贴片电容在使用时注意的事项

贴片电容在使用时注意的事项
贴片电容在使用时注意的事项

贴片电容材质有X7R、NPO、Y5V、Z5U四种,外表通常有黄色、黑色、淡蓝色。

目前,应用最广的就是贴片式涤纶电容器。这种电容器的耐压通常为50V,允许工作温度范围是-40度~+85度。

在实际应用电路中,通常需要将电阻器与电容器串联使用,因此为方便起见,通常将电阻器与电容器封装在一起,制作成一个RC组件。焊接贴片电容时需准备,电烙铁、烙铁架、湿水海绵、镊子、松香、焊锡、脱脂棉、95%酒精、贴片电容、电阻、电路板、220V电源。

随着科技的发展焊接能力的技术提高随着技术的不断发展,贴片电容MLCC现在已可以做到几百层甚至上千层了,每层是微米级的厚度。所以稍微有点形变就容易使其产生裂纹。另外同样材质、尺寸和耐压下的贴片电容MLCC,容量越高,层数就越多,每层也越薄,于是越容易断裂。另外一个方面是,相同材质、容量和耐压时,尺寸小的电容要求每层介质更薄,导致更容易断裂。裂纹的危害是漏电,严重时引起内部层间错位短路等安全问题。而且裂纹有一个很麻烦的问题是,有时比较隐蔽,在电子设备出厂检验时可能发现不了,到了客户端才正式暴露出来。所以防止贴片电容MLCC产生裂纹意义重大。

首先必须告知工艺和生产人员电容热失效问题,让其思想上高度重视这个问题。其次,必须由专门的熟练工人焊接。

还要在焊接工艺上严格要求,比如必须用恒温烙铁,烙铁不超过315°C(要防止生产工人图快而提高焊接温度),焊接时间不超过3秒选择合适的焊焊剂和锡膏,要先清洁焊盘,不可以使MLCC受到大的外力,注意焊接质量等等。最好的手工焊接是先让焊盘上锡,然后烙铁在焊盘上使锡融化,此时再把电容放上去,烙铁在整个过程中只接触焊盘不接触电容(可移动靠近),之后用类似方法(给焊盘上的镀锡垫层加热而不是直接给电容加热)焊另一头。

钽电容的选用和使用标准

钽电容器设计指南 发布 前 言 本指南规定了电源类产品在设计生产中选择及使用钽电解电容时的基本原则、技术要求及注意事项。 本指南起草单位:XXXXXXXXXXXXXXXXXXXX 本指南主要起草人: 本指南主要审查人: 本指南批准人:

目 录 1范围 4 2规范性引用文件 4 3概述 4 3.1.钽电容器的简要说明 4 3.2.符号说明 5 4术语定义 5 4.1.容量 5 4.2.电压 6 4.3.损耗因子和损耗角正切(tgδ) 7 4.4.阻抗(Z)和等效串联电阻(ESR) 7 4.5. D.C.漏电流 7 5选择时应注意的基本要求 8 5.1.固体电解质钽电容应考虑的主要因素 8 5.2.非固体电解质钽电容器应考虑的主要因素 9 5.3.不同电路类型对钽电容器类型的选择使用要求 10 5.4.对使用容量的选择要求 10 6使用时应注意的基本要求 11 6.1.固体电解质钽电容(主要以片式钽电容为例) 11 6.2.非固体电解质钽电容器 17 7钽电容器使用方式不同时电容器参数变化规律说明 20 8钽电容器的故障率计算 21 9保护电路与可靠性设计 21 10关于钽电容器的一些问题及解决方案 22 10.1.液体钽电容器的漏液问题 22 10.2.液体钽电容器的耐反向电压问题 22 10.3.固钽“不断击穿”又“不断自愈”的问题 22 10.4.固钽有“热致失效”问题 23 10.5.固钽有“场致失效”问题 23 10.6.解决方案 23 10.7.ESR和波纹电流之间的关系以及波纹电流对电路设计者的重要性 23 10.8.钽电容器的保存限期 24 11钽电容选用及使用总结 24 11.1.电压及纹波特性 24 11.2.使用环境温度 24 11.3.频率特性 25 11.4.可靠性 25 12供应商 25

陶瓷电容器简介及使用注意事项

陶瓷电容器简介及使用注意事项 1.分类 1类多层瓷介电容器,温度稳定性好,材料C0G或NP0(注意C0G里面的0是代表零,NP0里面的0也是代表零,不是英文字母O),随温度变化是0,偏差是±30ppm/℃、±0.3%或±0.05pF,这类电容量较小,耐压较低,主要用于滤波器线路的谐振回路中,但其中损耗小,绝缘电阻较高,制造误差J=±5% G=±2% F=±1%,执行标准:GB/T20141-2007 2类多层瓷介电容器,温度稳定性差,但容量大、耐压高, 例如:X7R 在-55℃~到+125℃内温度偏移±15%,X5R在-55℃~到+85℃内温度偏移也是±15%,Y5V在-30℃~到+85℃内温度偏移+22%~-82%,Z5U在+10℃~+85℃内温度偏移+22%~-56%,生产误差:K=±10%、M=±20%。 注意:生产电容器时产生的误差与温度偏差是不同的概念。 2类多层瓷介电容器主要用于旁路、滤波、低频耦合电路或对损耗和电容量稳定性要求不高的电路中,执行标准:GB/T20142-2007 2.在使用贴片电容器的PCB设计中,用于波峰焊的焊盘尺寸与用于回流焊的 焊盘尺寸不同,因为焊料的量的大小会影响零件的机械应力,从而导致电容器破碎或开裂。 3.在PCB设计时巧用适当多的阻焊层将2个或以上电容器焊盘隔开。 4.在靠近分板线附近,电容器要平行排列,即长边与分板线平行,减少分板 时的裂缝。 5.自动贴片机装配SMD时,适当的部位支撑PCB是完全必要的,单面板时和 双面板时支撑都要考虑两面SMD的裂缝。

