有限元中对称与反对称问题总结

有限元中对称与反对称问题总结
有限元中对称与反对称问题总结

对称与反对称问题总结

一、什么是对称或者反对称约束?

1、对称边界条件在结构分析中是指:不能发生对称面外(out-of-plane)的移动(translations)和对称面内(in-plane)的旋转(rotations)。

这句话可以理解为:在结构中施加对称条件为指向边界的位移和绕边界的转动被固定。

例如,若对称面的法向为X,如果你在对称面上的节点上施加了对称边界条件,那么:1)不能发生对称面外的移动导致节点处的UX(法向位移)为0。

2)不能发生对称面内的旋转导致ROTZ,ROTY(绕两个切线方向的转角)也为0。

2、反对称边界条件在结构分析中是指:不能发生对称面内(in-plane)的移动(translations)和对称面外(out-of-plane)的旋转(rotations)。

这句话可以理解为:在结构中施加反对称条件为平行边界的位移和绕垂直边界的转动被固定。

例如,若对称面的法向为X,如果你在对称面上的节点上施加了反对称边界条件,那么:1)不能发生对称面的移动导致节点处的UY,UZ(切向位移)为0。

2)不能发生对称面外的旋转导致ROTX(绕法线方向的转角)也为0。

建立对称约束的目的就是为了建模方便和减少计算量,这样就可以大大节省计算机的资源,从而更加细化网格,得到比研究整个模型更精确的结果!

注意:模态分析的时候应用对称约束会漏掉对称模态!

二、HM中的对称约束和反对称约束

这个功能在ansys中对应的为Symmetry或者unsymmetry。

HM中不能施加对称约束,但是可以直接对对称面上的节点施加单点约束就行,施加面外位移约束和面内转动约束。

即对垂直于对称面的方向施加位移约束,另外两个方向施加转动约束。

对于对称,对称面的法向移动和对称面内的转动全约束。比如对称面是yz平面,在HM 中:dof1=0 dof5=0 dof6=0。

反对称和对称正好相反,其意思对于同一个对称面,反对称和对称所约束的自由度正好相反。

对称中自由度如果是自由,反对称时被约束;对称中被约束的自由度,反对称时自由。

如果是实体单元,则没有旋转自由度;只需要约束UX或者UY,或者UZ即可。

三、HM中的3D对称问题

1、平面对称约束的施加方法?

OXY平面对称:等价于约束UZ,RotZ

OXZ平面对称:等价与约束UY,ROtY

OYZ平面对称:等价于约束UX,RotX;

以上所说的约束应该施加在正好位于对称平面上的面上的节点上。

2、轴对称约束(周期对称约束)比如1/3轴对称?

hyperworks中的radioss 可以做轴对称约束,只不过是通过间接方法实现的。

首先必须满足下面的三个必要条件:

1、几何模型完全对称

2、约束完全对称

3、载荷完全对称

注意:

左边的图形其上面的载荷是不满足轴对称要求的;

右边的图形其下面的约束是不满足轴对称要求的。

具体的操作步骤:

第一步、首先建立一个圆柱坐标系,坐标系的Z轴是圆柱的轴线方向,X轴为径向,Y 轴为切向。

第二步、将模型中保留下来的简化模型(圆柱部分)所有节点assign给坐标系(set displacement)。

第三步、约束简化模型的切向自由度(Y方向自由度),因为这些节点切向方向相互挤压,相互限制自由度。

对于需要导入ANSYS的情况,可以把对称面上的节点选中,放到set中保存,然后到ANSYS中施加对称约束。

在ANSYS中,施加对称约束条件和反对称约束条件的GUI分别为:

MainMenu>Preprocessor>Loads>DefineLoads>Apply>Structural>Displacement>Antisymm B.C.>On Nodes

MainMenu>Preprocessor>Loads>DefineLoads>Apply>Structural>Displacement>Symmetry

B.C.>On Nodes

2、在ANSYS中,施加对称约束条件和反对称约束条件的命令操作为:

DSYM,Lab,Normal,KCN

其中:Lab为对称的方式:正对称(Lab=SYMM)或反对称(Lab=ASYM)。

Normal为对称面在目前坐标系统(KCN)的法线方向Normal=(X、Y、Z)。当坐标系为非笛卡儿坐标系时,X代表R,Y代表θ,Z为Φ(坐标系为球坐标系或者环坐标系)。

四、HM中的2D对称或者反对称问题

1、首先需要明确的是:如果使用2D 实体单元,由于都只有Ux 和Uy 两个自由度,无论对称还是反对称约束,都不可能去约束转角自由度。同样的,如果是3D问题,但是采用实体单元建模,也不可能去约束转角自由度,只有在使用了梁单元(2D或3D) 或壳体单元的情况,才可能约束转角自由度。

