蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP中的应用(附程序)
蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用

1 蚁群算法(ACA )原理

1.1 基本蚁群算法的数学模型

以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。

设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n

i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图

(,,)g C L =Γ实现的。

蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着

k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路

径的启发信息来计算状态转移概率。()k

ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移

到元素(城市)j 的状态转移概率。

()*()()*()()0k ij ij k k

ij ij ij s allowed t t j allowed t t p t αβ

αβτητη???????????

∈?????=?????

???

∑若否则

(1)

式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下:

1

()ij ij

t d η=

(2)

式中,ij d 表示相邻两个城市之间的距离。对蚂蚁k 而言,ij d 越小,则()ij t η越

大,()k

ij p t 也就越大。显然,该启发函数表示蚂蚁从元素(城市) i 转移到元素(城

市) j 的期望程度。

为了避免残留信息素过多引起残留信息淹没启发信息,在每只蚂蚁走完一步或者完成对所有n 个城市的遍历(也是一个循环结束)后,要对残留信息进行更新处理。这种更新策略模仿了人类大脑记忆的特点,在新信息不断存入大脑的同时,存储在大脑中的旧信息随着时间的推移逐渐淡化,甚至忘记。由此,t n +时刻在路径(,)i j 上的信息量可按如下规则进行调整:

()(1)*()()ij ij ij t n t t τρττ+=-+? (3)

1()()m

k

ij ij k t t ττ=?=?∑ (4)

式中ρ表示信息挥发系数,则1ρ-表示信息素残留因子,为了防止信息的无限积累,ρ的取值范围为:[0,1)ρ?;()ij t τ?表示本次循环中路径(,)i j 上的信

息素增量,初始时刻()0ij t τ?=,()k

ij t τ?表示第k 只蚂蚁在本次循环中留在路径

(,)i j 上的信息量。

根据信息素更新策略的不同,Dorigo M 提出了三种不同的基本蚁群算法模型,分别称之为Ant-Cycle 模型、Ant-Quantity 模型及Ant-Density 模型,其

差别在于()k ij t τ?求法的不同。

在Ant-Cycle 模型中

,k i j ()0k

k

ij Q

L t τ???=???

若第只蚂蚁在本次循环中经过(,)

,否则

(5)

式中,Q 表示信息素强度,它在一定程度上影响算法的收敛速度;k L 表示k 只蚂蚁在本次循环中所走路径的总长度。

在Ant-Quantity 模型中

,k i j ()0k

ij

ij Q d t τ???=???

若第只蚂蚁在t 和t+1之间经过(,)

,否则

(6)

在Ant-Density 模型中

,k i j ()0

k

ij Q t τ??=?

?若第只蚂蚁在t 和t+1之间经过(,)

,否则

(7)

区别:式(6)和式(7)中利用的是局部信息,即蚂蚁完成一步后更新路径上的信息素;而式(5)中利用的是整体信息,即蚂蚁完成一个循环后更新所有路径上的信息素,在求解TSP 时性能较好,因此通常采用式(5)作为蚁群算法的基本模型。

1.2 基本蚁群算法的实现

以下是解决TSP 问题的蚁群算法的基本流程描述,其中的参数设置来自于Dorigo 等人的试验。基本蚁群算法的具体实现步骤如下:

(1) 参数初始化。令时间t=0和循环次数0c N =,设置最大循环次数max c N ,将m 蚂蚁置于n 个元素(城市)上,另有向图上每条边(,)i j 的初始化信息量

()ij t const τ=,其中const 表示常数,且初始时刻(0)0ij τ?=。

(2) 循环次数1c c N N ←+。 (3) 蚂蚁等禁忌表索引号k=1。 (4) 蚂蚁数目1k k ←+。

(5) 蚂蚁个体根据状态转移概率公式(1)计算的概率选择元素(城市)j 并前进,{}k j C tabu ∈-

(6) 修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该元素(城市)移动到该蚂蚁个体的禁忌表中。

(7) 若集合C 中元素(城市)未遍历完,即k

(8) 根据公式(3)和(4)更新每条路径上的信息量。

(9) 若满足结束条件,即如果循环次数max c c N N ≥,则循环结束并输出程序计算结果,否则清空禁忌表并跳转到第(2)步。

2 程序实现(城市为中国各省省会城市)