6.在波峰焊工艺中,粘着胶的选用和点胶位置及份量直接影响SMD焊接后的 性能稳定性,胶的份量以不能接触PCB中焊盘为准。 7.焊接中使用助焊剂: 7.1如果助焊剂中有卤化物多或使用了高酸性的助焊剂,那么焊接后过多 的残留物会腐蚀电容器端头电极或降解电容器表面的绝缘。 7.2回流焊中如果使用了过多的助焊剂,助焊剂大量的雾气会射到电容器 上,可能影响电容器的可焊性。 7.3水溶助焊剂的残留物容易吸收空气中的水,在高湿条件下电容器表面 的残留物会导致电容器绝缘性能下降,并影响电容器的可靠性,所以,当选用了水溶性助焊剂时,要特别注意清洗方法和所使用的机器的清洗力。 7.4处理贴好电容器的板时,过程中温差不能超过100℃,否则会引起裂缝。 8. 焊料的使用量为电容器厚度的1/2或1/3. 9. 使用烙铁焊接时,烙铁头的顶尖直径最大为1.0mm,烙铁头尖顶不能直接 碰到电容器上,要接触在线路板上,加锡在线路板与电容器之间。 10. 在搬运和生产过程中,电容器包装箱应避免激烈碰撞,从0.5米或以上 高度落下的单个电容器可能会产生电容器瓷体破损或微裂,应不能在使用。 11. 储存条件: 温度范围:-10℃~+40℃ 湿度范围:小于70%(相对湿度) 存储期:半年 如果超过了6个月(从电容器发货之日算起),在使用电容器之前要对其进行可焊性检验,同时高介电常数的电容器的容量也会随时间的推移

最常用的电子元器件及使用常识.

最常用的电子元器件及使用常识 电阻 电阻在电路中用“R” 加数字表示,如:R1表示编号为 1的电阻。电阻在电路中的主要作用为 分流、限流、分压、偏置等。 1、参数识别:电阻的单位为欧姆(Ω ,倍率单位有:千欧(KΩ ,兆欧(MΩ等。换算 方法是:1兆欧 =1000千欧 =1000000欧 电阻的参数标注方法有 3种,即直标法、色标法和数标法。 a 、数标法主要用于贴片等小体积的电路,如: 472表示47×100Ω(即 4.7K ; 104则表示 100K b 、色环标注法使用最多,现举例如下: 四色环电阻五色环电阻(精密电阻 2、电阻的色标位置和倍率关系如下表所示: 颜色有效数字倍率允许偏差(% 银色 /x0.01±10 金色 /x0.1±5 黑色 0+0/ 棕色 1x10±1 红色 2x100±2

橙色 3x1000/ 黄色 4x10000/ 绿色 5x100000±0.5 蓝色 6x1000000±0.2 紫色 7x10000000±0.1 灰色 8x100000000/ 白色 9x1000000000/ 电容 1、电容在电路中一般用“C” 加数字表示(如 C13表示编号为 13的电容。电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。电容的特性主要是隔直流通交流。电容容量的大小就是表示能贮存电能的大小, 电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。容抗XC=1/2πfc (f表示交流信号的频率, C 表示电容容量电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。 2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法 3种。电容的基本单位用法拉(F 表示,其它单位还有:毫法 (mF 、微法(uF 、纳法(nF 、皮法(pF 。其中:1法拉 =103毫法 =106微法 =109纳法 =1012皮法容量大的电容其容量值在电容上直接标明, 如 10uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000uF 1P2=1.2PF1n=1000PF数字表示法:一般用三位数字表示容量大小, 前两位表示有效数字,第三位数字是倍率。如:102表示 10×102PF=1000PF224表示 22×104PF=0.22uF 3、电容容量误差

电力电容器的市场现状和发展前景

电力电容器的市场现状和发展前景 ——西安西电电力电容器有限责任公司房金兰 2007年06月14日14:26:36 市场需求现状 近年来,国内电力电容器行业的发展极其迅猛。产品的质量和数量都有了大幅度的提升,相当一部分优势企业已开始问鼎国际市场并取得了不俗的业绩。随着电力工业的快速发展、技术进步以及无功补偿、节能降损管理的加强,电力电容器制造企业遇到了前所未有的发展机遇。使电力电容器的市场迅速扩大,同时,也引发了许多领域对电力电容器的大量需求。 无功补偿:对电力系统进行无功补偿是电力电容器最主要的用途,需求量约占整个电容器市场的80%,容量达8000万kvar以上。其主要作用是提高功率因数、降低线路和输变电设备的损耗、改善受端电压质量以及提高输送功率。市场需求量与年新增发电装机容量有密切关系,过去公认的比例关系为0.7:1,即发电装机每增加1kW,需安装无功补偿电容器0.7kvar。近几年电网的发展有了很大变化,电压等级多,输送距离长,线路中为降低工频过电压而增设的并联电抗器也需要进行无功功率补偿,节能降耗和无功管理得到了加强。虽然无功补偿比率增加到多少尚无定论,但从近几年无功补偿电容器实