2、对于2D 问题,建模平面平行于总体坐标系的XOY 平面,2D 问题的对称平面实际上是通过2D 建模平面中的对称线并垂直于2D 建模平面的一个平面,其两个切线一个在2D 平面中,即该对称线,另一个垂直于2D 建模平面;其法线在2D 建模平面中,与对称线垂直。因此,对于2D 平面中对称和反对称条件的设置应为:

(1)对称条件:沿对称线法向的位移和绕对称线的转角为零;

(2)反对称条件:沿对称线的位移和在建模平面内的转角为零。

此外仍需注意,根据前一点所述,如果只定义2D 实体单元,则没有转角的条件;如果定义了2D 梁单元,才有转角的条件。

有限元中的对称与反对称问题总结

有限元中对称与反对称问题总结

2

1

轴对称问题有限元法分析报告

轴对称问题的有限元 模拟分析

一、摘要: 轴对称问题是弹性空间问题的一个特殊问题,这类问题的特点是物体为某一平面绕其中心轴旋转而成的回转体。由于一般形状是轴对称物体,用弹性力学的解析方法进行应力计算,很难得到精确解,因此采用有限元法进行应力分析,在工程上十分需要,同时用有限元法得到的数值解,近似程度也比较好。 轴对称问题的有限元分析,可以将要分析的问题由三维转化为二维平面问题来解决。先是结构离散,然后是单元分析,再进行总纲集成,再进行载荷移置,最后是约束处理和求解线性方程组。分析完成之后用ABAQUS软件建模以及分析得出结果。 关键字:有限元法轴对称问题ABAQUS软件 二、前言: 1、有限元法领域介绍: 有限单元法是当今工程分析中获得最广发应用的

数值计算方法,由于其通用性和有效性,受到工程技术界的高度重视,伴随着计算机科学和技术的快速发展,现在已经成为计算机辅助设计和计算机辅助制造的重要组成部分。 由于有限元法是通过计算机实现的,因此有限元程序的编制以及相关软件的研发就变得尤为重要,从二十世纪五十年代以来,有限元软件的发展按目的和用途可分为专用软件和大型通用商业软件,而且软件往往集成了网络自动划分,结果分析和显示等前后处理功能,而且随着时间的发展,大型通用商业软件的功能由线性扩展到非线性,由结构扩展到非结构等等,这一系列强大功能的实现与运用都要求我们对有限元法的基础理论知识有较为清楚的认识以及对程序编写的基本能力有较好掌握。 2、研究报告目的: 我们小组研究的问题是:圆柱体墩粗问题。毛坯的材料假设为弹塑性,弹性模量210000MPa,泊松比0.3,塑性应力应变为

非协调元

5-6 Wilson 非协调元 理论和计算经验表明,单元的计算精度取决于单元位移模式中所包含的完全多项式的次数,位移模式中非完全的高次项一般不能提高精度。为此,E.Wilson 提出一种构造非协调单元的方法,对提高等参元计算的精度和效率是有意义的。 5-6-1 双线性单元计算纯弯曲问题的误差 图5-26a 表示受纯弯曲的双线性单元,图5-26b 为精确位移状态示意,图5-26c 为双线性单元的位移示意。若记 ' ' ,u v 为双线性单元位移,则有 ()()22 22111''111,(5101)22, (5102) u a xy v a a x a v b y u a xy v ==-+--==-不难证明式(5-101)的位移对应 1, (5103) x y xy a Ey σστ===- 确实是纯弯应力。而对式(5-102)的位移,其应力为 '''1 11 22,,(5104)112(1) x y y xy Ea E Ev a a y x v v v σστ= = = ---+ 显然它不是纯弯应力,导致误差的原因是位移模式中缺少2x 和2y 项。 5-6-2 Wilson 非协调元 为提高精度,Wilson 提出在位移场中附加内部无结点的位移项 e e =+d N δNa (5-105)

式中 222211000 011ξηξη?? --= ?--??N (5-106a ) 为附加位移场“形函数”矩阵 ()1234T e a a a a =a (5-106b ) 即为附加“位移参数”矩阵。由式(5-105)可得 e e =+εB δBa (5-107) 经单元分析推导可得: 11 e e E T E a ???? ??= ? ? ????? ??K K F +F δK K F a (5-108) 式中 1(5109)(5109)(5109)(5110)(5110) e e e T V e T V e T V e T T E b s V S e T T E b s V S K dV a K dV b K dV c dV dV a dV dV b σ σ =-=-=-=+-=+-???????B DB B DB B DB F N F N F F N F N F 由于e a 是单元内部自由度,与单元集合体的其他单元没有联系,因而可在单元阶段对式(5-108)进行如下改造 11()()e e e T e a E e -??=-??a K F K δ (5-111a ) () 1 11 1()e T e e e e e e a E a E ---=K K K K δF +F -K K F (5-111b ) 这一过程称为内部自由度的静力凝聚(简称静力凝聚)。若记 ()*111e e T a --K =K K K K (5-112a ) *11e e e e e E E a E -F =F -K (K )F (5-112b ) 则再把**e e E K F 和视为改造后的“双线性单元”的单元刚度、单元等效

