半导体测试基础要点

半导体测试基础要点
半导体测试基础要点

第1章半导体测试基础

第1节基础术语

描述半导体测试的专业术语很多,这里只例举部分基础的:

1.DUT

需要被实施测试的半导体器件通常叫做DUT(Device Under Test,我们常简称“被测器件”),或者叫UUT(Unit Under Test)。

首先我们来看看关于器件引脚的常识,数字电路期间的引脚分为“信号”、“电源”和“地”三部分。

信号脚,包括输入、输出、三态和双向四类,

输入:在外部信号和器件内部逻辑之间起缓冲作用的信号输入通道;输入管脚感应其上的电压并将它转化为内部逻辑识别的“0”和“1”

电平。

输出:在芯片内部逻辑和外部环境之间起缓冲作用的信号输出通道;输出管脚提供正确的逻辑“0”或“1”的电压,并提供合适的驱动

能力(电流)。

三态:输出的一类,它有关闭的能力(达到高电阻值的状态)。

双向:拥有输入、输出功能并能达到高阻态的管脚。

电源脚,“电源”和“地”统称为电源脚,因为它们组成供电回路,有着与信号引脚不同的电路结构。

VCC:TTL器件的供电输入引脚。

VDD:CMOS器件的供电输入引脚。

VSS:为VCC或VDD提供电流回路的引脚。

GND:地,连接到测试系统的参考电位节点或VSS,为信号引脚或其他电路节点提供参考0电位;对于单一供电的器件,我们称VSS为

GND。

2.测试程序

半导体测试程序的目的是控制测试系统硬件以一定的方式保证被测器件达到或超越它的那些被具体定义在器件规格书里的设计指标。

测试程序通常分为几个部分,如DC测试、功能测试、AC测试等。DC测试验证电压及电流参数;功能测试验证芯片内部一系列逻辑功能操作的正确性;AC测试用以保证芯片能在特定的时间约束内完成逻辑操作。

程序控制测试系统的硬件进行测试,对每个测试项给出pass或fail的结果。Pass指器件达到或者超越了其设计规格;Fail则相反,器件没有达到设计要求,不能用于最终应用。测试程序还会将器件按照它们在测试中表现出的性能进行相应的分类,这个过程叫做“Binning”,也称为“分Bin”. 举个例子,一个微处理器,如果可以在150MHz下正确执行指令,会被归为最好的一类,称之为“Bin 1”;而它的某个兄弟,只能在100MHz下做同样的事情,性能比不上它,但是也不是一无是处应该扔掉,还有可以应用的领域,则也许会被归为“Bin 2”,卖给只要求100MHz的客户。

程序还要有控制外围测试设备比如Handler 和Probe 的能力;还要搜集和提供摘要性质(或格式)的测试结果或数据,这些结果或数据提供有价值的信息给测试或生产工程师,用于良率(Yield)分析和控制。

第2节正确的测试方法

经常有人问道:“怎样正确地创建测试程序?”这个问题不好回答,因为对于什么是正确的或者说最好的测试方式,一直没有一个单一明了的界定,某种情形下正确的方式对另一种情况来说不见得最好。很多因素都在影响着测试行为的构建方式,下面我们就来看一些影响力大的因素。

测试程序的用途。

下面的清单例举了测试程序的常用之处,每一项都有其特殊要求也就需要相应的测试程序:

●Wafer Test——测试晶圆(wafer)每一个独立的电路单

元(Die),这是半导体后段区分良品与不良品的第一道

工序,也被称为“Wafer Sort”、CP测试等.

??? ●Package Test——晶圆被切割成独立的电路单元,且每

个单元都被封装出来后,需要经历此测试以验证封装过程

的正确性并保证器件仍然能达到它的设计指标,也称为

“Final Test”、FT测试、成品测试等。

●Quality Assurance Test——质量保证测试,以抽样检测

方式确保Package Test执行的正确性,即确保pass的产品

中没有不合格品。

●Device Characterization——器件特性描述,决定器件

工作参数范围的极限值。

●Pre/Post Burn-In ——在器件“Burn-in”之前和之后进

行的测试,用于验证老化过程有没有引起一些参数的漂

移。这一过程有助于清除含有潜在失效(会在使用一段时

间后暴露出来)的芯片。

●Miliary Test——军品测试,执行更为严格的老化测试标

准,如扩大温度范围,并对测试结果进行归档。

●Incoming Inspection ——收货检验,终端客户为保证购买

的芯片质量在应用之前进行的检查或测试。

●Assembly Verification ——封装验证,用于检验芯片经过

了封装过程是否仍然完好并验证封装过程本身的正确性。

这一过程通常在FT测试时一并实施。

●Failure Analysis ——失效分析,分析失效芯片的故障以

确定失效原因,找到影响良率的关键因素,并提高芯片的

可靠性。

测试系统的性能。

测试程序要充分利用测试系统的性能以获得良好的测试覆盖率,一些测试方法会受到测试系统硬件或软件性能的限制。

高端测试机:

●高度精确的时序——精确的高速测试

●大的向量存储器——不需要去重新加载测试向量

●复合PMU(Parametric Measurement Unit)——可进行并

行测试,以减少测试时间

●可编程的电流加载——简化硬件电路,增加灵活性

●PerPin的时序和电平——简化测试开发,减少测试时间

低端测试机:

●低速、低精度——也许不能充分满足测试需求

●小的向量存储器——也许需要重新加载向量,增加测试

时间

●单个PMU ——只能串行地进行DC测试,增加测试时间

●均分资源(时序/电平)——增加测试程序复杂度和测

试时间

测试环节的成本。

这也许是决定什么需要被测试以及以何种方式满足这些测试的唯一的最重要的因素,测试成本在器件总的制造成本中占了很大的比重,因此许多与测试有关的决定也许仅仅取决于器件的售价与测试成本。例如,某个器件可应用于游戏机,它卖15元;而同样的器件用于人造卫星,则会卖3500元。每种应用有其独特的技术规范,要求两种不同标准的测试程序。3500元的器件能支持昂贵的测试费用,而15元的器件只能支付最低的测试成本。

测试开发的理念。

测试理念只一个公司内部测试人员之间关于什么是最优的测试方法的共同的观念,这却决于他们特殊的要求、芯片产品的售价,并受他们以往经验的影响。在测试程序开发项目启动之前,测试工程师必须全面地上面提到的每一个环节以决定最佳的解决方案。开发测试程序不是一件简单的正确或者错误的事情,它是一个在给定的状况下寻找最佳解决方案的过程。

第3节测试系统

测试系统称为ATE,由电子电路和机械硬件组成,是由同一个主控制器指挥下的电源、计量仪器、信号发生器、模式(pattern)生成器和其他硬件项目的集合体,用于模仿被测器件将会在应用中体验到的操作条件,以发现不合格的产品。

测试系统硬件由运行一组指令(测试程序)的计算机控制,在测试时提供合适的电压、电流、时序和功能状态给DUT并监测DUT的响应,对比每次测试的结果和预先设定的界限,做出pass或fail的判断。