际安装容量来看,与新增发电装机容量大致存在1:1的关系。 谐波滤波:一方面,随着电气化铁道、冶金等非线形电力负荷的迅速增加,以及整流、变频、家用电器等电力电子设备的广泛应用,电力系统中谐波含量大幅度增加;另一方面,电力用户对电能质量的要求也不断提高。所以,电力系统对谐波滤波装置的需求逐年增加,但由于目前虽有谐波控制标准,尚无严格的谐波管理规定,近年滤波电容器增加的幅度还不是很大,年需求量大约为100万kvar。 串联电容器:在输电线路上安装串联电容器,以容抗补偿线路的感抗,可以提高输送功率、提高电网稳定性和提高线路受端电压、改善电压质量。我国近几年开始重视串联补偿的应用,在220kV和多条500kV输电线路上安装了串联电容器,发挥了预期的技术效用和经济效益。近几年按平均每年装设2套串补装置计,则需用串联电容器大约为100万kvar,但这类电容器主要还依靠进口。 直流输电用电力电容器:近年来,我国直流输电线路发展很快,天广、嵊泗、贵广Ⅰ回、三常、三广、灵宝、三沪等直流工程相继投运,贵广Ⅱ回、高岭工程正在建设中。大致每年新建一项直流工程。而一项±500kV的直流工程需要电容器800万kvar左右,包括:交流滤波和并联电容器、交流PLC电容器、换流阀阻尼和均压电容器、

贴片电容规格识别

万联芯城主打三星,风华,国巨贴片电容,海量现货库存,价格优势明显。万联芯城主动类被动类电子元器件种类繁多,可进行一站式配单报价,满足用户物料需求,解决用户采购烦恼。点击进入万联芯城 点击进入万联芯城

贴片电容常见的质量问题 首先是贴片电容本体问题-断裂或微裂,这是最常见的问题之一。断裂现象较明显,而微裂一般出在内部,不容易观察到,涉及到贴片电容的材质、加工工艺和贴片电容使用过程中的机械、热应力等作用因素影响。 其次是贴片电容电性能问题。贴片电容使用一段时间后出现绝缘电阻下降、漏电。 以上两个问题往往同时产生,互为因果关系。电容器的绝缘电阻是一项重要的参数,衡量着工作中贴片电容漏电流大小。漏电流大,贴片电容储存不了电量,贴片电容两端电压下降。往往由于漏电流大导致了贴片电容失效,引发了对贴片电容可靠性问题的争论。 可靠性问题:贴片电容失效分为三个阶段。 第一阶段是贴片电容生产、使用过程的失效,这一阶段贴片电容失效与制造和加工工艺有关。贴片电容制造过程中,第一道工序贴片电容粉料、有机黏合剂和溶剂混合配料时,有机黏合剂的选型和在瓷浆中的比例决定了瓷浆干燥后瓷膜的收缩率;第三道工序丝印时内电极金属层也较关键,否则易产生强的收缩应力,烧结是形成瓷体和产生贴片电容电性能的决定性工序,烧结不良可以直接影响到电性能,且内电极金属层与贴片电容介质烧结时收缩不一致导致瓷体内部产生了微裂纹,这些微裂纹对一般电性能不会产生影响,但影响产品的可靠性。主要的失效模式表现为贴片电容绝缘电阻下降,漏电。

防范、杜绝微裂纹的产生:从原材料选配、瓷浆制备、丝网印刷和高温烧结四方面优选工艺参数,以达到贴片电容内部结构合理,电性能稳定,可靠性好。 第二阶段是贴片电容稳定地被用于电子线路中,该阶段贴片电容失效概率正逐步减小,并趋于稳定。分析贴片电容使用过程中贴片电容受到的机械和热应力,即分析加工过程中外力对贴片电容可能的冲击作用,并依据贴片电容在加工过程中受到的应力作用,设计各种应力实验条件,衡量作用在贴片电容上的外应力大小及其后果。也可具体做一些贴片电容可靠性实验以明确贴片电容前阶段是否存在可靠性隐患。 贴片电容在该过程中受到热和机械应力的作用,严重时出现瓷体断裂现象。若贴片电容受到的热和机械应力接近临界时,则不出现明显的断裂现象,而是表现为内部裂纹的出现或内部微裂纹的产生。用烙铁补焊时,明显裂纹则表现为断裂,微裂纹大多数表现为电性能恢复正常,漏电现象消失,但时间一长,贴片电容可靠性差的缺陷就体现出来。 第三阶段是贴片电容长时间工作后出现失效现象,这一阶段贴片电容失效往往由于老化、磨损和疲劳等原因使元件性能恶化所致。电子整机到消费者手中出现整机功能障碍,追溯原因,发现贴片电容漏电流大,失效。一般此类问题源自于第一阶段或第二阶段贴片电容可靠性隐患的最终暴露,该阶段出现的质量比前两个阶段严重得多。由于整

钽电容器使用指导

钽电容器使用指导 基础特征 1.电容量以标称电容量C n表示,单位为uF,为避免电源频率的影响,使用100Hz或120Hz 并采用串联等效电路测量,标准测量电压为U_= 2.20-1.0V(有效值)或更低,测量温度为25℃,允许15℃~35℃范围内变动。 2.电容量允许偏差 表示与标称电容量值的允许差异 用符号表示为:K:±10%,M:±20%Q:-10%~+30% 3.损耗角正切值tgδ 由于电容器的结构存在电阻,在春联等效电路是可以用电器对频率的响应Xc=1/2πfc和等效串联电阻ESR来表示损耗,即tgδ=ESR/Xc 损耗角正切值是在0.5VAC120Hz下测试算成百分比 4.额定电压 表示为可连续施加在电容器上的最大DC电压。用V R或V R表示,单位:伏(V)。 5.漏电流 漏电流测量须连接1KΩ电阻,施加额定电压5min读数,标准漏电流是不大于容量乘以额定电压再乘以一个常数。 6.等效串联电阻 串联等效电阻是电容器在串联等效回路中所测得的电阻,测量频率为100KHz。 7.使用温度范围 使用温度范围-55℃~125℃,额定电压下最大使用温度为+85℃,大于85℃时最大允许施加电压是类别电压,在各型号说明书另有规定。类别电压约为额定电压的0.65倍。 使用说明 1.使用电压 电容器的故障受使用电压和额定电压的比率影响很大,设计实际电路时,请考虑到所有要求的可靠性,适当降低电压。 使用低阻抗电路时(尤其开关电源中的滤波电容器),请将使用电压设定在额定电压的1/3以下,使用其他电路时,请将使用电压设立在额定电压的2/3以下。

