称函数)(x f 在点 0x 可导。 4.若)(x f y =是对数函数,则)(x f 满足函数方程=)(xy f 。 5.若非零连续函数)(x f 满足方程)()()(y f x f y x f +=+,则函数)(x f 是 函数。 6.设函数)(x f 定义在区间),(b a 上,对于任意的),(,21b a x x ∈,)1,0(∈?α,有 成 立,则称)(x f 在),(b a 上为下凸函数。 二、单项选择题(每小题3分,共18分) 1.设f :Y X →,X A ??,则A ( )))((1 A f f - A. = B. ≠ C. ? D. ? 2.已知函数)(x f y =在区间),(b a 上可导,),(b a x ∈?,有1)(0<)(x ?' D. 前三个结论都不对 4.已知???∈∈=]2,1(2]1,0[1)(t t t f ,对于]2,0[∈x ,定义?=x t t f x F 0d )()(,则)(x F 在区 间[0,2]上( )。 A. 连续 B. 不连续 C. 可导 D. 前三个结论都不对 5.已知)(x f 是区间],[b a 上的严格下凸函数,则( )。

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

(完整版)数据分析(梅长林)第1章习题答案

第1章 习 题 一、习题1.1 解:(1)利用题目中的数据,通过SAS 系统proc univariate 过程计算得到: 139.0=x 7.06387S = 49.898312=S 0.142众数= 51.0g 1-= 08192.5=CV 126129.0g 2-=由得到的数据特征可知道,偏度为负,所以呈做偏态, 峰度为负,所以均值两侧的极端值较少。 (2) 139.0=M 31.0=R 0.135Q 1= 5.144Q 3= 5.9R 131=-=Q Q 375.1394 1 2141M 31=++= ∧ Q M Q (3) 通过SAS 系统proc capability 得到直方图,并拟合正态分布曲线:

(4) 通过SAS 系统proc univariate 可以画出茎叶图,从茎叶图可以看出数据大致呈对称分布,由于所给数据都是整数,所以叶所代表的小位数都是0。 (5) 通过SAS 系统proc univariate 过程计算得到: 0.971571W 0= 00()H p P W W =≤= 0.1741 取0.05=α,因α>=0.1742p ,故不能拒绝0H ,认为样本来自正态总体分布。 通过画QQ图和经验分布曲线和理论分布函数曲线,从图中可以看出QQ图近似的在一条直线上,经验分布曲线的拟合程度也相当好,所以可以进一步说明此样本来自正态总体分布。

二、习题1.2 7.8574027=x 1.62568785 S = 2.642860982=S 0.13721437g 1= 20.6898884=CV -1.4238025g 2= 由得到的数据特征可知道,偏度为正,所以呈右偏态,峰度为负,所以均值两侧的极端值较少。 (2)

数学系一年级《数学分析》期末考试题

(一)数学系一年级《数学分析》期末考试题 学号 姓名 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c ,则( ) A {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ? ???>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、' 'f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?) ()(lim 02020 ; B. ' 000)()(lim ???? ???-?+→?x x f x x f x ; C. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?) ()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则( ) A. ∈?ξ(b a ,),使0)(' =ξf ; B. ∈?ξ(b a ,),使0)(' ≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)(' x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ;

华东师大数学分析习题解答1

《数学分析选论》习题解答 第 一 章 实 数 理 论 1.把§1、3例4改为关于下确界的相应命题,并加以证明. 证 设数集S 有下确界,且S S ?=ξinf ,试证: (1)存在数列ξ=?∞ →n n n a S a lim ,}{使; (2)存在严格递减数列ξ=?∞ →n n n a S a lim ,}{使. 证明如下: (1) 据假设,ξ>∈?a S a 有,;且ε+ξ<'<ξ∈'?>ε?a S a 使得,,0.现依 次取,,2,1,1 ==εn n n 相应地S a n ∈?,使得 ,2,1,=ε+ξ<<ξn a n n . 因)(0∞→→εn n ,由迫敛性易知ξ=∞ →n n a lim 、 (2) 为使上面得到的}{n a 就是严格递减的,只要从2=n 起,改取 ,3,2,,1min 1=? ?????+ξ=ε-n a n n n , 就能保证 ,3,2,)(11=>ε+ξ≥ξ-+ξ=--n a a a n n n n . □ 2.证明§1、3例6的(ⅱ). 证 设B A ,为非空有界数集,B A S ?=,试证: {}B A S inf ,inf m in inf =. 现证明如下. 由假设,B A S ?=显然也就是非空有界数集,因而它的下确界存在.故对任何B x A x S x ∈∈∈或有,,由此推知B x A x inf inf ≥≥或,从而又有 {}{}B A S B A x inf ,inf m in inf inf ,inf m in ≥?≥. 另一方面,对任何,A x ∈ 有S x ∈,于就是有