●测试系统的内脏

图2-1显示所有数字测试系统都含有的基本模块,虽然很多新的测试系统包含了更多的硬件,但这作为起点,我们还是拿它来介绍。

“CPU”是系统的控制中心,这里的CPU不同于电脑中的中央处理器,它由控制测试系统的计算机及数据输入输出通道组成。许多新的测试

系统提供一个网络接口用以传输测试数据;计算机硬盘和Memory用来存储本地数据;显示器及键盘提供了测试操作员和系统的接口。

图2-1.通用测试系统内部结构

DC子系统包含有DPS(Device Power Supplies,器件供电单元)、RVS (Reference Voltage Supplies,参考电压源)、PMU(Precision Measurement Unit,精密测量单元)。DPS为被测器件的电源管脚提供电压和电流;RVS 为系统内部管脚测试单元的驱动和比较电路提供逻辑0和逻辑1电平提供参考电压,这些电压设置包括:VIL、VIH、VOL和VOH。性能稍逊的或者老一点的测试系统只有有限的RVS,因而同一时间测试程序只能提供少量的输入和输出电平。这里先提及一个概念,“tester pin”,也叫做“tester channel”,它是一种探针,和Loadboard背面的Pad接触为被测器件的管脚提供信号。当测试机的pins共享某一资源,比如RVS,则此资源称为“Shared Resource”。一些测试系统称拥有“per pin”的结构,就是说它们可以为每一个pin独立地设置输入及输出信号的电平和时序。

DC子系统还包含PMU(精密测量单元,Precision Measurement Unit)电路以进行精确的DC参数测试,一些系统的PMU也是per pin结构,安装在测试头(Test Head)中。(PMU我们将在后面进行单独的讲解)每个测试系统都有高速的存储器——称为“pattern memory”或“vector memory”——去存储测试向量(vector或pattern)。Test pattern(注:本人

驽钝,一直不知道这个pattern的准确翻译,很多译者将其直译为“模式”,我认为有点欠妥,实际上它就是一个二维的真值表;将“test pattern”翻译成“测试向量”吧,那“vector”又如何区别?呵呵,还想听听大家意见)描绘了器件设计所期望的一系列逻辑功能的输入输出的状态,测试系统从pattern memory中读取输入信号或者叫驱动信号(Drive)的pattern状态,通过tester pin输送给待测器件的相应管脚;再从器件输出管脚读取相应信号的状态,与pattern中相应的输出信号或者叫期望(Expect)信号进行比较。进行功能测试时,pattern为待测器件提供激励并监测器件的输出,如果器件输入与期望不相符,则一个功能失效产生了。有两种类型的测试向量——并行向量和扫描向量,大多数测试系统都支持以上两种向量。

Timing分区存储有功能测试需要用到的格式、掩盖(mask)和时序设置等数据和信息,信号格式(波形)和时间沿标识定义了输入信号的格式和对输出信号进行采样的时间点。Timing分区从pattern memory那里接收激励状态(“0”或者“1”),结合时序及信号格式等信息,生成格式化的数据送给电路的驱动部分,进而输送给待测器件。

Special Tester Options部分包含一些可配置的特殊功能,如向量生成器、存储器测试,或者模拟电路测试所需要的特殊的硬件结构。

The Systen Clocks为测试系统提供同步的时钟信号,这些信号通常运行在比功能测试要高得多的频率范围;这部分还包括许多测试系统都包含的时钟校验电路。

第4节PMU

PMU(Precision Measurement Unit,精密测量单元)用于精确的DC参数测量,它能驱动电流进入器件而去量测电压或者为器件加上电压而去量测产生的电流。PMU的数量跟测试机的等级有关,低端的测试机往往只有一个PMU,同过共享的方式被测试通道(test channel)逐次使用;中端的则有一组PMU,通常为8个或16个,而一组通道往往也是8个或16个,这样可以整组逐次使用;而高端的测试机则会采用per pin的结构,每个channel配置一个PMU。

图2-2. PMU状态模拟图

●驱动模式和测量模式(Force and Measurement Modes)

在ATE中,术语“驱动(Force)”描述了测试机应用于被测器件的一定数值的电流或电压,它的替代词是Apply,在半导体测试专业术语中,Apply和Force都表述同样的意思。

在对PMU进行编程时,驱动功能可选择为电压或电流:如果选择了电流,则测量模式自动被设置成电压;反之,如果选择了电压,则测量模式自动被设置成电流。一旦选择了驱动功能,则相应的数值必须同时被设置。

●驱动线路和感知线路(Force and Sense Lines)

为了提升PMU驱动电压的精确度,常使用4条线路的结构:两条驱动线路传输电流,另两条感知线路监测我们感兴趣的点(通常是DUT)的电压。这缘于欧姆定律,大家知道,任何线路都有电阻,当电流流经线路会在其两端产生压降,这样我们给到DUT端的电压往往小于我们在程序中设置的参数。

设置两根独立的(不输送电流)感知线路去检测DUT端的电压,反馈给电压源,电压源再将其与理想值进行比较,并作相应的补偿和修正,以消除电流流经线路产生的偏差。驱动线路和感知线路的连接点被称作“开尔文连接点”。

●量程设置(Range Settings)

PMU的驱动和测量范围在编程时必须被选定,合适的量程设定将保证测试结果的准确性。需要提醒的是,PMU的驱动和测量本身就有就有范围的限制,驱动的范围取决于PMU的最大驱动能力,如果程序中设定PMU输出5V的电压而PMU本身设定为输出4V电压的话,最终只能输出4V的电压。同理,如果电流测量的量程被设定为1mA,则无论实际电路中电流多大,能测到的读数不会超过1mA。

值得注意的是,PMU上无论是驱动的范围还是测量的量程,在连接到DUT的时候都不应该再发生变化。这种范围或量程的变化会引起噪声脉冲(浪涌),是一种信号电压值短时间内的急剧变化产生的瞬间高压,类似于ESD的放电,会对DUT造成损害。

●边界设置(Limit Settings)

PMU有上限和下限这两个可编程的测量边界,它们可以单独使用(如某个参数只需要小于或大于某个值)或者一起使用。实际测量值大于上限或小于下限的器件,均会被系统判为不良品。

●钳制设置(Clamp Settings)

大多数PMU会被测试程序设置钳制电压和电流,钳制装置是在测试期间控制PMU输出电压与电流的上限以保护测试操作人员、测试硬件及被测器件的电路。

图2-2.电流钳制电路模拟图

当PMU用于输出电压时,测试期间必须设定最大输出电流钳制。驱动电压时,PMU会给予足够的必须的电流用以支持相应的电压,对DUT的某个管脚,测试机的驱动单元会不断增加电流以驱动它达到程序中设定的电压值。如果此管脚对地短路(或者对其他源短路),而我们没有设定电流钳制,则通过它的电流会一直加大,直到相关的电路如探针、ProbeCard、相邻DUT甚至测试仪的通道全部烧毁。