2.1数据列表

TSP 问题中的城市选为中国各省省会城市,其实际地理位置的经纬度如表1所示。

表1 中国各省省会城市所在地理位置的经纬度

2.2程序实现

程序说明:程序是在GreenSim团队编写的程序的基础上进行修改得到,区别在于在程序中加入了更多的说明,便于MATLAB初学者以及对蚁群算法不是很熟悉的读者理解;对程序进行了略微的修改,加入了主程序和真实城市坐标数据。其中主程序名称为ACAmain_city.m,其是可直接运行的程序。运行结果如图1-图3所示,结果经过略微调整。图2为将省会城市改成相应的省(或直辖市、特别行政区)后的图形。结果均为一次运行所得,但由于算法的随机性,每次运行结果可能会不同。另外,算法的初始条件对运行结果有很大影响,各种

初始条件取值在附录中的程序已给出。

图1 ACA找到的最佳的中国环游路径(省会城市)

图2 ACA找到的最佳的中国环游路径(省)

图3 ACA迭代收敛曲线

附录:(程序)

注意:程序是直接从MATLAB中复制过来,拷贝到Word中可能会自动换行,再拷贝到MATLAB中运行时,应作相应调整。函数文件应放到新的m文件中,并以相应的文件名命名,可运行的只有主程序。

A: 主程序

%% 蚁群算法求解最短路径问题:ACAmain_city.m

clc; close all; clear all; tic

%% 中国各省省会城市23+5(直辖市4,特别行政区2)所在地理位置的经纬度(东经-北纬)C=[ 117.17 31.52; 119.18 26.05; 103.51 36.04; 113.14 23.08; 106.42 26.35; 110.20 20.02; 114.30 38.02; 113.40 34.46; 126.36 45.44; 114.17 30.35; 112.59 28.12; 125.19 43.54; 118.46 32.03; 115.55 28.40; 123.25 41.48; 101.48 36.38; 117.00 36.40; 112.33

37.54; 108.57 34.17; 104.04 30.40; 102.42 25.04; 120.10 30.16; 121.30 25.03; 108.19 22.48; 111.41 40.48; 106.16 38.27; 90.08 29.39; 87.36 43.45; 121.29 31.14; 116.24 39.55; 117.12 39.02; 106.33 29.35; 115.07 21.33; 115.12 21.23];

T=[ '合肥','福州','兰州','广州','贵阳','海口','石家','郑州','哈尔','武汉','长沙','长春','南京','南昌','沈阳','西宁','济南','太原','西安','成都','昆明','杭州','台北','南宁','呼和','银川','拉萨','乌鲁','上海','北京','天津','重庆','澳门','香港'];

%% 参数初始化

NC_max=150; m=34; Alpha=1; Beta=5; Rho=0.1; Q=100;

%% 绘制找到的最优路径

[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha, Beta,Rho,Q); %函数调用

figure(1); DrawCity(C,T,Shortest_Route); %绘制找到的最优路径

toc %计算运行时间

%% 绘制收敛曲线

figure(2); iter=1:length(L_best);

plot(iter,L_best,'-m*',iter,L_ave,':rp','LineWidth',2)

xlabel('迭代次数'); legend('各代最佳路线的长度','各代路线的平均长度');

grid on; toc

B: 函数文件1

%% 利用蚁群算法解决TSP问题的函数文件ACATSP.m

function

[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,

Beta,Rho,Q)

%% Ant Colony Algorithm for Traveling Salesman Problem

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的参数

%% Beta 表征启发式因子重要程度的参数

%% Rho 信息素蒸发系数

%% Q 信息素增加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%% NC_max=150; m=25; Alpha=1; Beta=5; Rho=0.1; Q=100;

%%

===================================================== ===========

%% 第一步:变量初始化

n=size(C,1); % n表示问题的规模(城市个数)

D=zeros(n,n); % D表示完全图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; % 计算两城市之间的距离

else

D(i,j)=eps; % eps = 2.2204e-016,i=j,则距离为0

end

D(j,i)=D(i,j); % 距离矩阵为对称均值(n*n的矩阵)

end

end

Eta=1./D; %Eta为启发因子,这里设为距离的倒数(n*n的矩阵)

Tau=ones(n,n); %Tau为信息素矩阵,初始化全为1,

Tabu=zeros(m,n); %存储并记录路径的生成tabu:踏步(停止,禁忌表)(m*n的矩阵)