S A S x inf inf inf ≥?≥; 同理又有S B inf inf ≥.由此推得 {}B A S inf ,inf m in inf ≤. 综上,证得结论 {}B A S inf ,inf m in inf =成立. □ 3.设B A ,为有界数集,且?≠?B A .证明: (1){}B A B A sup ,sup m in )sup(≤?; (2){}B A B A inf ,inf m ax )(inf ≥?. 并举出等号不成立的例子. 证 这里只证(2),类似地可证(1). 设B A inf ,inf =β=α.则应满足: β≥α≥∈∈?y x B y A x ,,,有. 于就是,B A z ?∈?,必有 {}βα≥?? ??β≥α≥,max z z z , 这说明{}βα,max 就是B A ?的一个下界.由于B A ?亦为有界数集,故其下确界存在,且因下确界为其最大下界,从而证得结论{}{}B A B A inf ,inf m ax inf ≥?成立. 上式中等号不成立的例子确实就是存在的.例如:设 )4,3(,)5,3()1,0(,)4,2(=??==B A B A 则, 这时3)(inf ,0inf ,2inf =?==B A B A 而,故得 {}{}B A B A inf ,inf m ax inf >?. □ 4.设B A ,为非空有界数集.定义数集 {}B b A a b a c B A ∈∈+==+,, 证明: (1)B A B A sup sup )sup(+=+; (2)B A B A inf inf )(inf +=+.

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

第一章复习题解答(数学分析)

第一章复习题 一.填空 1、数集,...}2,1:)1({=-n n n 的上确界为 1 ,下确界为 -1 。 2、 =∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 3、)(lim 2 n n n n -+∞ → = _______ 1 2 ________。 4、设数列}{n a 递增且 a a n n =∞ →lim (有限). 则有a = {}sup n a . 5. 设,2 12,21221 2n n n n n n x x +=-=- 则 =∞→n n x lim 1 二. 选择题 1、设)(x f 为实数集R 上单调增函数,)(x g 为R 上单调减函数,则函数 ))((x g f 在R 上( B )。 A、是单调递增函数; B、是单调递减函数; C、既非单调增函数,也非单调减函数 ; D、其单调性无法确定. 2、在数列极限的“δε-”极限定义中,ε与δ的关系是( B ) A 、 先给定ε后唯一确定δ; B 、 先给定ε后确定δ,但δ的值不唯一; C 、 先给定δ后确定ε; D 、 δ与ε无关. 3、设数列{}(0,1,2,...)n n a a n ≠=收敛,则下列数列收敛的是( D ) A 、}1 { 2n a ; B 、}1{a n ; C 、 }1{a n ; D 、}{n a . 4. 若数列}{n x 有极限a ,则在a 的ε邻域之外,数列中的点( B ) (A) 必不存在; (B) 至多只有有限多个; (C) 必定有无穷多个; (D) 可能有有限多个,也可能有无穷多个. 5.设a x n n =∞ →||lim ,则 ( D ) (A) 数列}{n x 收敛; (B) a x n n =∞ →lim ; (C) a x n n -=∞ →lim ; (D) 数列}{n x 可能收敛,也可能发散。 6. 设}{n x 是无界数列,则 ( D ) (A) ∞=∞ →n n x lim ; (B) +∞=∞ →n n x lim ;

数学分析_各校考研试题及答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值范围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感谢小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤? 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析试题及答案解析,(1)

数学分析试题及答案解析,(1) 20xx ---20XX学年度第二学期《数学分析2》A试卷学院班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若在连续,则在上的不定积分可表为(). 2.若为连续函数,则(). 3. 若绝对收敛,条件收敛,则必然条件收敛(). 4. 若收敛,则必有级数收敛() 5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛(). 6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大(). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同(). 二. 单项选择题(每小题3分,共15分) 1.若在上可积,则下限函数在上() A.不连续 B. 连续 C.可微 D.不能确定 2. 若在上可积,而在上仅有有限个点处与不相等,则() A. 在上一定不可积; B. 在上一定可积,但是; C. 在上一定可积,并且; D. 在上的可积性不能确定. 3.级数 A.发散 B.绝对收敛C.条件收敛 D. 不确定 4.设为任一项级数,则下列说法正确的是() A.若,则级数一定收敛; B. 若,则级数一定收敛; C. 若,则级数一定收敛;