在低阻抗电路中电容器并联使用时,将增加直流浪涌电流失效的危险,同时请注意并联电容器中储存的电荷,通过其他电容器放电。 钽电容器在电路中,应控制瞬间大电流对电容器的冲击,建议串联电阻以缓解这种冲击。请将3Ω/V以上的保护电阻器串联在电容器上,以限制电流在300mA以下。无法插入保护电阻时,请使用1/3额定电压以下作为工作电压。 2.反向电压 固体钽电容器为极性电容器,一般不允许加反向电压,不得已的情况下,允许在短时间内施加小量的反向电压,其值为2.5℃时不大于10%U R或1V(取小者)。 如果长期在有反向电压请先用双极性电容器。CA30型、CA35型等非固体钽电容器不能承受反向电压,在测量过程中如不慎使用钽电容器承受了不应有的反向电压,则该电容器报废处理,即使各参数当时测试仍然合格。禁止使用万用表电阻档对钽电容器或其本身进行不分极性的电阻测试。 3.失效率的影响因素 实际所加钽电容两端的电压越低于额定电压,钽电容器的失效也越低。钽电容器的失效率在85℃额定电压下最大允许负载条件下评定的,在实际电路中,往往存在电压或电流的峰值冲击及纹波电流,为了使钽电容器使用具有高可靠性,推荐使用电压为额定电压的1/2.对于大于85℃环境条件下,要以类别电压为基准,进行降压设计,类别电压约为额定电压的0.65倍。影响失效的另一因素是接在电容器上的串联电阻,在电路中通电容器串联的电阻越大,失效率也就越低。 失效率等级:2.0%/1000h表示为L;1.0%/1000h表示为M;0.1%/1000h表示为P;0.01%/1000h 表示为R;0.001%/1000h表示为S 4.纹波电流 直流偏压与交流分压峰值之和不得超过电容器的额定电压。交流负峰值与直流偏压之和不得超过电容器所允许的反向电压值。纹波电流流经电容器产生有功率损耗,导致产品自身温度增加致使热击穿概率增大,有必要在电路中对纹波电流或电容器允许功率损耗进行限制。各种非固体钽电容器按壳号允许最大纹波电流的有效值(+85℃40KHz0.66U R)见表1,在不同的使用电压,频率下纹波电流系数参见表2。

2016年国内外超级电容行发展现状及未来趋势分析

2016年国内外超级电容行发展现状及未来趋势分析 一、超级电容的定义 超级电容又名电化学电容器,双电层电容器是通过极化电解质来储能的一种电化学元件。它不同于传统的化学电源,是一种介于传统电容器与电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原假电容电荷储存电能。但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 二、超级电容有哪些特点 (1)充电速度快,充电几秒-几分钟就可充满; (2)循环使用寿命长,深度充放电循环使用次数可达1-50万次,远高于充电电池的充放电使用寿命; (3)功率密度高,可以快速存储释放电荷,可达300W/KG-5000W/KG,相当于电池电量的5-10倍; (4)大电流放电能力强,能量转换效率高,循环过程能量损失小,循环效率≥90%; (5)贮存寿命长,因为充电过程没有化学反应,电极材料相对稳定; (6)低温特性好,温度范围宽-40℃~+70℃,随着温度的降低,锂电池放电性能显著下降;(7)可靠性高。 缺点:成本高,功率密度较高,能量密度低。 法拉(farad),简称“法”,符号是F 1法拉是电容存储1库仑电量时,两极板间电势差是1伏特1F=1C/1V 1库仑是1A电流在1s内输运的电量,即1C=1A·S。 1法拉=1安培·秒/伏特 一个12伏14安时的电瓶放电量=14×3600×1/12=4200法拉(F),图中一个30000F的超级电容的电量相当于7个12伏14安时的电瓶放电量,够大吧。 三、超级电容的种类 按储存电能的机理,超级电容器可分为以下2种:包括双电层电容器和赝电容器。 四、超级电容的用途 超级电容可以广泛应用于辅助峰值功率、备用电源、存储再生能量、替代电源等不同的应用场景,在工业控制、风光发电、交通工具、智能三表、电动工具、军工等领域具有非常广阔的发展前景,特别是在部分应用领域具有非常大的性能优势。 1、电子设备最早应用:例如我们电脑的内存系统、照相机的闪光灯,音响设备后备存储电源。 2、汽车工业中:插电式混合动力汽车中超级电容主要和电池相配合形成智能启停控制系统。(1)超级电容可以迅速高效地吸收电动汽车制动产生的再生动能; (2)加速和爬坡时超级电容为智能启停控制系统电机提供电能,延长了电池的使用寿命。 3、大尺寸超级电容器可用在火车和地铁的刹车制动系统上,可以节省30%的能量。 4、超级电容轻轨列车 超级电容轻轨列车是一种新型电力机车。2012年8月10日,世界第一列超级电容轻轨列车在湖南省株洲市下线。这种新型电力机车最多能运载320人,不再需要沿途架设高压线,停站30秒钟就能快速充满电。列车充电后能高速驶向相距2公里左右的另一个站点,再上下客并充电,如此周而复始。 5、全球首创超级电容储能式现代电车