NC=1; %迭代计数器

R_best=zeros(NC_max,n); %各代最佳路线(行数为最大迭代次数NC_max,列数为城市个数n)

L_best=inf.*ones(NC_max,1); %各代最佳路线的长度(inf:无穷大)

L_ave=zeros(NC_max,1); %各代路线的平均长度

%%

while NC<=NC_max %停止条件之一:达到最大迭代次数

%% 第二步:将m只蚂蚁放到n个城市上

Randpos=[];

for i=1:(ceil(m/n)) %ceil表示向无穷方向取整

Randpos=[Randpos,randperm(n)]; %randperm(n):随机产生一个整数排列end

Tabu(:,1)=(Randpos(1,1:m))'; %每只蚂蚁(m只)都对应有一个位置,Tabu(:,1)为每只蚂蚁的走过的第一个城市

%% 第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游

for j=2:n %城市从第二个开始

for i=1:m

visited=Tabu(i,1:(j-1)); %已访问的城市

J=zeros(1,(n-j+1)); %待访问的城市

P=J; %待访问城市的选择概率分布(初始化)

Jc=1; %循环下标

for k=1:n %利用循环求解待访问的城市,如果第k个城市不属于已访问的城市,则其为待访问的城市

if isempty(find(visited==k, 1))

% if length(find(visited==k))==0

J(Jc)=k;

Jc=Jc+1; %下标加1,便于下一步存储待访问的城市

end

end

%下面计算待访问城市的概率分布

for k=1:length(J) %length(J)表示待访问的城市的个数

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta); %概率计算公式中的分子

end %Tau为信息素矩阵,Eta为启发因子矩阵

P=P/(sum(P)); %概率分布:长度为待访问城市个数

%按概率原则选取下一个城市

Pcum=cumsum(P); %cumsum求累加和: cumsum([1 1 1])= 1 2 3,求累加的目的在于使Pcum的值总有大于rand的数

Select=find(Pcum>=rand); %当累积概率和大于给定的随机数,则选择个被加上的最后一个城市作为即将访问的城市

to_visit=J(Select(1)); %to_visit表示即将访问的城市

Tabu(i,j)=to_visit; %将访问过的城市加入禁忌表中

end

end

if NC>=2 %如果迭代次数大于等于2,则将上一次迭代的最佳路线存入Tabu的第一行中

Tabu(1,:)=R_best(NC-1,:);

end

%% 第四步:记录本次迭代最佳路线

L=zeros(m,1);

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1)); %求路径距离

end

L(i)=L(i)+D(R(1),R(n)); %加上最后一个城市与第一个城市之间的距离end

L_best(NC)=min(L); %最优路径为距离最短的路径

pos=find(L==L_best(NC)); %找出最优路径对应的位置:即是哪只个蚂蚁R_best(NC,:)=Tabu(pos(1),:); %确定最优路径对应的城市顺序

L_ave(NC)=mean(L); %求第k次迭代的平均距离

NC=NC+1;

%% 第五步:更新信息素

Delta_T au=zeros(n,n); %Delta_Tau(i,j)表示所有的蚂蚁留在第i个城市到第j个城市路径上的信息素增量

for i=1:m

for j=1:(n-1) %建立了完整路径后路径后在释放信息素:蚁周系统Q/L Delta_T au(Tabu(i,j),T abu(i,j+1))=Delta_Tau(Tabu(i,j),T abu(i,j+1))+Q/L(i);

end

Delta_T au(Tabu(i,n),T abu(i,1))=Delta_T au(Tabu(i,n),T abu(i,1))+Q/L(i);

end

Tau=(1-Rho).*T au+Delta_T au; %信息素更新公式

%% 第六步:禁忌表清零

Tabu=zeros(m,n); %每迭代一次都将禁忌表清零

end

%% 第七步:输出结果

Pos=find(L_best==min(L_best)); %找到L_best中最小值所在的位置并赋给Pos Shortest_Route=R_best(Pos(1),:); %提取最短路径

Shortest_Length=L_best(Pos(1)); %提取最短路径的长度

C: 函数文件2

%% 绘制各个位置坐标即利用ACA找到的最优路径的函数DrawCity.m

function DrawCity(C,T,R)