图2-3显示PMU驱动5.0V电压施加到250ohm负载的情况,在实际的测试中,DUT是阻抗性负载,从欧姆定律I=U/R我们知道,其上将会通过20mA 的电流。器件的规格书可能定义可接受的最大电流为25mA,这就意味着我们程序中此电流上限边界将会被设置为25mA,而钳制电流可以设置为30mA。

如果某一有缺陷的器件的阻抗性负载只有10ohm的话,在没有设定电流钳制的情况下,通过的电流将达到500mA,这么大的电流已经足以对测试系统、硬件接口及器件本身造成损害;而如果电流钳制设定在30mA,则电流会被钳制电路限定在安全的范围内,不会超过30mA。

电流钳制边界(Clamp)必须大于测试边界(Limit)上限,这样当遇到缺陷器件才能出现fail;否则程序中会提示“边界电流过大”,测试中也不会出

现fail了。

图2-4.电压钳制电路模拟图

当PMU用于输出电流时,测试期间则相应地需要进行电压钳制。电压钳制和电流钳制在原理上大同小异,这里就不再赘述了。

第5节管脚电路

管脚电路(The Pin Electronics,也叫PinCard、PE、PEC或I/O Card)是测试系统资源部和待测器件之间的接口,它给待测器件提供输入信号并接收待测器件的输出信号。

每个测试系统都有自己独特的设计但是通常其PE电路都会包括:

●提供输入信号的驱动电路

●驱动转换及电流负载的输入输出切换开关电路

●检验输出电平的电压比较电路

●与PMU的连接电路(点)

●可编程的电流负载

还可能包括:

●用于高速电流测试的附加电路

●Per pin 的PMU结构

尽管有着不同的变种,但PE的基本架构还是一脉相承的,图2-5显示了数字测试系统的数字测试通道的典型PE卡的电路结构。

图2-5.典型的Pin Electronics

1.驱动单元(The Driver)

驱动电路从测试系统的其他相应环节获取格式化的信号,称为FDATA,当FDATA通过驱动电路,从参考电压源(RVS)获取的VIL/VIH参考电平被施加到格式化的数据上。如果FDATA命令驱动单元去驱动逻辑0,则驱动单元会驱动VIL参考电压;VIL(Voltage In Low)指施加到DUT的input管脚仍能被DUT内部电路识别为逻辑0的最高保证电压。

如果FDATA命令驱动单元去驱动逻辑1,则驱动单元会驱动VIH参考电压;VIH(Voltage In High)指施加到DUT的input管脚仍能被DUT内部电路识别为逻辑1的最低保证电压。

F1场效应管用于隔离驱动电路和待测器件,在进行输入-输出切换时充当快速开关角色。当测试通道被程序定义为输入(Input),场效应管F1导通,开关(通常是继电器)K1闭合,使信号由驱动单元(Driver)输送至DUT;当测试通道被程序定义为输出(Output)或不关心状态(don’t care),F1截止,K1断开,则驱动单元上的信号无法传送到DUT上。F1只可能处于其中的一种状态,这样就保证了驱动单元和待测器件同时向同一个测试通道送出电压信号的I/O冲突状态不会出现。

2.电流负载单元(Current Load)

电流负载(也叫动态负载)在功能测试时连接到待测器件的输出端充当负载的角色,由程序控制,提供从测试系统到待测器件的正向电流或从待测器件到测试系统的负向电流。

电流负载提供IOH(Current Output High)和IOL(Current Output Low)。IOH指当待测器件输出逻辑1时其输出管脚必须提供的电流总和;IOL则相反,指当待测器件输出逻辑0时其输出管脚必须接纳的电流总和。

当测试程序设定了IOH和IOL,VREF电压就设置了它们的转换点。转换点决定了IOH起作用还是IOL起作用:当待测器件的输出电压高于转换点时,IOH提供电流;当待测器件的输出电压低于转换点时,IOL提供电流。

F2和F1一样,也是一个场效应管,在输入-输出切换时充当高速开关,并隔离电流负载电路和待测器件。当程序定义测试通道为输出,则F2导通,允许输出正向电流或抽取反向电流;当定义测试通道为输入,则F2截止,将负载电路和待测器件隔离。

电流负载在三态测试和开短路测试中也会用到。

3.电压比较单元(Voltage Receiver)

电压比较器用于功能测试时比较待测器件的输出电压和RVS提供的参

考电压。RVS为有效的逻辑1(VOH)和逻辑0(VOL)提供了参考:当器件的输出电压等于或小于VOL,则认为它是逻辑0;当器件的输出电压等于或大于VOH,则认为它是逻辑1;当它大于VOL而小于VOH,则认为它是三态电平或无效输出。

4.PMU连接点(PMU Connection)

当PMU连接到器件管脚,K1先断开,然后K2闭合,用于将PMU和Pin Electrics卡的I/O电路隔离开来。

5.高速电流比较单元(High Speed Current Comparators)

相对于为每个测试通道配置PMU,部分测试系统提供了快速测量小电流的另一种方法,这就是可进行快速漏电流(Leakage)测试的电流比较器,开关K3控制它与待测器件的连接与否。如果测试系统本身就是Per Pin PMU结构的,那么这部分就不需要了。

6.PPPMU(Per Pin PMU)

一些系统提供Per Pin PMU的电路结构,以支持对DUT每个管脚同步地进行电压或电流测试。与PMU一样,PPPMU可以驱动电流测量电压或者驱动电压测量电流,但是标准测试系统的PMU的其它功能PPPMU则可能不具备。

第6节测试开发基本规则

任何工作都有其规则和流程,IC测试也不例外。我们在实际工作中看到,一些简单的错误和低级的问题经常在一个又一个的程序中再现,如果有一定的标准,相信情况会好很多。这里我们就来总结一些基本的规则,它们将普遍适用于多数的实例;也许其中的一些在我们看来是显而易见的,但是在测试硬件无误的情况下,很多人还是在不经意间违反。可能大家会说了,谁这么傻呀?呵呵,相信大家都不会主动这么做,但是粗心呢?如果你决定刻意违反其中的某一条或几条的话,请确定你完全知道后果。^_^

●永远不要将DUT的输入管脚当作输出管脚进行功能测试。最常见的是

在pattern中,如果一个输入管脚在此测试项不需要去管(既给0或给1

不影响此测试结果),我们有人就给它“X”,而“X”是输出测试的

mask态,这样测试机就会将此管脚当作输出去处理,连接到比较电路,

只是对结果不做比较。记住,在功能测试中,输入管脚不能直接测试以

期得到pass/fail的结果;信号施加到输入管脚,我们需要测试的是输出

管脚。

●永远不要将测试机的驱动单元连接到DUT的输出管脚。此举会造成测

试机和器件本身会在同一时间驱动电压和电流到该管脚,当它们在某一

点相遇时,那就是狭路相逢勇者胜了,输的一方会受伤哦!