钽电容基本结构和生产工艺

钽电容基本结构和生产工艺 固体钽电容是将钽粉压制成型,在高温炉中烧结成阳极体,其电介质是将阳极体放入酸中赋能,形成多孔性非晶型Ta2O5介质膜,其工作电解质为硝酸锰溶液经高温分解形成MnO2,通过石墨层作为引出连接用钽电容性能优越,能够实现较大容量的同时可以使体积相对较小,易于加工成小型和片状元件,适宜目前电子器件装配自动化,小型化发展,得到了广泛的应用,钽电容的主要特点有寿命长,耐高温,准确度高,但耐电压和电流能力相对较弱,一般应用于电路大容量滤波部分。 2.1.基本结构 二、固体钽电解电容生产工艺 固体钽电解电容其介质材料是五氧化二钽;阳极是烧结形成的金属钽块,由钽丝引出,传统的负极是固态MnO2,目前最新的是采用聚合物作为负极材料,性能优于MnO2。 钽电解电容有引线式和贴片两种安装方式,其制造工艺大致相同,现在以片钽生产工艺为例介绍如下。 1、生产工艺流程图成型→烧结→试容检验→组架→赋能→涂四氟→被膜→石墨银浆→上片点胶固化→点焊→模压固化→切筋→喷砂→电镀→打标志→切边→漏电预测→老化→测试→检验→编带→入库 2、主要生产工序说明 2.1成型工序:该工序目的是将钽粉与钽丝模压在一起并具有一定的形状,在成型过程中要给钽粉中加入一定比例的粘接剂。 2.1.1什么要加粘接剂? 为了改善钽粉的流动性和成型性,避免粉重误差太大,另外避免钽粉堵塞模腔。低比容粉流动性好可适当多加点粘接剂,高比容粉流动性差可适当少加点粘接剂。

2.1.2加了太多或太少有什么影响? 如果太多:脱樟时,樟脑大量挥发,易导致钽坯开裂、断裂,瘦小的钽坯易导致弯曲。如果太少:起不到改善钽粉流动性的作用。拌好后的钽粉如果使用时间较长,因为樟脑是易挥发物品,可适量再加入一点粘和剂。樟脑的加入会导致钽粉中杂质含量增加,影响漏电。每天使用完毕,需将钽粉装入聚四氟乙烯瓶或真空袋内密封保存,以防樟脑挥发、钽粉中混入杂质、钽粉中吸附空气中的气体。 2.1.3成型后不进行脱樟,可否直接放入烧结炉内进行烧结? 不行,因为樟脑是低温挥发物,如果直接放入烧结炉内进行烧结,挥发物会冷凝在炉膛、机械泵、扩散泵等排出管道内。 2.1.4丝埋入深度太浅会有什么影响? 钽丝易拔出,或者钽丝易松动,后道工序在钽丝受到引力后,易导致钽丝跟部漏电流大。所以强调钽丝起码要埋入三分之二的钽坯高度以上,在成型时经常要检查。 2.1.5粉重误差太大分有什么影响? 粉重误码差太大,导致容量严重分散,K(±10%)档的命中率会很低。成型时经常要称取粉重,误差要合格范围内(±3%)。如果有轻有重都是偏重或都是偏轻,可调整赋能电压或烧结温度。如果有轻有重,超过误差范围,要调整成型机,并将已压钽坯隔离,作好标识,单独放一个坩埚烧结。 2.1.6密要均匀不能有上松下紧,或下紧上松的现象。否则会导致松的地方耐压降低。钽坯高度要在允许差范围内。 2.1.7成型注意事项: (1)粉重 (2)压密 (3)高度 (4)钽丝埋入深度 (5)换粉时一定要将原来的粉彻底从机器内清理干净。 (6)不能徒手接触钽粉、钽坯,谨防钽粉、钽坯受到污染。杜绝在可能有钽粉的部位加油。 (7)成型后的钽坯要放在干燥器皿内密封保存,并要尽快烧结,一般不超过24小时。 (8)每个坩埚要有伴同小卡,写明操作者、日期、规格、粉重等情况,此卡跟随工单一起流转,要在赋能后把数据记在工单上才能扔掉,以防在烧结、赋能、被膜出了质量问题可以倒追溯。 2.2烧结工序 1.烧结:在高温高真空条件下将钽坯烧成具有一定机械强度的高纯钽块。 2.目的:一是提纯,二是增加机械强度。 3.烧结温度对钽粉比容有什么影响?