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% T text 各城市的说明

%% R Route 路线

%%================================================== ==================

N=length(R);

scatter(C(:,1),C(:,2),'*','LineWidth',3);hold on; %绘制散点图

scatter(C(:,1),C(:,2),'r','LineWidth',2);hold on; %绘制散点图

%[C(R(1),1),C(R(N),1)]最佳路径第一个城市和最后一个城市的横坐标

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'m','LineWidth',2);hold on;

for ii=2:N %绘制其他城市之间的连线

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'-','LineWidth',2); hold on; end

for k=1:length(C(:,1)) %城市标注

text(C(k,1)+0.2,C(k,2)+0.3,T(2*k-1:2*k)); hold on;

end

% xlim([85 130]); ylim([15 50]); %限定横纵坐标显示范围xlabel('东经'); ylabel('北纬'); title('ACA找到的最佳路径'); grid on %绘制网络线

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

基本蚁群算法

蚁群算法浅析 摘要:介绍了什么是蚁群算法,蚁群算法的种类,对四种不同的蚁群算法进行了分析对比。详细阐述了蚁群算法的基本原理,将其应用于旅行商问题,有效地解决了问题。通过对旅行商问题C++模拟仿真程序的详细分析,更加深刻地理解与掌握了蚁群算法。 关键词:蚁群算法;旅行商问题;信息素;轮盘选择 一、引言 蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。 蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。 最基本的蚁群算法见第二节。目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。本文将终点介绍随机蚁群算法。 二、基本蚁群算法 (一)算法思想 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。 蚁群算法的基本思想如下图表示:

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

蚁群算法综述

《智能计算—蚁群算法基本综述》 班级:研1102班 专业:计算数学 姓名:刘鑫 学号: 1107010036 2012年

蚁群算法基本综述 刘鑫 (西安理工大学理学院,研1102班,西安市,710054) 摘要:蚁群算法( ACA)是一种广泛应用于优化领域的仿生进化算法。ACA发展背景着手,分析比较国内外ACA研究团队与发展情况立足于基本原理,分析其数学模型,介绍了六种经典的改进模型,对其优缺点进行分析,简要总结其应用领域并对其今后的发展、应用做出展望。 关键词:蚁群;算法;优化;改进;应用 0引言 专家发现单个蚂蚁只具有一些简单的行为能力。但整个蚁群却能完成一系列复杂的任务。这种现象是通过高度组织协调完成的1991年。意大利学者M.Dorigo 首次提出一种新型仿生算法ACA。研究了蚂蚁的行为。提出其基本原理及数学模型。并将之应用于寻求旅行商问题(TSP)的解。 通过实验及相关理论证明,ACA有着有着优化的选择机制的本质。而这种适应和协作机制使之具有良好的发现能力及其它算法所没有的优点。如较强的鲁棒性、分布式计算、易与其他方法结合等;但同时也不应忽略其不足。如搜索时间较长,若每步进行信息素更新,计算仿真时所占用CPU时间过长:若当前最优路径不是全局最优路径,但其信息素浓度过高时。靠公式对信息素浓度的调整不能缓解这种现象。会陷人局部收敛无法寻找到全局最优解:转移概率过大时,虽有较快的收敛速度,但会导致早熟收敛。所以正反馈原理所引起的自催化现象意在强化性能好的解,却容易出现停滞现象。笔者综述性地介绍了ACA对一些已有的提出自己的想法,并对其应用及发展前景提出了展望。 1 蚁群算法概述 ACA源自于蚁群的觅食行为。S.Goss的“双桥”实验说明蚂蚁总会选择距食物源较短的分支蚂蚁之间通过信息素进行信息的传递,捷径上的信息素越多,吸引的蚂蚁越多。形成正反馈机制,达到一种协调化的高组织状态该行为称集体自催化目前研究的多为大规模征兵,即仅靠化学追踪的征兵。 1 .1 蚁群算法的基本原理