●永远不要悬空(float)某个输入管脚,一个有效的逻辑必须施加到输入

管脚,0或者1。对于CMOS工艺的器件,悬空输入管脚会造成闩锁

(latch-up)现象,导致大电流对器件造成破坏。

●永远不要施加大于VDD或小于GND的电压到输入或输出管脚。否则

同样会引起浪涌现象损害器件。

●驱动电压信号到DUT时,记得设置电流钳制,限制测试机的最大输出

电流。

●驱动电流信号到DUT时,记得设置电压钳制,限制测试机的最大输出

电压。

●永远不要在驱动单元与器件引脚连接时改变驱动信号(电压或电流)的范围,也不要在这个时候改变PMU驱动的信号类型(如将电压驱动改为电流驱动)。

实验讲义-半导体材料吸收光谱测试分析2015

半导体材料吸收光谱测试分析 一、实验目的 1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。 2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。 二、实验仪器及材料 紫外可见分光光度计及其消耗品如氘灯、钨灯,玻璃基ZnO薄膜。 三、实验原理 1.紫外可见分光光度计的构造、光吸收定律 (1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。 a.光源:钨灯或卤钨灯——可见光源,350~1000nm;氢灯或氘灯——紫外光源,200~360nm。 b.单色器:包括狭缝、准直镜、色散元件 色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距; 光栅——衍射和干涉分出光波长等距。 c.吸收池:玻璃——能吸收UV光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。 要求:匹配性(对光的吸收和反射应一致) d.检测器:将光信号转变为电信号的装置。如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。 紫外可见分光光度计的工作流程如下: 0.575 光源单色器吸收池检测器显示双光束紫外可见分光光度计则为: 双光束紫外可见分光光度计的光路图如下:

(2)光吸收定律 单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: x x e I I?- =α d t e I I?- =α 0(1) I0:入射光强;I x:透过厚度x的光强;I t:透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。 透射率T为: d e I I T?- = =α t (2) 则 d e T d? = =?α α ln ) /1 ln( 透射光I t

半导体器件综合参数测试

研究生《电子技术综合实验》课程报告 题目:半导体器件综合参数测试 学号 姓名 专业 指导教师 院(系、所) 年月日

一、实验目的: (1)了解、熟悉半导体器件测试仪器,半导体器件的特性,并测得器件的特性参数。掌握半导体管特性图示仪的使用方法,掌握测量晶体管输入输出特性的测量方法。 (2)测量不同材料的霍尔元件在常温下的不同条件下(磁场、霍尔电流)下的霍尔电压,并根据实验结果全面分析、讨论。 二、实验内容: (1)测试3AX31B、3DG6D的放大、饱和、击穿等特性曲线,根据图示曲线计算晶体管的放大倍数; (2)测量霍尔元件不等位电势,测霍尔电压,在电磁铁励磁电流下测霍尔电压。 三、实验仪器: XJ4810图示仪、示波器、三极管、霍尔效应实验装置 四、实验原理: 1.三极管的主要参数: (1)直流放大系数h FE:h FE=(I C-I CEO)/I B≈I C/I B。其中I C为集电极电流,I B为基极电流。 基极开路时I C值,此值反映了三极管热稳定性。 (2)穿透电流I CEO : (3)交流放大系数β:β=ΔI C/ΔI B (4)反向击穿电压BV CEO:基极开路时,C、E之间击穿电压。 2.图示仪的工作原理: 晶体管特性图示仪主要由阶梯波信号源、集电极扫描电压发生器、工作于X-Y方式的示波器、测试转换开关及一些附属电路组成。晶体管特性图示仪根据器件特性测量的工作原理,将上述单元组合,实现各种测试电路。阶梯波信号源产生阶梯电压或阶梯电流,为被测晶体管提

供偏置;集电极扫描电压发生器用以供给所需的集电极扫描电压,可根据不同的测试要求,改变扫描电压的极性和大小;示波器工作在X-Y状态,用于显示晶体管特性曲线;测试开关可根据不同晶体管不同特性曲线的测试要求改变测试电路。(原理如图1) 上图中,R B、E B构成基极偏置电路。当E B》V BE时,I B=(E B-V BE)/R B基本恒定。晶体管C-E之间加入锯齿波扫描电压,并引入小取样电阻RC,加到示波器上X轴Y轴电压分别为:V X=V CE=V CA+V AC=V CA-I C R C≈V CA V Y=-I C·R C∝-I C I B恒定时,示波器屏幕上可以看到一根。I C-V CE的特征曲线,即晶体管共发射极输出特性曲线。为了显示一组在不同I B的特征曲线簇I CI=φ应该在X轴锯齿波扫描电压每变化一个周期时,使I B也有一个相应的变化。应将E B改为能随X轴的锯齿波扫描电压变化的阶梯电压。每一个阶梯电压能为被测管的基极提供一定的基极电流,这样不同变化的电压V B1、V B2、V B3…就可以对应不同的基极注入电流I B1、I B2、I B3….只要能使没一个阶梯电压所维持的时间等于集电极回路的锯齿波扫描电压周期。如此,绘出I CO=φ(I BO,V CE)曲线与I C1=φ(I B1,V CE)曲线。 3.直流电流放大系数h FE与工作点I,V的关系 h FE是晶体三极管共发射极连接时的放大系数,h FE=I C/I B。以n-p-n晶体管为例,发射区的载流子(电子)流入基区。这些载流子形成电流I E,当流经基区时被基区空穴复合掉一部分,这复合电流形成IB,复合后剩下的电子流入集电区形成电流为IC,则I E=IB+IC。因IC>>IB 所以一般h FE=IC/IB都很大。

模拟电路习题

第一章 半导体器件基础 ⒈ 讨论题与思考题 ⑴ PN 结的伏安特性有何特点? ⑵ 二极管是非线性元件,它的直流电阻和交流电阻有何区别?用万用表欧姆档测量的二极管电阻属于哪一种?为什么用万用表欧姆档的不同量程测出的二极管阻值也不同? ⑶ 硅二极管和锗二极管的伏安特性有何异同? ⑷ 在结构上,三极管是由两个背靠背的PN 结组成的,那么,三极管与两只对接的二极管有什么区别? ⑸ 三极管是由两个背靠背的PN 结组成的,由很薄的基区联系在一起。那么,三极管的发射极和集电极是否可以调换使用? ⑹ 场效应管的性能与双极型三极管比较有哪些特点? ⒉ 作业题 题1.1 在硅本征半导体中掺入施主杂质,其浓度为3 17d cm 10 =N ,分别求出在250K 、300K 、350K 时电子和空穴的浓度。 题 1.2 若硅PN 结的317a cm 10 =N ,3 16d cm 10=N ,求T =300K 时PN 结的内建电位差。 题1.3 流过硅二极管的电流I D =1mA 时,二极管两端压降U D =0.7V ,求电流I D =0.1mA 和10mA 时,二极管两端压降U D 分别为多少? 题1.4 电路如图题1.4中二极管是理想的,t U u ωsin m i ?=: ① 画出该电路的传输特性; ② 画出输出电压波形。 题图 1.4 题1.5 题图 1.5中二极管是理想的,分别求出题图1.5(a)、(b)中电压U 和电流I 的值。 (a) (b) 题图1.5 题1.6 在图题1.6所示电路中,取5-V