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

轴对称图形的认识教学设计及反思

人教版二年级数学下册 《轴对称图形的认识》教学设计 执教者:李良军 教学目标: 知识与技能:通过观察、操作活动,让学生初步认识轴对称图形的基本特征。 过程与方法:观察、讨论法。准备一些轴对称图形的图片或剪纸(如窗花),也可用电脑上网收集各种各样轴对称的图片,让学生结合教材中的实物图进行观察、分析,找出这些图形有什么共同特点。 情感态度与价值观:学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。 教学重点: 认识轴对称图形的基本特征。 教学难点: 能判断出轴对称图形。 教学过程: 一、欣赏图片,建立表象 出示教材第28页单元主题图。 谈话:同学们,你们去过游乐场吗?这些玩具大家都玩过吗?那你对这个场景肯定不陌生了,你能给大家介绍下这个游乐场里有哪些好玩的项目吗?(请认识的学生介绍项目。) 小结:你瞧,这个游乐场可好玩了,高高的上空有缆车、摩天轮,下面还有小火车、滑滑梯、飞机,孩子们在这里玩得可高兴了,他们还在这儿放风筝呢,这里不仅好玩,还藏着好多数学知识,想不想认识它们呢?这节课我们就要在这样的游乐场里学习数学知识。 二、互动新授 1、小组合作,探究对称。 教师点击蜻蜓风筝和蝴蝶风筝的图形。

谈话:你看,这是在游乐场上的蝴蝶风筝和蜻蜓风筝,认真观察,它们在形状上有什么特征?(让学生用自己的语言说。) 教师小结并过渡:像这些物体,它们的左右两边是完全一样的,我们把这种现象称为“对称”,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。(教师出示叶子、蝴蝶和天安门图。)师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。 学生自主交流。 谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。) 2、教学“对称” 师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为——对称,这些物体就是对称现象。 3、剪一剪——认识轴对称图形。 (1)师:前面我们已经认识了对称图形,老师这里给每个小组都准备了一些纸张,大家能够用剪刀试着剪出一个对称图形码? 在剪之前先想一想怎样剪才能剪出对称的图形,然后动手试一试。 学生小组合作,完成剪一剪。 组织学生将自己小组剪出的对称图形进行展示并汇报各自的剪法。 (2)引导学生明确剪对称图形的方法。 要剪出一个对称图形,可以先把纸张进行对折再剪,最后沿对折的地方打开,这就形成了一个对称图形。 教师小结:像这样剪出来的图形都是对称的,它们都是轴对称图形。同桌交流,将剪出的图形对折,看看是否完全重合,说说同桌剪的是不是轴对称图形,怎样判断? 教师引导:我们剪轴对称图形时,先要对折,那就是说,把你手上的图形对折,如果能完全重合,就是轴对称图形。 学生操作,判断。指名上台演示,说说判断的理由。(展示时,教师注意让学生从不同的方向,横着、竖着、斜着的方向对折,感受不同

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

对称与不对称双塔连体结构的动力特性分析

对称与不对称双塔连体结构的动力特性分析 发表时间:2011-04-01T16:02:06.733Z 来源:《价值工程》2011年第3月上旬作者:滕振超何金洲 [导读] 以某十八层对称双塔结构和十八-十六层不对称双塔结构为例 滕振超 Teng Zhenchao;何金洲 He Jinzhou (东北石油大学土木建筑工程学院,大庆 163318) (School of Civil Engineering,Northeast Petroleum University,Daqing 163318,China) 摘要:以某十八层对称双塔结构和十八-十六层不对称双塔结构为例,通过ANSYS有限元分析软件,建立了两种结构的三维有限元模型,并对比分析了两种结构的动力特性,为这两种结构的设计应用积累经验。 Abstract: Citing one 18-floor symmetrical double-tower structure and one 18-floor and 16-floor unsymmetrical double-tower structure as examples, tridimensional finite element model is built according to ANSYS finite element analysis software. On the basis of it, the contrastive analysis of dynamic characteristics of the two double-tower connected structures is carried out, and experience is accumulated for the design and exploit of the two structures. 关键词:有限元分析双塔连体结构动力特性 Key words: finite element analysis;double-tower connected structure;dynamic characteristics 中图分类号:TU311.3 文献标识码:A 文章编号:1006-4311(2011)07-0061-02 0 引言 随着我国建筑业的迅速发展,高层多塔结构的应用也逐渐增多,其中以双塔结构应用最为广泛。高层建筑结构尤其是双塔结构体系的设计要求必须分析清楚结构本身的动力特性,结构的受力特点。双塔结构一般分为对称和不对称两种形式,有时建筑师为了追求设计的效果,经常采用非对称双塔结构来实现设计意图。与对称结构相比,不对称结构的布置形式多变,使得结构设计分析也非常困难。工程实践表明,不对称双塔结构的平扭耦联振动是其地震反应的主要特性,从而导致不同结构形式下的地震作用效应差别较大,地震和风荷载作用下结构受力复杂。对不对称双塔结构的动力特性进行分析,对此类结构的概念设计非常重要。本文运用ANSYS有限元分析软件,对对称和不对称双塔结构的动力特性进行了分析比较,从而对此类结构的设计和应用奠定基础。 1 三维有限元分析模型 某双塔楼连体结构为十八层钢筋混凝土结构,总高度54m,层高为3m,对称双塔连体结构简图如图1所示,不对称双塔连体结构总高度54m,层高3m;右塔十八层,左塔十六层,不对称双塔连体结构简图如图2所示;两种结构的三维有限元模型见图3和图4。梁柱均采用BEAM188单元,该单元基于铁木辛柯梁结构理论,并考虑了剪切变形的影响,楼板采用SHELL63壳单元。构件选型及材料见表1。