贴片电容注意事项

贴片电容注意事项 当高压贴片电容MLCC受到温度冲击时,容易从焊端开始产生裂纹。在这点上,小尺寸电容比大尺寸电容相对来说会好一点,其原理就是大尺寸的电容导热没这么快到达整个电容,于是电容本体的不同点的温差大,所以膨胀大小不同,从而产生应力。这个道理和倒入开水时厚的玻璃杯比薄玻璃杯更容易破裂一样。另外,在贴片电容MLCC焊接过后的冷却过程中,贴片电容MLCC和PCB的膨胀系数不同,于是产生应力,导致裂纹。要避免这个问题,回流焊时需要有良好的焊接温度曲线。如果不用回流焊而用波峰焊,那么这种失效会大大增加。MLCC更是要避免用烙铁手工焊接的工艺。然而事情总是没有那么理想。烙铁手工焊接有时也不可避免。比如说,对于PCB外发加工的电子厂家,有的产品量特少,贴片外协厂家不愿意接这种单时,只能手工焊接;样品生产时,一般也是手工焊接;特殊情况返工或补焊时,必须手工焊接;修理工修理电容时,也是手工焊接。无法避免地要手工焊接MLCC时,就要非常重视焊接工艺。 首先必须告知工艺和生产人员高压贴片电容热失效问题,让其思想上高度重视这个问题。其次,必须由专门的熟练工人焊接。还要在焊接工艺上严格要求,比如必须用恒温烙铁,烙铁不超过315°C(要防止生产工人图快而提高焊接温度),焊接时间不超过3秒选择合适的焊焊剂和锡膏,要先清洁焊盘,不可以使MLCC受到大的外力,注意焊接质量等等。的手工焊接是先让焊盘上锡,然后烙铁在焊盘上使锡融化,此时再把电容放上去,烙铁在整个过程中只接触焊盘不接触电容(可移动靠近),之后用类似方法(给焊盘上的镀锡垫层加热而不是直接给电容加热)焊另一头。 机械应力也容易引起MLCC产生裂纹。由于电容是长方形的(和PCB平行的面),而且短的边是焊端,所以自然是长的那边受到力时容易出问题。于是,排板时要考虑受力方向。比如分板时的变形方向于电容的方向的关系。在生产过程中,凡是PCB可能产生较大形变的地方都尽量不要放电容。比如PCB定位铆接、单板测试时测试点机械接 PCB板不能直接叠放等等。

最新常见电子元件识别

常见电子元件识别

常见电子元件识别 电阻电容可以说是电子设备中最常用的零件。 电阻按材料分一般有:碳膜电阻、金属膜电阻、水泥电阻、线饶电阻等。 一般的家庭电器使用碳膜电阻较多,因为它成本低廉。金属膜电阻精度要高些,使用在要求较高的设备上。水泥电阻和线饶电阻都是能够承受比较大功率的,线饶电阻的精度也比较高,常用在要求很高的测量仪器上。 电阻 小功率碳膜和金属膜电阻,一般都用色环表示电阻阻值的大小,这也是我们在学习电阻的很重要的一步。电阻阻值的单位是欧姆。下面详细说明。 色环电阻分为四色环和五色环,先说四色环。顾名思义,就是用四条有颜色的环代表阻值大小。每种颜色代表不同的数字,如下: 黑0 棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9 金、银表示误差 各色环表示意义如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:10的幂数; 第四条色环:误差表示。 例如:电阻色环:棕绿红金 第一位:1; 第二位:5;

10的幂为2(即100); 误差为5% 即阻值为:15X100=1500欧=1.5千欧=1.5K 如果有不明白,你可以直接来信或留言。 还有精确度更高的“五色环”电阻,用五条色环表示电阻的阻值大小,具体如下: 第一条色环:阻值的第一位数字; 第二条色环:阻值的第二位数字; 第三条色环:阻值的第三未数字; 第四条色环:阻值乘数的10的幂数; 第五条色环:误差(常见是棕色,误差为1%) (可见,四色环电阻误差为5-10%,五色环常为1%,精度提高了) 例如:有电阻:黄紫红澄棕 前三位数字是:472 第四位表示10的3次方,即1000 阻值为:472X1000欧=472千欧(即472K) 电阻还有其他好多类型,一般说的电位器,就是阻值可以调节的电阻(简称可调电阻)。在以后制作中遇到了再作介绍 电容

贴片电容使用注意事项

贴片电容使用中的注意事项 (1)电容的工作电压必须低于额定电压,不得超过额定电压使用。例如工作电压为12V时,可选额定电压16~25V;工作电压为5V时,可选6~10V。另外电容器的电容量还与耐压值有关。例如片状钽电容耐压4~50V,0.1~4.7uF小容量电容有额定功率为50V的,而10uF以上,耐压至高于25V的就很少见到,因此,在进行电路设计时应引起注意。 (2)应合理的选择电容器精度及材料类别。市售的片状电容器的精度在103以下的,其精度可达J级(±5%);在103以上则J级较少,以K级(±10%)居多;在104以上则以M级(±20%)为主。例如,在谐振回路中,为保证性能稳定,要采用C0G Ⅰ类材料及J级片状多层陶瓷电容器;如在IC的电源正端往往要连接一个0.1PF的旁路电容,则可选Ⅲ类材料,M级精度的片状多层陶瓷电容器。这样既能保证产品精度要求,又能降低产品成本。 (3)市场上尺寸代码为0805片状电容器的容量规格(系列)最齐全,而0603一些偏僻的容量可能会缺货。在生产批量不太大的时候,为防止市场缺货而影响生产,可以将焊盘稍作延伸,使它能适用于0603及0805,避免造成因缺件而停产。 (4)片状多层陶瓷电容器都是卷装的,型号在带盘上,而电容器上无任何标志。虽然可以用测量的方法知道其容量,但是很难区别材料类别的精度等级,因此在使用过程中,尤其是手工装配时务必小心。 (5)敞开式片状微调电容器不能用波峰焊,而封闭式片状微调电容器可用波峰焊。 (6)在国外的不少电路图中,往往可见“OS——CON”商标的电容器,它就是日本SANYO(三洋)公司生产的有机半导体铝固体电解电容器。它最大的特点是虽然是电解电容,但却有与薄膜电容器相同的高频特性;其次是等效串联电阻小,并且对温度不敏感;第三是可通过更大的纹波电流。例如,用30uH及1500uF/10v铝电解电容器组成LC滤波器时,若采用OS-CON电解电容(L不变),只要22uF/20V的电容就可以达到效果。 另外,有可能看到一个大容量的普通铝电解电容器并联一个小容量的OS-CON电解电容。这是因为OS-CON的ESR低,并联后其ESR更低,但小容量的OS-CON电解电容却可通过大部分的纹波电容电流,从而获得极好的滤波效果,使输出纹波电压减小很多,并且可减少损耗。 (7)片状电容器普遍采用多层结构,在使用时有些人采用烙铁手工焊接,此时一定要注意焊接速度,避免过热,造成基化端头因温差大而断裂,使容量下降。 (8)片状电容器使用的是陶瓷基片,薄而脆。有些电路板较薄,安装时受力不均匀会变形,很容易造成电容器折断。解决的方法除了改进设计工艺外,还可在容易造成折断的地方改用管状电容,因为管状电容强度高,不易折损。