ic半导体测试基础(中文版)88678

本章节我们来说说最基本的测试——开短路测试(Open-Short Test),说说测试的目的和方法。 一.测试目的 Open-Short Test也称为ContinuityTest或Contact Test,用以确认在器件测试时所有的信号引脚都与测试系统相应的通道在电性能上完成了连接,并且没有信号引脚与其他信号引脚、电源或地发生短路。 测试时间的长短直接影响测试成本的高低,而减少平均测试时间的一个最好方法就是尽可能早地发现并剔除坏的芯片。Open-Short测试能快速检测出DUT是否存在电性物理缺陷,如引脚短路、bond wire缺失、引脚的静电损坏、以及制造缺陷等。 另外,在测试开始阶段,Open-Short测试能及时告知测试机一些与测试配件有关的问题,如ProbeCard或器件的Socket没有正确的连接。 二.测试方法 Open-Short测试的条件在器件的规格数或测试计划书里通常不会提及,但是对大多数器件而言,它的测试方法及参数都是标准的,这些标准值会在稍后给出。 基于PMU的Open-Short测试是一种串行(Serial)静态的DC测试。首先将器件包括电源和地的所有管脚拉低至“地”(即我们常说的清0),接着连接PMU到单个的DUT 管脚,并驱动电流顺着偏置方向经过管脚的保护二极管——一个负向的电流会流经连接到地的二极管(图3-1),一个正向的电流会流经连接到电源的二极管(图3-2),电流的大小在100uA到500uA之间就足够了。大家知道,当电流流经二极管时,会在其P-N结上引起大约0.65V的压降,我们接下来去检测连接点的电压就可以知道结果了。 既然程序控制PMU去驱动电流,那么我们必须设置电压钳制,去限制Open管脚引起的电压。Open-Short测试的钳制电压一般设置为3V——当一个Open的管脚被测试到,它的测试结果将会是3V。 串行静态Open-Short测试的优点在于它使用的是DC测试,当一个失效(failure)发生时,其准确的电压测量值会被数据记录(datalog)真实地检测并显示出来,不管它是Open引起还是Short导致。缺点在于,从测试时间上考虑,会要求测试系统对DUT的每个管脚都有相应的独立的DC测试单元。对于拥有PPPMU结构的测试系统来说,这个缺点就不存在了。 当然,Open-Short也可以使用功能测试(Functional Test)来进行,我会在后面相应的章节提及。

8、半导体材料吸收光谱测试分析

半导体材料吸收光谱测试分析 一、实验目的 1.掌握半导体材料的能带结构与特点、半导体材料禁带宽度的测量原理与方法。 2.掌握紫外可见分光光度计的构造、使用方法和光吸收定律。 二、实验仪器及材料 紫外可见分光光度计及其消耗品如氘灯、钨灯、绘图打印机,玻璃基ZnO 薄膜。 三、实验原理 1.紫外可见分光光度计的构造、光吸收定律 UV762双光束紫外可见分光光度计外观图: (1)仪器构造:光源、单色器、吸收池、检测器、显示记录系统。 a .光源:钨灯或卤钨灯——可见光源,350~1000nm ;氢灯或氘灯——紫外光源,200~360nm 。 b .单色器:包括狭缝、准直镜、色散元件 色散元件:棱镜——对不同波长的光折射率不同分出光波长不等距; 光栅——衍射和干涉分出光波长等距。 c .吸收池:玻璃——能吸收UV 光,仅适用于可见光区;石英——不能吸收紫外光,适用于紫外和可见光区。 要求:匹配性(对光的吸收和反射应一致) d .检测器:将光信号转变为电信号的装置。如:光电池、光电管(红敏和蓝敏)、光电倍增管、二极管阵列检测器。 紫外可见分光光度计的工作流程如下: 光源 单色器 吸收池 检测器 显示 双光束紫外可见分光光度计则为:

双光束紫外可见分光光度计的光路图如下: (2)光吸收定律 单色光垂直入射到半导体表面时,进入到半导体内的光强遵照吸收定律: x x e I I ?-=α0 d t e I I ?-=α0 (1) I 0:入射光强;I x :透过厚度x 的光强;I t :透过膜薄的光强;α:材料吸收系数,与材料、入射光波长等因素有关。 透射率T 为: d e I I T ?-==α0 t (2)

最新半导体器件基础测试题

第一章 半导体器件基础测试题(高三) 姓名 班次 分数 一、选择题 1、N 型半导体是在本征半导体中加入下列 ___________ 物质而形成的。 A 、电子; B 、空穴; C 、三价元素; D 、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是 A 、掺杂的工艺; B 、杂质的浓度: C 、温度; D 、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是 _______________ 。 A 、发射结正偏、集电结反偏; B 、发射结正偏、集电结正偏; C 、发射结反偏、集电结正偏; D 、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是 _____________________ 。 A 、发射结正偏、集电结反偏; B 、发射结正偏、集电结正偏; C 、发射结反偏、集电结正偏; D 、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是 A 、发射结正偏、集电结反偏; C 、发射结反偏、集电结正偏; 6、理想二极管组成的电路如下图所示,其 A 、一 12V ; B 、一 6V ; C 、+6V ; D 、+12V 。 7、要使普通二极管导通,下列说法正确的是 __________________ 。 A 、运用它的反向特性; B 、锗管使用在反向击穿区; C 、硅管使用反向区域,而锗管使用正向区域; D 、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是 _______________________ A 、 用万用表的R X 100或R X 1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B 、 用万用表的R X 10K 的欧姆,黑棒接正极,红棒接负极,指针偏转; C 、 用万用表的R X 100或R X 1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D 、用万用表的R X 10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则 A 、B 两点的电压正确的是 ________________ B 、发射结正偏、集电结正偏; D 、发射结反偏、集电结反偏; AB 两端的电压是 _____________

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

实验一 半导体材料的缺陷显示及观察资料讲解

实验一半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 仅供学习与交流,如有侵权请联系网站删除谢谢2

第1章课后习题参考答案

第一章半导体器件基础 1.试求图所示电路的输出电压Uo,忽略二极管的正向压降和正向电阻。 解: (a)图分析: 1)若D1导通,忽略D1的正向压降和正向电阻,得等效电路如图所示,则U O=1V,U D2=1-4=-3V。即D1导通,D2截止。 2)若D2导通,忽略D2的正向压降和正向电阻,得等效电路如图所示,则U O=4V,在这种情况下,D1两端电压为U D1=4-1=3V,远超过二极管的导通电压,D1将因电流过大而烧毁,所以正常情况下,不因出现这种情况。 综上分析,正确的答案是U O= 1V。 (b)图分析: 1.由于输出端开路,所以D1、D2均受反向电压而截止,等效电路如图所示,所以U O=U I=10V。