完整word版有限元分析轴对称问题

思考题 5-1 轴对称问题的定义 答:工程中又一类结构,其几何形状、边界条件、所受载荷都对称于某一轴线,这种情况下结构再载荷作用下位移、应变和应力也对称于这个轴线,这种问题成为轴对称问题。 5-2 轴对称问题一般采用的坐标系?作图说明每个坐标分量的物理意义 答:在描述轴对称弹性体问题的应力及变形时常采用圆柱坐标r,θ,z。 各位移分量是那几个自变量的函轴对称问题中每个点有几个位移分量? 5-3 数?的函数,与θ无关。都只是rz答:位移分量u, w, 轴对称问题中的每个点有哪几个应力分量?是那几个自变量的函数。5-4 4答:个应力分量; 5-5 轴对称问题中的每个点有哪几个应变分量?是那几个自变量的函数 答:4个应变分量 轴对称问题是三维问题?二维问题?最简单的轴对称单元是哪种单5-6

元?作图说明等于零。因此轴对称问题是二维问v答:由于轴对称,沿θ方向的环向(周向)位移平面(子午面)正交的截面r z题;三角形环单元。(三角形轴对称单元,这些圆环单元与是三角形) 写出三角形环单元的位移函数。满足完备性要求吗?5-7 答:满足完备性要求。 三角形环单元形函数的表达式?指出形函数的性质。5-8 三角形环单元的应力和应变的特点。其单元刚度矩阵是几阶的?5-9 个正应力分量均随位置变化;答:应力分量:剪应力为常量,其他3个应变分量为常量,环向应变不是常应变,而是与单应变分量:面内(子五面)3 元中各点的位置有关。单元刚度矩阵为六阶。有限元方法求解对称问题的基本步骤?5-10 结构离散化:对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相1. 连; {F}(e){Φ}(e)[K](e) 2.求出各单元的刚度矩阵:[K](e)是由单元节点位移量求单元节点力向量的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e);{Φ}集成总体刚度矩阵 3.[K]并写出总体平衡方程:总体刚度矩阵[K]是由整体节点位移向量求整体节点力向量,此即为总体平衡方程。{F}= [K] {Φ} 的转移矩阵,其关系式为沿某个方向n4.引入支撑条件,求出各节点的位移:节点的支撑条件有两种:一种是节点沿某个方向的位移为一给定值。的位移为零,另一种是节点n 求出各单元内的应力和应变 5. 对于有限元方法,其基本思路和解题步骤可归纳为:建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边