蚁群算法综述

智能控制之蚁群算法 1引言 进入21世纪以来,随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 蚁群算法是近些年来迅速发展起来的,并得到广泛应用的一种新型模拟进化优化算法。研究表明该算法具有并行性,鲁棒性等优良性质。它广泛应用于求解组合优化问题,所以本文着重介绍了这种智能计算方法,即蚁群算法,阐述了其工作原理和特点,同时对蚁群算法的前景进行了展望。 2 蚁群算法概述 1、起源 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。 Deneubourg及其同事(Deneubourg et al.,1990; Goss et al.,1989)在可监控实验条件下研究了蚂蚁的觅食行为,实验结果显示这些蚂蚁可以通过使用一种称为信息素的化学物质来标记走过的路径,从而找出从蚁穴到食物源之间的最短路径。 在蚂蚁寻找食物的实验中发现,信息素的蒸发速度相对于蚁群收敛到最短路径所需的时间来说过于缓慢,因此在模型构建时,可以忽略信息素的蒸发。然而当考虑的对象是人工蚂蚁时,情况就不同了。实验结果显示,对于双桥模型和扩展双桥模型这些简单的连接图来说,同样不需要考虑信息素的蒸发。相反,在更复杂的连接图上,对于最小成本路径问题来说,信息素的蒸发可以提高算法找到好解的性能。 2、基于蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的环境作出反应,也只对其周围的局部环境产生影响。 (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的自适应表现,即蚂蚁是反应型适应性主体。 (3)在个体水平上,每只蚂蚁仅根据环境作出独立选择;在群体水平上,单

蚁群算法

蚁群算法的改进与应用 摘要:蚁群算法是一种仿生优化算法,其本质是一个复杂的智能系统,它具有较强的鲁棒性、优良的分布式计算机制和易于与其他方法结合等优点。但是现在蚁群算法还是存在着缺点和不足,需要我们进一歩改进,如:搜索时间长、容易出现搜索停滞现象、数学基础还不完整。本文首先说明蚁群算法的基本思想,阐述了蚁群算法的原始模型及其特点,其次讨论如何利用遗传算法选取蚁群算法的参数,然后结合对边缘检测的蚁群算法具体实现过程进行研究分析,最后对本论文所做的工作进行全面总结,提出不足之处,并展望了今后要继续研究学习的工作内容。 关键词:蚁群算法;边缘检测;阈值;信息素;遗传算法; 1 前言 蚁群算法是近年来提出的一种群体智能仿生优化算法,是受到自然界中真实的蚂蚁群寻觅食物过程的启发而发现的。蚂蚁之所以能够找到蚁穴到食物之间的最短路径是因为它们的个体之间通过一种化学物质来传递信息,蚁群算法正是利用了真实蚁群的这种行为特征,解决了在离散系统中存在的一些寻优问题。该算法起源于意大利学者 Dorigo M 等人于 1991 年首先提出的一种基于种群寻优的启发式搜索算法,经观察发现,蚂蚁在寻找食物的过程中其自身能够将一种化学物质遗留在它们所经过的路径上,这种化学物质被学者们称为信息素。这种信息素能够沉积在路径表面,并且可以随着时间慢慢的挥发。在蚂蚁寻觅食物的过程中,蚂蚁会向着积累信息素多的方向移动,这样下去最终所有蚂蚁都会选择最短路径。该算法首先用于求解著名的旅行商问题(Traveling Salesman Problem,简称 TSP)并获得了较好的效果,随后该算法被用于求解组合优化、函数优化、系统辨识、机器人路径规划、数据挖掘、网络路由等问题。 尽管目前对 ACO 的研究刚刚起步,一些思想尚处于萌芽时期,但人们已隐隐约约认识到,人类诞生于大自然,解决问题的灵感似乎也应该来自大自然,因此越来越多人开始关注和研究 ACO,初步的研究结果已显示出该算法在求解复杂优化问题(特别是离散优化问题)方面的优越性。虽然 ACO 的严格理论基础尚未奠定,国内外的有关研究仍停留在实验探索阶段,但从当前的应用效果来看,这种自然生物的新型系统寻优思想无疑具有十分光明的前景。但该算法存在收敛速度慢且容易出现停滞现象的缺点,这是因为并不是所有的候选解都是最优解,而候选解却影响了蚂蚁的判断以及在蚂蚁群体中,单个蚂蚁的运动没有固定的规则,是随机的,蚂蚁与蚂蚁之间通过信息素来交换信息,但是对于较大规模的优化问题,这个信息传递和搜索过程比较繁琐,难以在较短的时间内找到一个最优的解。 由于依靠经验来选择蚁群参数存在复杂性和随机性,因此本文最后讨论如何利用遗传算法选取蚁群算法的参数。遗传算法得到的蚁群参数减少了人工选参的不确定性以及盲目性。 2 基本蚁群算法 2.1 蚁群算法基本原理 根据仿生学家的研究结果表明,单只蚂蚁不能找到从巢穴到食物源的最短路 径,而大量蚂蚁之间通过相互适应与协作组成的群体则可以,蚂蚁是没有视觉的,但是是通过蚂蚁在它经过的路径上留下一种彼此可以识别的物质,叫信息素,来相互传递信息,达到协作的。蚂蚁在搜索食物源的过程中,在所经过的路径上留下信息素,同时又可以感知并根据信息素的浓度来选择下一条路径,一条路径上的浓度越浓,蚂蚁选择该条路径的概率越大,并留下信息素使这条路径上的浓度加强,这样会有更多的蚂蚁选择次路径。相反,信息素浓度少的路