超级电容器前景及应用

超级电容器发展现状及发展前景分析 超级电容器研究国世界分布图 超级电容器在新能源领域并不是一个陌生的名词。实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。因此,尽管研发过程困难重重,但攻克它的意义却很重大。 超级电容器的尴尬现状 超级电容器从诞生到现在,已经历了三十多年的发展历程。目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。

超级电容器“全家福” 使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显 著特点,这也使它成为当今世界最值得研究的课题之一。目前,超级电容器的主要研究国 为中、日、韩、法、德、加、美。从制造规模和技术水平来看,亚洲暂时领先。 然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获 得极大推动,也更容易聚焦全世界的目光。相比之下,超级电容器却很难得到雄厚的资金 支持,技术的进步和发展也就受到很大程度地制约。另外,超级电容器成本高、能量密度 低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。 先驱EEStor公司勇于挑战却惨遭败北 尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。一部分厂商面对超 级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个 涉足此领域并获得成功的例子。另外一部分厂商则坚信,只要超级电容器的生产成本实现 大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。美国超级电容器生产商EEStor就属于后者。 上世纪90年代,美国超级电容器生产商EEStor为改变超级电容器的市场现状,曾用 好几年的时间将大量财力物力投向如何提高超级电容能量密度的研发上,期望能通过自身

贴片陶瓷电容知识(介质,DF,漏电,应用等)

AVX/松下/华亚/国巨/TDK ,TAIYO,村田(不是春田啊),AVX 单片陶瓷电容器(通称贴片电容)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。不同的公司对于上述不同性能的电容器可能有不同的命名方法,这里我们引用的是AVX公司的命名方法,其他公司的产品请参照该公司的产品手册。 NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。所以在使用电容器时应根据电容器在电路中作用不同来选用不同的电容器。 一NPO电容器 NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。 NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。 容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF以下,100PF-1000PF也能生产但价格较高 介质损耗最大0。15% 封装DC=50V DC=100V 0805 0.5---1000pF 0.5---820pF 1206 0.5---1200pF 0.5---1800pF 1210 560---5600pF 560---2700pF 2225 1000pF---0.033μF 1000pF---0.018μF NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。适用于低损耗,稳定性要求要的高频电路 二X7R电容器 X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。 X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。 X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。 X7R此种材质比NPO稳定性差,但容量做的比NPO的材料要高,容量精度在10%左右。常规10000PF以下,10000PF-1UF也能生产但价格较高 介质损耗最大2。5%(25V与50V)3。5%(16V) 封装DC=50V DC=100V 0805 330pF---0.056μF 330pF---0.012μF 1206 1000pF---0.15μF 1000pF---0.047μF 1210 1000pF---0.22μF 1000pF---0.1μF 2225 0.01μF---1μF 0.01μF---0.56μF 三Z5U电容器 Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。 尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。尤其是在退耦电路的应用中。下表给出了Z5U电容器的取值范围。

钽电容知识总结(结构、工艺、参数、选型)

一、钽电容简介和基本结构 固体钽电容是将钽粉压制成型,在高温炉中烧结成阳极体,其电介质是将阳极体放入酸中赋能,形成多孔性非晶型Ta2O5介质膜,其工作电解质为硝酸锰溶液经高温分解形成MnO2 ,通过石墨层作为引出连接用。 钽电容性能优越,能够实现较大容量的同时可以使体积相对较小,易于加工成小型和片状元件,适宜目前电子器件装配自动化,小型化发展,得到了广泛的应用,钽电容的主要特点有寿命长,耐高温,准确度高,但耐电压和电流能力相对较弱,一般应用于电路大容量滤波部分。 2.1.基本结构 下图为MnO2为负极的钽电容

下图为聚合物(Polymer)为负极的钽电容

二、生产工艺 按照电解液的形态,钽电解电容有液体和固体钽电解电容之分,液体钽电解用量已经很少,本文仅介绍固体钽电解的生产工艺。 固体钽电解电容其介质材料是五氧化二钽;阳极是烧结形成的金属钽块,由 ,目前最新的是采用聚合物作为负极材料,性钽丝引出,传统的负极是固态MnO 2 。 能优于MnO 2 钽电解电容有引线式和贴片两种安装方式,其制造工艺大致相同,现在以片钽生产工艺 为例介绍如下。 一、生产工艺流程图 成型烧结试容检验组架赋能涂四氟被膜石墨银浆 上片点胶固化点焊模压固化切筋喷砂电镀打标志切边 漏电预测老化测试检验编带入库二、主要生产工序说明 (一)成型工序: 该工序目的是将钽粉与钽丝模压在一起并具有一定的形状,在成型过程中要给钽粉中加入一定比例的粘接剂。 1、什么要加粘接剂? 为了改善钽粉的流动性和成型性,避免粉重误差太大,另外避免钽粉堵塞模腔。 低比容粉流动性好可适当多加点粘接剂,高比容粉流动性差可适当少加点粘接剂。 2、加了太多或太少有什么影响? 如果太多:脱樟时,樟脑大量挥发,易导致钽坯开裂、断裂,瘦小的钽坯易导致弯曲。如果太少:起不到改善钽粉流动性的作用。拌好后的钽粉如果使用时间较长,因为樟脑是易挥发物品,可适量再加入一点粘和剂。樟脑的加入会导致钽粉中杂质含量增加,影响漏电。每天使用完毕,需将钽粉装入聚四氟乙烯瓶或真空袋内密封保存,以防樟脑挥发、钽粉中混入杂质、钽粉中吸附空气中的气体。 3、成型后不进行脱樟,可否直接放入烧结炉内进行烧结? 不行,因为樟脑是低温挥发物,如果直接放入烧结炉内进行烧结,挥发物会冷凝在炉膛、机械泵、扩散泵等排出管道内。 4、丝埋入深度太浅会有什么影响? 钽丝易拔出,或者钽丝易松动,后道工序在钽丝受到引力后,易导致钽丝跟部漏