D. 若,则级数一定发散; 5.关于幂级数的说法正确的是() A. 在收敛区间上各点 是绝对收敛的; B. 在收敛域上各点是绝对收敛的; C. 的和函数在收敛域上各点存在各阶导数; D. 在收敛域上是绝对并且一致收敛的; 三.计算与求值(每小题5分,共10分) 1. 2. 四. 判断敛散性(每小题5分,共15分) 1. 2. 3. 五. 判别在数集D上的一致收敛性(每小题5分,共 10分) 1. 2. 六.已知一圆柱体的的半径为 R,经过圆柱下底圆直径线并保持与底圆面角向斜上方切割,求从圆 柱体上切下的这块立体的体积。(本题满10分)七. 将一 等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表 面距离为10米,已知三角形底边长为20米,高为10米,求该三角 形铁板所受的静压力。(本题满分10分) 八. 证明:函 数在上连续,且有连续的导函数.(本题满分9分) 20xx ---20XX 学年度第二学期《数学分析2》B卷答案学院班级 学号(后两位)姓名题号一二三四五六七八 总分核分人得分一、判断题(每小题3分,共21分, 正确者括号内打对勾,否则打叉) 1.? 2.? 3.? 4. ? 5. ? 6. ? 7. ?二.单项选择题(每小题3分,共15分) 1. B ; 2. C ; 3.A ; 4.D; 5.B 三.求值与计算题(每小题5分,共 10分) 1. 解:由于-------------------------3分而 ---------------------------------4分故由数列极限的迫敛性

数学分析期末考试题

数学分析期末考试题 一、叙述题:(每小题5分,共10分) 1、 叙述反常积分 a dx x f b a ,)(? 为奇点收敛的cauchy 收敛原理 2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)21 2111( lim n n n n +++++∞ →Λ 2、求摆线]2,0[)cos 1() sin (π∈? ??-=-=t t a y t t a x 与x 轴围成的面积 3、求?∞+∞-++dx x x cpv 211) ( 4、求幂级数∑∞ =-12 )1(n n n x 的收敛半径和收敛域 5、),(y x xy f u =, 求y x u ???2 三、讨论与验证题:(每小题10分,共30分) 1、y x y x y x f +-=2 ),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为 什么? 2、讨论反常积分 ? ∞ +0 arctan dx x x p 的敛散性。 3、讨论∑∞ =-+1 33))1(2(n n n n n 的敛散性。 四、证明题:(每小题10分,共20分) 1、 设f (x )在[a ,b ]连续,0)(≥x f 但不恒为0,证明0)(>? b a dx x f 2、 设函数u 和v 可微,证明grad (uv )=ugradv +vgradu

参考答案 一、1、,0.0>?>?δε使得δδδ<<?>?δε使得 D x x x x ∈<-?2,121,δ,成立ε<-)()(21x f x f 二、1、由于 x +11 在[0,1]可积,由定积分的定义知(2分) )21 2111( lim n n n n +++++∞ →Λ=2ln 11)11211111( 1lim 10=+=+++++?∞→dx x n n n n n n Λ(6分) 2、 、所求的面积为:220 23)cos 1(a dx x a ππ =-? (8分) 3、 解:π=++=++??-+∞→∞ +∞-A A A dx x x dx x x cpv 2 211lim 11) ( (3分) 4、解:11 lim 2=∞ →n n x ,r=1(4分) 由于x =0,x =2时,级数均收敛,所以收敛域为[0,2](4分) 5、解: y u ??=221y x f x f -(3分)3 22112212y x f xy f y f f y x u -++=???(5分) 三、1、解、 0lim lim lim ,1lim lim lim 2 02000200==+-==+-→→→→→→y y y x y x x x y x y x y x y x y x (5分)由于沿kx y =趋于(0,0)极限为k +11 所以重极限不存在(5分) 2、解:???∞+∞++=1100arctan arctan arctan dx x x dx x x dx x x p p p (2分),对?10arctan dx x x p ,由于 )0(1arctan 1+→→-x x x x p p 故p <2时?10arctan dx x x p 收敛(4分);?∞+1arctan dx x x p ,由于)(2arctan +∞→→x x x x p p π (4分)故p >1?∞+1arctan dx x x p 收敛,综上所述1

相关文档
最新文档