2.图所示电路中, E

解: (a)图 当u I<E时,D截止,u O=E=5V; 当u I≥E时,D导通,u O=u I u O波形如图所示。 u I ωt 5V 10V uo ωt 5V 10V (b)图 当u I<-E=-5V时,D1导通D2截止,uo=E=5V; 当-E<u I<E时,D1导通D2截止,uo=E=5V; 当u I≥E=5V时,uo=u I 所以输出电压u o的波形与(a)图波形相同。 5.在图所示电路中,试求下列几种情况下输出端F的电位UF及各元件(R、DA、DB)中通过的电流:( 1 )UA=UB=0V;( 2 )UA= +3V,UB = 0 V。( 3 ) UA= UB = +3V。二极管的正向压降可忽略不计。 解:(1)U A=U B=0V时,D A、D B都导通,在忽略二极管正向管压降的情况下,有:U F=0V mA k R U I F R 08 .3 9.3 12 12 = = - =

半导体测试基础

第1章半导体测试基础 第1节基础术语 描述半导体测试的专业术语很多,这里只例举部分基础的: 1.DUT 需要被实施测试的半导体器件通常叫做DUT(Device Under Test,我们常简称“被测器件”),或者叫UUT(Unit Under Test)。 首先我们来看看关于器件引脚的常识,数字电路期间的引脚分为“信号”、“电源”和“地”三部分。 信号脚,包括输入、输出、三态和双向四类, 输入:在外部信号和器件内部逻辑之间起缓冲作用的信号输入通道;输入管脚感应其上的电压并将它转化为内部逻辑识别的“0”和“1” 电平。 输出:在芯片内部逻辑和外部环境之间起缓冲作用的信号输出通道;输出管脚提供正确的逻辑“0”或“1”的电压,并提供合适的驱动 能力(电流)。 三态:输出的一类,它有关闭的能力(达到高电阻值的状态)。 双向:拥有输入、输出功能并能达到高阻态的管脚。 电源脚,“电源”和“地”统称为电源脚,因为它们组成供电回路,有着与信号引脚不同的电路结构。 VCC:TTL器件的供电输入引脚。 VDD:CMOS器件的供电输入引脚。 VSS:为VCC或VDD提供电流回路的引脚。 GND:地,连接到测试系统的参考电位节点或VSS,为信号引脚或其他电路节点提供参考0电位;对于单一供电的器件,我们称VSS为 GND。 2.测试程序 半导体测试程序的目的是控制测试系统硬件以一定的方式保证被测器件达到或超越它的那些被具体定义在器件规格书里的设计指标。 测试程序通常分为几个部分,如DC测试、功能测试、AC测试等。DC测试验证电压及电流参数;功能测试验证芯片内部一系列逻辑功能操作的正确性;AC测试用以保证芯片能在特定的时间约束内完成逻辑操作。 程序控制测试系统的硬件进行测试,对每个测试项给出pass或fail的结果。Pass指器件达到或者超越了其设计规格;Fail则相反,器件没有达到设计要求,不能用于最终应用。测试程序还会将器件按照它们在测试中表现出的性能进行相应的分类,这个过程叫做“Binning”,也称为“分Bin”. 举个例子,一个微处理器,如果可以在150MHz下正确执行指令,会被归为最好的一类,称之为“Bin 1”;而它的某个兄弟,只能在100MHz下做同样的事情,性能比不上它,但是也不是一无是处应该扔掉,还有可以应用的领域,则也许会被归为“Bin 2”,卖给只要求100MHz的客户。 程序还要有控制外围测试设备比如Handler 和Probe 的能力;还要搜集和提供摘要性质(或格式)的测试结果或数据,这些结果或数据提供有价值的信息给测试或生产工程师,用于良率(Yield)分析和控制。

材料测试与分析总复习

XRD复习重点 1.X射线的产生及其分类 2.X射线粉晶衍射中靶材的选取 3.布拉格公式 4.PDF卡片 5.X射线粉晶衍射谱图 6.X射线粉晶衍射的应用 电子衍射及透射电镜、扫描电镜和电子探针分析复习提纲 透射电镜分析部分: 4.TEM的主要结构,按从上到下列出主要部件 1)电子光学系统——照明系统、图像系统、图像观察和记录系统;2)真空系统; 3)电源和控制系统。电子枪、第一聚光镜、第二聚光镜、聚光镜光阑、样品台、物镜光阑、物镜、选区光阑、中间镜、投影镜、双目光学显微镜、观察窗口、荧光屏、照相室。 5. TEM和光学显微镜有何不同? 光学显微镜用光束照明,简单直观,分辨本领低(0.2微米),只能观察表面形貌,不能做微区成分分析;TEM分辨本领高(1A)可把形貌观察,结构分析和成分分析结合起来,可以观察表面和内部结构,但仪器贵,不直观,分析困难,操作复杂,样品制备复杂。 6.几何像差和色差产生原因,消除办法。 球差即球面像差,是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律而造成的。减小球差可以通过减小CS值和缩小孔径角来实现。 色差是由于入射电子波长(或能量)的非单一性造成的。采取稳定加速电压的方法可以有效的减小色差;适当调配透镜极性;卡斯汀速度过滤器。 7.TEM分析有那些制样方法?适合分析哪类样品?各有什么特点和用途? 制样方法:化学减薄、电解双喷、竭力、超薄切片、粉碎研磨、聚焦离子束、机械减薄、离子减薄; TEM样品类型:块状,用于普通微结构研究; 平面,用于薄膜和表面附近微结构研究; 横截面样面,均匀薄膜和界面的微结构研究; 小块粉末,粉末,纤维,纳米量级的材料。 二级复型法:研究金属材料的微观形态; 一级萃取复型:指制成的试样中包含着一部分金属或第二相实体,对它们可以直接作形态检验和晶体结构分析,其余部分则仍按浮雕方法间接地观察形态; 金属薄膜试样:电子束透明的金属薄膜,直接进行形态观察和晶体结构分析; 粉末试样:分散粉末法,胶粉混合法 思考题: 1.一电子管,由灯丝发出电子,一负偏压加在栅极收集电子,之后由阳极加速,回答由灯丝到栅极、由栅极到阳极电子的折向及受力方向? 2.为什么高分辨电镜要使用比普通电镜更短的短磁透镜作物镜? 高分辨电镜要比普通电镜的放大倍数高。为了提高放大倍数,需要短焦距的强磁透镜。透镜的光焦度1/f与磁场强度成H2正比。较短的f可以提高NA,使极限分辨率更小。 3.为什么选区光栏放在“象平面”上? 电子束之照射到待研究的视场内;防止光阑受到污染;将选区光阑位于向平面的附近,通过