超级电容器展现状及前景分析

超级电容器发展现状及前景分析 一、超级电容器的概念 超级电容器是一种具有超级储电能力,可提供强大的脉冲功率的物理二次电源,它是根据电化学双电层理论研制而成的,所以又称双电层电容器。 超级电容器基本原理为:当向电极充电时,处于理想极化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。 超级电容器实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。目前,超级电容器已形成系列产品,实现电容量0.5-1000F(法),工们电压12-400V,最大放电电流400-2000A。 超级电容器的性能特点: ①.具有法拉级的超大电容量; ②.比脉冲功率比蓄电池高近十倍; ③.充放电循环寿命在十万次以上; ④.能在-40℃-70℃的环境温度中正常使用; ⑤.有超强的荷电保持能力,漏电源非常小; ⑥.充电迅速,使用便捷; ⑦.无污染,真正免维护。 二、超级电容器行业市场分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为小于5F、5F~200F、大于200F,它们由于其特点的不同,运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中;而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件;另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。这三种超级电容器在全球和国内的生产规模情况分别见表1和表2 所示。

常见电子元器件的识别(图片)

常见电子元器件的识别(单位,标识方法等) 电阻的识别(电阻的单位,标识方法等)一、电阻 电阻在电路中用“R”加数字表示,如:R15表示编号为15的电阻。电阻在电路中的主要作用为分流、限流、分压、偏置、滤波(与电容器组合使用)和阻抗匹配等。 1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。 a、数标法主要用于贴片等小体积的电路,如:472 表示47×102Ω(即4.7K);104则表示100K b、色环标注法使用最多,现举例如下: 四色环电阻五色环电阻(精密电阻) 2、电阻的色标位置和倍率关系如下表所示: 颜色有效数字倍率允许偏差(%) 银色/ 10-2 ±10 金色/ 10-1 ±5 黑色0 100 / 棕色1 101 ±1 红色2 102 ±2 橙色3 103 / 黄色4 104 / 绿色5 105 ±0.5 蓝色6 106 ±0.2 紫色7 107 ±0.1 灰色8 108 / 白色9 109 +5至-20 无色/ / ±20

4 常见电阻器的外形及电路符号 金属膜电阻光敏电阻热敏电阻 可变电阻(电位器)

12 五环电阻器色环颜色与数值对照表 ×100 黑 ×109 9 9 9 白 ±0.05% ×108 8 8 8 灰 ±0.1% ×107 7 7 7 紫 ±0.25% ×106 6 6 6 蓝 ±0.5% ×105 5 5 5 绿 ×104 4 4 4 黄 ±2% ×102 2 2 2 红 ±1% ×101 1 1 1 棕 误差 倍率 第3位数 第2位数 第1位数 第5色环 第4色环 第3色环 第2色环 第1色环 色环 颜色 电位器: 16一种阻值可以连续调节的电阻器,用来进行阻值、电位的调节。 收录机→控制音调、音量电视机→调节亮度、对比度等 8.1.2 电位器 带开关的电位器电位器的外形和电路图形符号

片式固体电解质钽电容器

片式固体电解质钽电容器 规格承认书 型号规格:CA45-B-10V-47μF-K 立创编码:C136658

1. 产品特点 该产品为模压封装、片式引出,具有密封性好、重量轻、电性能优良、稳定可靠等特点。适用于移动通讯、摄像机、程控交换机、计算机、汽车电子等各种电子设备的表面贴装直流或脉动电路。 2. 产品型号及编码说明 CA45 - B - 10V - 47μF - K 型号 壳号 额定电压 标称电容量 容量偏差 3. 产品外形及尺寸:见图1及表1 表1 电容器的外形尺寸 单位:mm 4.电性能参数 4.1 工作温度范围:-55℃~125℃;85℃以上施加降额电压。

4.2 标称电容量允许偏差(25℃,100Hz):K:±10%; 4.3 主要电性能参数:见表2 表2 电性能参数表 5.标志 5.1标志内容 (1)商标及正极标识 (2)标称电容量 (3)额定工作电压 5.2 标志说明:见图2(举例)。 6. 产品外观质量 6.1 产品本体应无针眼、缺角、缺块、发黑、漏封、裂纹、引出片断裂等现象。 6.2 产品标志:应清晰、完整、正确;无重影、漏打等现象。 7.包装 7.1 产品编带的尺寸及卷绕方向:见图3、图4、表4、表5。 注:用户未要求时,编带卷绕方向通常按左旋卷绕方向。 7.2包装数量:见表3

表3 包装数量 7.3产品内外包装盒应无破损,料盘、小盒及外包装箱上应有相应物料标识单,标识应清楚、准确。 7.4每批产品应附产品合格证,内容包括产品型号、规格、壳号、容量级别、数量、生产批号及执

图4 表 4 编带尺寸 单位:mm 表 5 卷盘尺寸和数量

相关文档
最新文档