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

蚁群算法原理与应用讲解

蚁群算法在物流系统优化中的应用 ——配送中心选址问题 LOGO https://www.360docs.net/doc/4710068404.html,

框架 蚁群算法概述 蚁群算法模型 物流系统中配送中心选择问题 蚁群算法应用与物流配送中心选址 算法举例

蚁群算法简介 ?蚁群算法(Ant Algorithm简称AA)是近年来刚刚诞生的随机优化方法,它是一种源于大自然的新的仿生类算法。由意大利学者Dorigo最早提出,蚂蚁算法主要是通过蚂蚁群体之间的信息传递而达到寻优的目的,最初又称蚁群优化方法(Ant Colony Optimization简称ACO)。由于模拟仿真中使用了人工蚂蚁的概念,因此亦称蚂蚁系统(Ant System,简称AS)。

蚁群觅食图1 ?How do I incorporate my LOGO and URL to a slide that will apply to all the other slides? –On the [View]menu, point to [Master],and then click [Slide Master]or [Notes Master].Change images to the one you like, then it will apply to all the other slides. [ Image information in product ] ?Image : www.wizdata.co.kr ?Note to customers : This image has been licensed to be used within this PowerPoint template only. You may not extract the image for any other use.

蚁群算法的基本原理

2.1 蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 (a) 蚁穴 1 2 食物源 A B (b) 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m 只蚂蚁随机放置于城市中, 各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构 造的路径长度。其次,蚂蚁(1,2,)k k m = ,按照随机比例规则选择下一步要转

多目标蚁群算法及其实现

多目标蚁群算法及其实现 李首帅(2012101020019) 指导老师:张勇 【摘要】多目标优化问题对于现阶段来说,是十分热门的。本文将对多目标规划当中的旅行商问题,通过基于MATLAB的蚁群算法来解决,对多目标问题进行局部优化。 【关键词】旅行商问题;蚁群算法;MATLAB 一、背景介绍 旅行商问题是物流领域当中的典型问题,它的求解十分重要。蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法,属于随机搜索算法。M. Dorigo等人充分利用了蚁群搜索食物的过程与旅行商问题(TSP)之间的相似性,通过人工模拟蚁群搜索食物的行为(即蚂蚁个体之间通过间接通讯与相互协作最终找到从蚁穴到食物源的最短路径)来求解TSP问题。为区别于真实蚁群,称算法中的蚂蚁为“人工蚂蚁”。人们经过大量研究发现,蚂蚁个体之间是通过一种称之为信息素(pheromone)的物质进行信息传递,从而能相互协作,完成复杂的任务。蚁群之所以表现出复杂有序的行为,个体之间的信息交流与相互协作起着重要的作用。蚂蚁在运动过程中,能够在它所经过的路径上留下该种物质,而且能够感知这种物质的存在及其强度,并以此指导自己的运动方向。蚂蚁倾向于朝着该物质强度高的方向移动。因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。蚂蚁个体之间就是通过这种信息的交流达到搜索食物的目的。 二、蚁群算法原理介绍 1.蚁群在路径上释放信息素; 2.碰到还没走过的路口,就随机挑选一条路走。同时释放与路径长度有关的信息素; 3.信息素浓度与路长成反比; 4.最优路径上的信息浓度越来越大; 5.最终蚁群找到最优路径。 其实自然界中,蚁群这种寻找路径的过程表现是一种正反馈的过程,与人工蚁群的优化算法很相近。所以我们简单功能的工作单元视为蚂蚁,则上述的搜寻路径过程可以用来解释人工蚁群搜寻过程。 人工蚁群和自然界蚁群各具特点。人工蚁群具有一定的记忆能力。它能够记忆已经访问过的节点;另外,人工蚁群在选择下一条路径的时候并不是完全盲目的,而是按一定的算法规律有意识地寻找最短路径。而自然界蚁群不具有记忆的能力,它们的选路凭借外激素,或者