求解温度场的非线性有限元方法

Ξ 求解温度场的非线性有限元方法 刘福来1, 杜瑞燕2 (1.东北大学信息科学与工程学院,辽宁沈阳 110004;2.河北青年干部管理学院教务处,河北石家庄 050031) 摘要:从G alerkin 有限元方法出发,对自由表面上的辐射换热的数学表达式不作线性化处理,而是把温 度场的求解问题转化为非线性代数方程组的求解问题,并且用Newton 迭代法计算了温度场. 关键词:温度场;有限元方法;Newton 迭代法 中图分类号:O 242.21 文献标识码:A 文章编号:100025854(2005)0120021204 由文献[1]知,求解二维待轧过程的温度场,就是要求下面微分方程和初值问题的解: 52T 5 x 2+52T 5y 2=1α5T 5t ;(1) -k 5T 5n =0,(x ,y )∈S 2; (2) -k 5T 5n =σεA (T 4-T 4 ∞),(x ,y )∈S 3; (3) T (x ,y ,0)=T 0(x ,y ). (4)其中:α=λ ρc 称为导温系数,λ,ρ和c 分别为热导系数、密度和比热;S 2为给出热流强度Q 的边界面; T ∞为环境温度;S 3为给出热损失的边界面.对轧制问题的温度场,常常考虑的几种边界面[1] 是:对称 面、自由表面和轧件与轧辊的接触面.在辐射面上,边界条件的数学表达式为σεA (T 4-T 4 ∞)(其中:σ为 Stefan 2Boltzmann 常数,ε为物体表面黑度,A 为辐射面积,T ∞为环境温度)是温度T 的4次幂,具有强 烈的非线性.以往在实际计算中有2种处理方法[2],一种是简化问题的物理模型,有时将表达式看成常 数,有时将边界条件转化成h r A (T -T ∞)(其中h r =σ ε(T 2+T 2∞)(T +T ∞)),在轧制问题中求解温度场时文献[1,3]都采用了这一方法;另一种是处理问题的数学方法,即用近似方法求解非线性的偏微分方程问题.例如,用数值分析的方法,文献[4]中利用了差分方法. 本文中,笔者从G alerkin 有限元法出发,对自由表面上辐射换热的数学表达式不作线性处理,而是直接对非线性代数方程组用Newton 迭代法计算温度场,以二维待轧过程温度场的有限元解析进行讨论.1 G alerkin 有限元方法简介 将待求解区域Ω剖分为E 个单元,每个单元4个节点.设N i 是形函数(i =1,2,3,4),用4节点线性等参单元,则单元内的温度为 T e =N 1T 1+N 2T 2+N 3T 3+N 4T 4={N }T {T}e , (5) 其中:{N }=(N 1,N 2,N 3,N 4)T ;{T}e =(T 1,T 2,T 3,T 4)T .设ω1,ω2,…,ωn 是一组基函数,用 G alerkin 方法求方程(1)~(4)的解,实际上是求c 1,c 2,…,c n ,使T n =c 1ω1+c 2ω2+…+c n ωn 满足 κ Ω ρc 5T n 5t -k 52T n 5x 2+ 52T n 5y 2 ωi d x d y =0,i =1,2,…,n. (6) 对式(6)应用Green 公式,有 Ξ收稿日期:2004 0105;修回日期:20040420 作者简介:刘福来(1975),男,河北省唐山市人,东北大学博士研究生. 第29卷第1期2005年 1月河北师范大学学报(自然科学版) Journal of Hebei Normal University (Natural Science Edition )Vol.29No.1Jan.2005

新人教版二年级下册数学《轴对称图形的认识》教学设计教案

新人教版二年级下册数学《轴对称图形的认识》教学设计教案 第1课时轴对称图形的认识 教学目标: 1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。 2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。 教学重点: 认识轴对称图形的基本特征。 教学难点: 能判断出轴对称图形。 教法: 观察、讨论法。准备一些轴对称图形的图片或剪纸(如窗花),也可用电脑上网收集各种各样轴对称的图片,让学生结合教材中的实物图进行观察、分析,找出这些图形有什么共同特点。 教学过程: 一、欣赏图片,建立表象 出示教材第28页单元主题图。 谈话:同学们,你们去过游乐场吗?这些玩具大家都玩过吗?那你对这个场景肯定不陌生了,你能给大家介绍下这个游乐场里有哪些好玩的项目吗?(请认识的学生介绍项目。) 小结:你瞧,这个游乐场可好玩了,高高的上空有缆车、摩天轮,下面还有小火

车、滑滑梯、飞机,孩子们在这里玩得可高兴了,他们还在这儿放风筝呢,这里不仅好玩,还藏着好多数学知识,想不想认识它们呢?这节课我们就要在这样的游乐场里学习数学知识。 二、互动新授 1、小组合作,探究对称。 教师点击蜻蜓风筝和蝴蝶风筝的图形。 谈话:你看,这是在游乐场上的蝴蝶风筝和蜻蜓风筝,认真观察,它们在形状上有什么特征?(让学生用自己的语言说。) 教师小结并过渡:像这些物体,它们的左右两边是完全一样的,我们把这种现象称为“对称”,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。(教师出示叶子、蝴蝶和天安门图。) 师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。 学生自主交流。 谁愿意来把你们组的发现说给大家庭?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不必可以纠正。)2、教学“对称” 师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为——对称,这些物体就是对称现象。 3、剪一剪——认识轴对称图形。 (1)师:前面我们已经认识了对称图形,老师这里给每个小组都准备了一些纸