半导体测试技术实践

半导体测试技术实践总结报告 一、实践目的 半导体测试技术及仪器集中学习是在课堂结束之后在实习地集中的实践性教学,是各项课间的综合应用,是巩固和深化课堂所学知识的必要环节。学习半导体器件与集成电路性能参数的测试原理、测试方法,掌握现代测试设备的结构原理、操作方法与测试结果的分析方法,并学以致用、理论联系实际,巩固和理解所学的理论知识。同时了解测试技术的发展现状、趋势以及本专业的发展现状,把握科技前进脉搏,拓宽专业知识面,开阔专业视野,从而巩固专业思想,明确努力方向。另外,培养在实际测试过程中发现问题、分析问题、解决问题和独立工作的能力,增强综合实践能力,建立劳动观念、实践观念和创新意识,树立实事求是、严肃认真的科学态度,提高综合素质。 二、实践安排(含时间、地点、内容等) 实践地点:西安西谷微电子有限责任公司 实践时间:2014年8月5日—2014年8月15日 实践内容:对分立器件,集成电路等进行性能测试并判定是否失效 三、实践过程和具体内容 西安西谷微电子有限责任公司专业从事集成电路测试、筛选、测试软硬件开发及相关技术配套服务,测试筛选使用标准主要为GJB548、GJB528、GJB360等。 1、认识半导体及测试设备

在一个器件封装之后,需要经过生产流程中的再次测试。这次测试称为“Final test”(即我们常说的FT测试)或“Package test”。在电路的特性要求界限方面,FT测试通常执行比CP测试更为严格的标准。芯片也许会在多组温度条件下进行多次测试以确保那些对温度敏感的特征参数。商业用途(民品)芯片通常会经过0℃、25℃和75℃条件下的测试,而军事用途(军品)芯片则需要经过-55℃、25℃和125℃。 芯片可以封装成不同的封装形式,图4显示了其中的一些样例。一些常用的封装形式如下表: DIP: Dual Inline Package (dual indicates the package has pins on two sides) 双列直插式 CerDIP:Ceramic Dual Inline Package 陶瓷 PDIP: Plastic Dual Inline Package 塑料 PGA: Pin Grid Array 管脚阵列

温湿度文献综述

学校代码: 学号: HENAN INSTITUTE OF ENGINEERING 文献综述 题目仓储温湿度报警系统的设计 学生姓名 专业班级电气工程及其自动化二班 学号 系(部)电气信息工程系 指导教师(职称)蒋威(讲师) 完成时间 2011年 3 月 1日

仓储温湿度报警系统的设计综述 摘要:为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测 工作,并及时报警提示。本文根据粮仓环境测试的特点,应用现代检测理论,对温室的温度、湿度等环境因子进行自动检测,并实现报警功能,首先介绍了粮仓自动监测系统的发展背景及现状,指出在控制监测方面存在的问题和需要进一步深入探讨、研究的各个方面。 关键词:粮仓、单片机、监测、传感器 目前,关于这类监测系统的研究,国内外公开发表的文献不多,下面是关于 单片机自动监测的一些主要文献: 文献[1] 这本书从应用角度出发,精选了国内外最新流行的智能仪器与数据采集系统中的一些有特色、功能很强的新型集成电路20多类100余种。内容涉及仪用放大器,运算放大器,隔离放大器,变送器,A/D、 D/A变换器, LED、LCD驱动器,看门狗定时器,UP电源监控器,数字电位器,闪烁存储器,实时时钟等器件。所优选的每一种器件除阐述其基本功能、电路特点、性能参数和管脚说明之外,更突出器件的使用方法和应用电路。对智能仪器设计、数据采集、自动控制、数字通信和计算机接口这部分设计具有很高的使用和参考价值。 文献[2] 这本书是"单片机应用技术丛书"中专门介绍单片机应用系统软件 设计的一本著作。书中总结了作者多年来在80C51系列单片机应用系统软件设计 中的实践经验,归纳出一整套应用程序设计的方法和技巧。在内容安排上,不仅 有实现功能要求的应用程序设计步骤、子程序、监控程序及常用功能模块设计方法,还以较大篇幅介绍了提高系统可靠性的抗干扰设计和容错设计技术以及程序测试的正确思想方法。附录中向读者提供了完整的系统程序设计样本和经过多年使用考验的定点运算子程序库与浮点运算子程序库的程序文本、注释及使用方法。对于本次设计主要参考的是应用程序设计步骤、子程序、监控程序及常用功能模块设计方法这一部分的内容。 文献[3] 提出MCS-51系列单片机应用系统的构成和设计方法。详细地阐述 了应用系统的前向通道(传感器通道接口)、后向通道(伺服驱动、控制通道接 口)、人机对话通道和相互通道(单片机应用系统之间的通信接口)的结构设计、

半导体C-V测量基础

半导体C-V测量基础 作者:Lee Stauffer 时间:2009-07-29 来源:吉时利仪器公司 C-V测量为人们提供了有关器件和材料特征的大量信息 通用测试 电容-电压(C-V)测试广泛用于测量半导体参数,尤其是MOSCAP和MOSFET结构。此外,利用C-V测量还可以对其他类型的半导体器件和工艺进行特征分析,包括双极结型晶体管(BJT)、JFET、III-V族化合物器件、光伏电池、MEMS器件、有机TFT显示器、光电二极管、碳纳米管(CNT)和多种其他半导体器件。 这类测量的基本特征非常适用于各种应用和培训。大学的研究实验室和半导体厂商利用这类测量评测新材料、新工艺、新器件和新电路。C-V测量对于产品和良率增强工程师也是极其重要的,他们负责提高工艺和器件的性能。可靠性工程师利用这类测量评估材料供货,监测工艺参数,分析失效机制。 采用一定的方法、仪器和软件,可以得到多种半导体器件和材料的参数。从评测外延生长的多晶开始,这些信息在整个生产链中都会用到,包括诸如平均掺杂浓度、掺杂分布和载流子寿命等参数。在圆片工艺中,C-V测量可用于分析栅氧厚度、栅氧电荷、游离子(杂质)和界面阱密度。在后续的工艺步骤中也会用到这类测量,例如光刻、刻蚀、清洗、电介质和多晶硅沉积、金属化等。当在圆片上完全制造出器件之后,在可靠性和基本器件测试过程中可以利用C-V测量对阈值电压和其他一些参数进行特征分析,对器件性能进行建模。 半导体电容的物理特性 MOSCAP结构是在半导体制造过程中形成的一种基本器件结构(如图1所示)。尽管这类器件可以用于真实电路中,但是人们通常将其作为一种测试结构集成在制造工艺中。由于这种结构比较简单而且制造过程容易控制,因此它们是评测底层工艺的一种方便的方法。

半导体材料能带测试及计算

半导体材料能带测试及计算对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置.