四.蚁群算法的基本原理

四.蚁群算法基本原理 引言: 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。这就是要讲的蚁群算法。 一.蚁群算法 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID 控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。 二.蚁群算法原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,

基本蚁群算法

摘要 许多实际工程问题可以抽象为相应的组合优化问题,TSP问题是作为所有组合优化问题的范例而存在的,它已成为并将继续成为测试组合优化新算法的标准问题。从理论上讲,使用穷举法可以求解出TSP问题的最优解;但是对现有的计算机来说,让它在如此庞大的搜索空间中寻求最优解,几乎是不可能的。所以,各种求TSP问题近似解的算法应运而生了,本文所描述的蚁群算法(AC)也在其中。 目前已出现了很多的启发式算法,而蚁群算法作为一种新型的启发式算法,已成功地应用于求解TSP问题。蚂蚁通过分泌信息素来加强较好路径上信息素的浓度,同时按照路径上的信息素浓度来选择下一步的路径:好的路径将会被越来越多的蚂蚁选择,因此更多的信息素将会覆盖较好的路径;最终所有的蚂蚁都集中到了好的路径上。蚂蚁的这种基于信息素的正反馈原理正是整个算法的关键所在。 本文介绍了基本蚁群算法概念、原理及蚁群算法的特点,再根据蚁群算法的缺点做出了优化。采用轮盘赌选择代替了基本框架中通过启发式函数和信息素选择路径,改进蚁群算法的信息素传递参数,让整个算法更快速的找到最优解。其次,采用最大最小优化系统限制最大值和最小值,让整个系统更快收敛,得到最优解。 关键字:蚁群算法,TSP问题,启发式函数,轮盘算法,最大最小优化

ABSTRACT Many practical engineering problems can be abstracted as corresponding combinatorial optimization problem, TSP problem is an example of all as a combinatorial optimization problem, it has become and will continue to be a new combinatorial optimization algorithm of standard test problems. In theory, using the exhaustion method can solve the TSP problem optimal solution; But for the existing computer, let it in such a large search space to seek the optimal solution, it is almost impossible. So, all kinds of algorithm arises at the historic moment, the approximate solution of the TSP problem described in this paper, ant colony algorithm (AC) is among them. Has appeared a lot of heuristic algorithm and ant colony algorithm as a kind of new heuristic algorithm, has been successfully used in solving TSP problems. Ant secretion by pheromones to strengthen the good path pheromone concentration, at the same time according to the path to choose the next path pheromone concentration: good paths will be more and more ants to choose, so that more information will cover good path; Eventually all the ants on a good path. This positive feedback based on the pheromone of ant principle is the key to the whole algorithm. This paper introduces the basic concept of ant colony algorithm, principle and characteristics of ant colony algorithm, according to the disadvantages of ant colony algorithm optimization. Adopting roulette selection instead of the basic framework by heuristic function and choose path pheromone, pheromone passing parameters of improved ant colony algorithm, make the whole algorithm find the optimal solution more quickly. Second, limiting the maximum and the minimum maximum minimum optimization system, make the whole system faster convergence and the optimal solution is obtained. Keywords: ant colony algorithm, the TSP problem, a heuristic function, roulette algorithm, maximum_minimum optimization