ANSYS结构有限元分析中的网格划分技术及其应用实例

一、前言 有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。同理,平面应力和平面应变情况设计的单元求解方程也不相同。在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。 CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲面混合造型两种 方法。Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。现有CAD软件对表面形态的表示法已经大大超过了CAE软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD 模型中其他表示法的表面形态转换到CAE软件的表示法上,转换精度的高低取决于接口程序的好坏。在转换过程中,程序需要解决好几何图形(曲线与曲面的空间位置)和拓扑关系(各图形数据的逻辑关系)两个关键问题。其中几何图形的传递相对容易实现,而图形间的拓扑关系容易出现传递失败的情况。数据传递面临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲面等。这些细节往往不是基于结构的考虑,保留这些细节,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负面影响。 CAD模型的“完整性”问题是困扰网格剖分的障碍之一。对于同一接口程序,数据传递的品质取决于CAD模型的精度。部分CAD模型对制造检测来说具备足够的精度,但对有限元网格剖分来说却不能满足要求。值得庆幸的是,这种问题通常可通过CAD软件的“完整性检查”来修正。改造模型可取的办法是回到CAD系统中按照分析的要求修改模型。一方面检查模型的完整性,另一方面剔除对分析无用的细节特征。但在很多情况下,这种“回归”很难实现,模型的改造只有依靠CAE软件自身。CAE中最直接的办法是依靠软件具有的“重构”功能,即剔除细部特征、缝补面和将小面“融入”大曲面等。有些专用接口在模型传递过程中甚至允许自动完成这种工作,并且通过网格剖分器检验模型的“完整性”,如发现“完整性”不能满足要求,接口程序可自动进行“完整性”修复。当几何模型距CAE分析的要求相差太大时,还可利用CAE程序的造型功能修正几何模型。“布尔运算”是切除细节和修理非完整特征的有效工具之一。 目前数据传递一般可通过专用数据接口,CAE程序可与CAD程序“交流”后生成与CAE 程序兼容的数据格式。另一种方式是通过标准图形格式如IGES、SAT和ParaSolid传递。现有的CAD平台与通用有限元平台一般通过IGES、STL、Step、Parasolid等格式来数据

轴对称图形的认识

《轴对称图形的认识》教案 教者:张春宝

《轴对称图形的认识》教案 教学目标: 1、通过观察、操作活动,让学生初步认识轴对称图形的基本特征。 2、学生的观察能力、想象能力得到培养,进一步发展学生的空间观念,同时感受对称图形的美。 教学重点:认识轴对称图形的基本特征。 教学难点:能判断出轴对称图形。 教法:观察、讨论法。准备一些轴对称图形的图片或剪纸(如窗花),也可用电脑上网收集各种各样轴对称的图片,让学生结合教材中的实物图进行观察、分析,找出这些图形有什么共同特点。 教学过程: 一、欣赏图片,建立表象 出示幻灯图片。 谈话:观察图片,根据图中一半的图形,你能猜出图中另一半是什么样的吗? 小结:你瞧,这个游乐场可好玩了,高高的上空有缆车、摩天轮,下面还有小火车、滑滑梯、飞机,孩子们在这里玩得可高兴了,他们还在这儿放风筝呢,这里不仅好玩,还藏着好多数学知识,想不想认识它们呢?这节课我们就要在这样的游乐场里学习数学知识。 二、互动新授 1、小组合作,探究对称。

教师点击蜻蜓和蝴蝶等图形。 谈话:大家看了这些图形后有什么发现?认真观察,它们在形状上有什么特征?(让学生用自己的语言说。) 教师小结并过渡:像这些物体,它们的左右两边是完全一样的,我们把这种现象称为“对称”,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。(教师出示叶子、蝴蝶和天安门图。) 师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。 学生自主交流。 谁愿意来把你们组的发现说给大家听?(学生在汇报时,教师尽量鼓励学生用自己的语言来表达,对学生一些不准确的表达无须过分强求,不准确的可以纠正。) 2、教学“对称” 师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为——对称,这些物体就是对称现象。 3、剪一剪——认识轴对称图形。 (1)师:前面我们已经认识了对称图形,老师这里给每个小组都准备了一些纸张,大家能够用剪刀试着剪出一个对称图形码? 在剪之前先想一想怎样剪才能剪出对称的图形,然后动手试一试。学生小组合作,完成剪一剪。 组织学生将自己小组剪出的对称图形进行展示并汇报各自的剪法。