图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样: 背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试:

用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。 2. 根据(αhv)1/n = A(hv – Eg),其中α为吸光指数,h为普朗克常数,v为频率,Eg为半导体禁带宽度,A为常数。其中,n与半导体类型相关,直接带隙半导体的n取1/2,间接带隙半导体的n为2。

电学半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列____________ 物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是 ________________ 。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是 A、发射结正偏、集电结反偏; C、发射结反偏、集电结正偏; 4、晶体三极管的截止条件,下列说法正确的是 A、发射结正偏、集电结反偏; C、发射结反偏、集电结正偏; 5、晶体三极管的饱和条件,下列说法正确的是 A、发射结正偏、集电结反偏; C、发射结反偏、集电结正偏; 9、电路如下图所示,则A、B两点的电压正确 的是 A、U A=3.5V , U B=3.5V , D 截止; B、发射结正偏、集电结正偏; D、发射结反偏、集电结反偏; B、发射结正偏、集电结正偏; D、发射结反偏、集电结反偏; B、发射结正偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是 A、一12V ; C、+6V ;B、一6V ; D、 7、要使普通二极管导通,下列说法正确的是 A、运用它的反向特性; C、硅管使用反向区域,而锗管使用正向区域; 锗管使用在反向击穿区; D、都使用正向区 8、对于用万用表测量二极管时,下列做法正确的是 A、用万用表的 B、用万用表的 C、用万用表的 D、用万用表的R X 100 R X 10K R X 100 R X 10 , 或R X 1000的欧姆,黑棒接正极,红棒接负极,指针偏转; 的欧姆,黑棒接正极,红棒接负极,指针偏转; 或R X 1000的欧姆,红棒接正极,黑棒接负极,指针偏转; 黑棒接正极,红棒接负极,指针偏转;

第二章.半导体测试基础

摘要: 本章节包括一下内容: ◆测试目的 ◆测试术语 ◆测试工程学基本原则 ◆基本测试系统组成 ◆PMU(精密测量单元)及引脚测试卡 ◆样片及测试程序 一、基础术语 描述半导体测试的专业术语很多,这里只例举部分基础的: 1.DUT 需要被实施测试的半导体器件通常叫做DUT(Device Under Test,我们常简称“被测器件”),或者叫UUT(Unit Under Test)。 首先我们来看看关于器件引脚的常识,数字电路期间的引脚分为“信号”、“电源”和“地”三部分。 信号脚,包括输入、输出、三态和双向四类, 输入:在外部信号和器件内部逻辑之间起缓冲作用的信号输入通道;输入管脚感应其上的电压并将它转化为内部逻辑识别的“0”和“1” 电平。 输出:在芯片内部逻辑和外部环境之间起缓冲作用的信号输出通道;输出管脚提供正确的逻辑“0”或“1”的电压,并提供合适的驱动 能力(电流)。 三态:输出的一类,它有关闭的能力(达到高电阻值的状态)。 双向:拥有输入、输出功能并能达到高阻态的管脚。 电源脚,“电源”和“地”统称为电源脚,因为它们组成供电回路,有着与信号引脚不同的电路结构。 VCC:TTL器件的供电输入引脚。 VDD:CMOS器件的供电输入引脚。 VSS:为VCC或VDD提供电流回路的引脚。 GND:地,连接到测试系统的参考电位节点或VSS,为信号引脚或其他电路节点提供参考0电位;对于单一供电的器件,我们称VSS为 GND。 2.测试程序 半导体测试程序的目的是控制测试系统硬件以一定的方式保证被测器件达到或超越它的那些被具体定义在器件规格书里的设计指标。 测试程序通常分为几个部分,如DC测试、功能测试、AC测试等。DC测试验证电压及电流参数;功能测试验证芯片内部一系列逻辑功能操作的正确性;AC测试用以保证芯片能在特定的时间约束内完成逻辑操作。 程序控制测试系统的硬件进行测试,对每个测试项给出pass或fail的结果。Pass指器件达到或者超越了其设计规格;Fail则相反,器件没有达到设计要求,不能用于最终应用。测试程序还会将器件按照它们在测试中表现出的性能进行相应的分类,这个过程叫做“Binning”,也称为“分B in”. 举个例子,一个微处理器,如果可以在150MHz下正确执行指令,会被归为最好的一类,称之为“Bin 1”;

实验一半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 当腐蚀条件为铬酸腐蚀剂时,<100>晶面上呈正方形蚀坑,<110>晶面上呈菱形或矩形蚀坑,<111>晶面上呈正三角形蚀坑。(见图1)。

MOS晶体管电学特性测量毕业论文,绝对精品

工业大学 毕业实践实验报告 班级:061 学号: 姓名:

MOS晶体管电学特性测量 一、实践目的 根据半导体器件基础和半导体物理的课程所学知识,利用相关测量设备完成MOS晶体管的测量工作。希望通过此器件的测量来器件的输入特性,输出特性,转移特性,并要求系统地学习测试设备的工作特性,工作要求以及测量范围,以期为未来工作时可以独立使用相关测试设备作准备。 二、实践要求 所完成的测试报告包括器件的选型,生产商提供的基本参数表,测量时的各种曲线图,和生产商提供的进行比较异同点。还要介绍所使用测量设备的特性:作用,型号,测量范围,基本工作特性和要求,注意事项。 要求: 1.MOS晶体管可选自己购置或向老师提出要求来选取,选取前先查阅基本测量范围。 2.厂商提供的基本参数表可上网或查阅相关资料获取。 3.注意保护好测量设备,一定要注意相关工作事项。 4.注意人身安全,根据要求进行测量工作。 5.有条件时可进行同型号或不同型号的多个MOS晶体管的测量,列出表单进行对比,作统计图。 6.注意是否需要其它元器件,如电容,电阻等。 7.进行电压或电流扫描测量,测量要求有输入特性曲线,输出特性曲线,转移特性曲线,根摩尔参数等。 三、实践平台 1.半导体特性系统,半导体图示仪, 2.不同型号的MOS晶体管 3.可参考《双极场效应晶体管原理》或《模拟电子》 四、时间:2周 五、方案 通过用keithley将MOS管各端设定不同的输入参数,测量不同型号MOS管的输入特性曲线,输出特性曲线,转移特性曲线等。

六、步骤 绝缘栅场效应管(MOS管) 1、场效应晶体管(field effect transistor缩写(fet))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(100000000~1000000000ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 作用: 场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器. 场效应管可以用作电子开关. 场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源.绝缘栅场效应管的分类:绝缘栅场效应管也有两种结构形式,它们是N沟道型和P沟道型。无论是什麽沟道,它们又分为增强型和耗尽型两种。 2、它是由金属、和半导体所组成,所以又称为金属—氧化物—半导体场效应管,简称MOS 场效应管。 3、绝缘栅型场效应管的工作原理(以N沟道增强型MOS场效应管)它是利用UGS来控制“感应电荷”的多少,以改变由这些“感应电荷”形成的导电沟道的状况,然后达到控制漏极电流的目的。在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。 场效应管的式作方式有两种:当栅压为零时有较大漏极电流的称为耗散型,当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流的称为增强型。 特性曲线 场效应管的特性曲线分为转移特性曲线和输出特性曲线。 1) 转移特性 在u DS一定时, 漏极电流i D与栅源电压u GS之间的关系称为转移特性。 输出特性 型号2SK117 种类绝缘栅(MOSFET)