蚁群算法

社会性动物的群集活动往往能产生惊人的自组织行为,如个体行为显得盲目的蚂蚁在组成蚁群后能够发现从蚁巢到食物源的最短路径。生物学家经过仔细研究发现蚂蚁之间通过一种称之为“外激素”的物质进行间接通讯、相互协作来发现最短路径。受其启发,1991年由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于种群的模拟进化算法——蚁群优化。本文阐述了算法的基本原理及特性以及一些优化的蚁群算法,阐述了蚁群算法在数据挖掘中的应用,最后总结了蚁群算法在数据挖掘应用中尚待解决的问题。 关键词: 蚁群算法; 蚁群优化; 数据挖掘 正文文字大小:大中小 1 蚁群算法原理 自1991年由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于种群的模拟进化算法——蚁群优化。该算法的出现引起了学者们的极大关注,蚁群算法的特点: ①其原理是一种正反馈机制或称增强型学习系统; 它通过【最优路径上蚂蚁数量的增加→信息素强度增加→后来蚂蚁选择概率增大→最优路径上蚂蚁数量更大增加】达到最终收敛于最优路径上L ②它是一种通用型随机优化方法, 它吸收了蚂蚁的行为特(内在搜索机制) , 它是使用人工蚂蚁仿真(也称蚂蚁系统) 来求解问题L但人工蚂蚁决不是对实际蚂蚁的一种简单模拟, 它融进了人类的智能L人工蚂蚁有一定的记忆; 人工蚂蚁不完全是瞎的; 人工蚂蚁生活的时空是离散的L ③它是一种分布式的优化方法, 不仅适合目前的串行计算机, 而且适合未来的并行计算机L ④它是一种全局优化的方法, 不仅可用于求解单目标优化问题, 而且可用于求解多目标优化问题L ⑤它是一种启发式算法, 计算复杂性为o (Nc*n2*m) , 其中Nc 是迭代次数, m 是蚂蚁数目, n 是目的节点数目L 蚁群发现最短路径的原理和机制[1] 下面用图 1解释蚁群发现最短路径的原理和机制。 如图 1(a)所示,在蚁巢和食物源之间有两条道路 Nest-A-B-D-Food 和Nest-A-C-D-Food,其长度分别为 4 和 6。单位时间内蚂蚁可移动一个单位长度的距离。开始时所有路径上都没有外激素。 如图 1(b),在 t=0 时刻,20 只蚂蚁从蚁巢出发移动到 A。由于路径上没有外激素,它们以

蚁群算法

蚁群算法综述 摘要群智能算法是一种新兴的人工智能方法,已成为越来越多研究者的关注焦点。蚁群算法是群智能算法的一个重要的分支,是意大利学者M. Dorigo通过模拟蚁群觅食行为提出的[1]。本文首先介绍了群智能的概念及特点,然后介绍基本蚁群算法的原理及其优缺点。在此基础上又介绍了两种针对基本蚁群算法的改进算法,最后针对蚁群算法的应用做了简要的介绍。 关键词群智能;蚁群算法;改进算法 Abstract Swarm intelligence is a newly developing method in the field of artificial intelligence. It has become the focus of more and more researchers. Ant colony algorithm is an important branch of Swarm intelligent algorithm. It was proposed by an Italian scholar M. Dorigo through simulating the foraging behaviors of ant colony. This paper first introduced the concept and characteristic of swarm intelligence, and then introduced the principle of basic ant colony algorithm and their advantages and disadvantages. On this basis, I introduce five improved algorithms of basic ant colony algorithm and the application of ant colony algorithm. 【Key words】Swarm intelligence; Ant colony algorithm; Improved algorithm 1.引言 1.1 群智能的特点 群智能有如下特点和优点[2]: (1) 群体中相互合作的个体是分布的(Distributed),这样更能够适应当前网络环境下的工作状态。 (2) 没有中心的控制与数据,这样的系统更具有鲁棒性(Robust),不会由于某一个或者某几个个体的故障而影响整个问题的求解。 (3) 可以不通过个体之间直接通信,而是通过非直接通信进行合作,这样的系统具有更好的可扩充性(Scalability)。 (4) 由于系统中个体的增加而增加的系统通信开销在这里是十分小的,系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性(Simplicity)。 1.2 蚁群算法的基本思想 现实生活中单个蚂蚁的能力和智力非常简单,但它们能通过相互协调、分工、合作来完成筑巢、觅食、迁徙、清扫蚁穴等复杂行为,尤其是蚂蚁有能力在没有任何可见提示的条件下找到从蚁穴到食物源的最短路径,并且能随环境的变化而变化地搜索新的路径,产生新的选择。这是因为蚂蚁在其走过的路上会分泌一种信息素,其他的蚂蚁能够感知这种物质的存在和强度,并以此指导自己的运动方向,使其倾向于朝着信息素强度高的方向移动。蚁群算法就是从自然界中真实蚂蚁觅食的群体行为中得到启发而提出的。在蚁群算法中为了实现对真实蚂蚁的抽象,提出了人工蚁的概念。人工蚁和真实蚂蚁有如下相同点:(1)人工蚁和蚂蚁一样,是一群相互

相关文档
最新文档