有限元中对称与反对称问题总结

对称与反对称问题总结 一、什么是对称或者反对称约束? 1、对称边界条件在结构分析中是指:不能发生对称面外(out-of-plane)的移动(translations)和对称面内(in-plane)的旋转(rotations)。 这句话可以理解为:在结构中施加对称条件为指向边界的位移和绕边界的转动被固定。 例如,若对称面的法向为X,如果你在对称面上的节点上施加了对称边界条件,那么:1)不能发生对称面外的移动导致节点处的UX(法向位移)为0。 2)不能发生对称面内的旋转导致ROTZ,ROTY(绕两个切线方向的转角)也为0。 2、反对称边界条件在结构分析中是指:不能发生对称面内(in-plane)的移动(translations)和对称面外(out-of-plane)的旋转(rotations)。 这句话可以理解为:在结构中施加反对称条件为平行边界的位移和绕垂直边界的转动被固定。 例如,若对称面的法向为X,如果你在对称面上的节点上施加了反对称边界条件,那么:1)不能发生对称面的移动导致节点处的UY,UZ(切向位移)为0。 2)不能发生对称面外的旋转导致ROTX(绕法线方向的转角)也为0。 建立对称约束的目的就是为了建模方便和减少计算量,这样就可以大大节省计算机的资源,从而更加细化网格,得到比研究整个模型更精确的结果! 注意:模态分析的时候应用对称约束会漏掉对称模态! 二、HM中的对称约束和反对称约束 这个功能在ansys中对应的为Symmetry或者unsymmetry。 HM中不能施加对称约束,但是可以直接对对称面上的节点施加单点约束就行,施加面外位移约束和面内转动约束。 即对垂直于对称面的方向施加位移约束,另外两个方向施加转动约束。 对于对称,对称面的法向移动和对称面内的转动全约束。比如对称面是yz平面,在HM 中:dof1=0 dof5=0 dof6=0。 反对称和对称正好相反,其意思对于同一个对称面,反对称和对称所约束的自由度正好相反。 对称中自由度如果是自由,反对称时被约束;对称中被约束的自由度,反对称时自由。 如果是实体单元,则没有旋转自由度;只需要约束UX或者UY,或者UZ即可。 三、HM中的3D对称问题 1、平面对称约束的施加方法? OXY平面对称:等价于约束UZ,RotZ OXZ平面对称:等价与约束UY,ROtY OYZ平面对称:等价于约束UX,RotX; 以上所说的约束应该施加在正好位于对称平面上的面上的节点上。 2、轴对称约束(周期对称约束)比如1/3轴对称? hyperworks中的radioss 可以做轴对称约束,只不过是通过间接方法实现的。 首先必须满足下面的三个必要条件: 1、几何模型完全对称 2、约束完全对称 3、载荷完全对称 注意:

轴对称问题的有限元分析

第1节基本知识 本节的有限元对象为轴对称问题,目的是学习将3D问题转化为2D问题分析的轴对称方法,涉及如何选取轴对称单元、建模规律、载荷的施加方法和后处理技术。 一、轴对称问题的定义 轴对称问题是指受力体的几何形状、约束状态,以及其它外在因素都对称于某一根轴(过该轴的任一平面都是对称面)。轴对称受力体的所有应力、应变和位移均对称于这根轴。 二、用ANSYS解决2D轴对称问题的规定 用ANSYS解决2D轴对称问题时,轴对称模型必须在总体坐标系XOY平面的第一象限中创建,并且Y轴为轴旋转的对称轴。 求解时,施加自由约束、压力载荷、温度载荷和Y方向的加速度可以像其它非轴对称模型一样进行施加,但集中载荷有特殊的含义,它表示的是力或力矩在360°范围内的合力,即输入的是整个圆周上的总的载荷大小。同理,在求解完毕后进行后处理时,轴对称模型输出的反作用力结果也是整个圆周上的合力输出,即力和力矩按总载荷大小输出。 在ANSYS中,X方向是径向,Z方向是环向,受力体承载后的环向位移为零,环向应力和应变不为零。 常用的2D轴对称单元类型和用途见表11-1。 表11-1 2D轴对称常用结构单元列表

的高阶单的高阶单 在利用ANSYS进行有限元分析时,将这些单元定义为新的单元后,设置单元配置项KEYOPT(3)为Axisymmetric(Shell51和Shell61单元本身就是轴对称单元,不用设置该项),单元将被指定按轴对称模型进行计算。 后处理时,可观察径向和环向应力,它对应的是SX与SZ应力分量,并且在直角坐标系下观察即可。 可以通过轴对称扩展设置将截面结果扩展成任意扇型区域大小的模型,以便更加真实地观察总体模型的各项结果。 轴对称问题有限元分析实例 2D节2第

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

对称结构有限元分析

对称结构有限元分析 ----3节点三角形单元的分析 一问题分析(对称框架线弹性实体的静力平衡问题) 图是一个方形弹性实体,单位边长、单位厚度、承受等效竖向压力2 1m,其中边界条 KN 件暗示着存在两组相对称的平面,因此现考虑的仅是问题的。每个节点上的自由度号码代表了各自在x和y方向上可能的位移。 结构和单元信息NELS NCE NN NIP 8 2 9 1 AA BB E V

.5 .55 1.E6 .3 约束节点自由度信息NR 5 K , NF(:,K), I=1,NR 10 1 4 0 1 7 0 0 8 1 9 1 0 载荷信息LOADED_NODES 3 (K, LOADS(NF(:,K)), I=1 , LOADED_NODES) 1 .0 -.25 2 .0 -.5 3 .0 -.25 333 3节点三角形单元网络的总体节点和单元编号 3节三角形单元局部坐标系中节点和自由度编号

二理论基础(有限元方法原理) 通过弹性力学变分原理建立弹性力学问题有限元方法表达格式的基本步骤。最小位能原理的未知场变量是位移,以结点位移为基本未知量,并以最小位能原理为基础建立的有限元为位移元。它是有限元方法中应用最为普遍的单元,也是本书主要讨论的单元。 对于一个力学或无力问题,在建立其数学模型以后,用有限元方法对它进行分析的首要步骤是选择单元形式。平面问题3结点三角形单元是有限元方法最早采用,而且至今仍经常采用的单元形式。我们将以它作为典型,讨论如何应用广义坐标建立单元位移模式与位移插值函数,以及如何根据最小位能原理建立有限元求解方程的原理、方法与步骤,并进而引出弹性力学问题有限元方法的一般表达格式。对于前一问题,着重讨论选择广义坐标和有限元位移模式的一般原则和建立其位移插值函数的一般步骤。对于后一问题,着重讨论单元刚度矩阵和单元载荷向量的形式,总体刚度矩阵和总体载荷向量集成的原理和方法,以及它们各自的特性。 作为一种数值方法,有限元解的收敛性无疑是十分重要的问题,以后将讨论解的收敛准则及其物理意义,所阐明的原则在以后还将得到进一步的应用和具体化。 在建立了有限元的一般表达格式以后,原则上可以将它推广到平面问题以外的其他弹性力学问题和采用任何形式的单元。轴对称问题具有很广泛的应用领域,轴对称问题3结点三角形 单元的表达格式可以看作是平面问题此种单元表达格式的直接推广。 一)弹性力学平面问题的有限元格式 结点三角形单元是有限元方法中最早提出,并且至今仍广泛应用的单元,由于三角形单元对复杂边界有较强的适应能力,因此很容易将一个二维离散成有限个三角形单元,如图1所示。在边界上以若干段直线近似原来的曲线边界,随着单元增多,这种拟合将趋于精确。我们在讨论如何应用有限元方法分析各类具体问题的开始,将以平面问题3结点三角形单元 为例来阐明弹性力学问题有限元分析的表达格式和一般步 1.1)单元位移模式及插值函数的构造 典型的3节点三角形单元节点编码i,j,m ,以逆时针方向编码为正向。每个节点有位移分量如图所示。 ?? ? ???=i i v u i a (i,j,m) 每个单元有6个节点位移即6个节点自由度,亦即 [ ] T m m j j i i m j i e v u v u v u a a a =??? ? ??????=a 1.2) 单元的位移模式和广义坐标 在有限元方法中单元的位移模式或称位移函数一般采用多项式作为近似函数,因为 多项式运算简便,并且随着项数的增多,可以逼近任何一段光滑的函数曲线。多项式的选取由低次到高次。

部编人教版二年级数学下册 认识轴对称图形【教案】【新版】

认识轴对称图形 教学目标: 1、联系生活中的具体物体,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的一些基本特征,并初步知道对称轴。 2、能根据轴对称图形的特征,在一组图形中,识别出轴对称图形。 3、在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,体会学习数学的乐趣。 教学重点: 认识轴对称图形的基本特征,准确判断生活中哪些物体是轴对称图形。教学难点: 能够找出轴对称图形的对称轴。 教学方法:观察、讨论法。 教学准备:多媒体课件、白纸、剪刀等。 教学过程: 一、创设情境,引入新知。 1、同学们,生活中有很多有趣的现象,只要你有一双善于发现的眼睛,就能发现许多的知识。请同学们仔细观察P28页的这幅图,你能从图中发现哪些有趣现象? 2、(学生自由回答) 3、(出示第28页的主题图)是啊,在游乐场里,空中飞舞着的蜻蜓风筝、蝴蝶风筝多漂亮呀,仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴含着这节课我们要学习的知识——对称。【板

书:对称】这节课我们就一起来探索跟对称有关的知识。 二、探索新知。 (一)认真观察,体验对称。 1、观察图形,发现特点。 (1)看书第29页的树叶、蝴蝶、天安门的图,这些图形它们在外形上都有一个共同的数学特点,你能发现吗? (2)引导学生从形状、花纹、大小、图案上观察。 (3)学生汇报交流自己的发现。 树叶图:以树叶中间叶脉所在的直线为界,左右两边的形状和大小都是相同的。 蝴蝶图:以蝴蝶中间所在的直线为界,左右两边的形状和大小都是相同的。 天安门城楼图:以天安门城楼中间所在的直线为界,左右两边的形状和大小都是相同的。 (4)教师小结。 这些图形的左右两边的形状和大小完全相同,也就是说如果沿图形中间的一条直线对折后,这些图形的左右两边能够完全重合。 2、认识对称现象,理解“对称”的含义。 像图中的树叶、蝴蝶、天安门城楼这样,沿某一条直线对折后,左右两边能够完全重合,具有这种特征的物体或图形,就是对称的。3、列举生活中的对称现象。 (1)生活中的对称现象还有很多,你能举例说说。

相关文档
最新文档