[整理]matlab二自由度系统振动.

[整理]matlab二自由度系统振动.
[整理]matlab二自由度系统振动.

利用Adams 和Matlab 对二自由度系统振动进行仿真与分析

一、实验思想

Adams 是一种可以对一些典型运动进行高效仿真的软件,本实验是利用Adams 对二自由度系统振动进行仿真及分析,再和理论公式对比,并用另外一种常见的仿真软件Matlab 的仿真结果进行对比,观察两者的差异,分析软件仿真产生差异的原因,加深对二自由度系统振动的理解。

二、二自由度系统振动分析

固有频率取决于系统本身物理性质,而与初始条件无关。对于二

自由度的振动系统是有两种频率的简谐波组成的复合运动,这两个频率都是系统的固有频率。

主振型是当系统按固有频率作自由振动时,称为主振动。系统作

主振动时,任何瞬时各个运动坐标之间具有一定的相对比值,即整个系统具有确定的振动形态,称为主振型。

强迫振动是振动系统在周期性的外力作用下,其所发生的振动称

为强迫振动,这个周期性的外力称为驱动力。

三、二自由度系统自由振动

1.建立二自由度系统振动模型

1)创建底座:先生成一个尺寸合适的长方体基体,再使用add to part 指令创建底座的侧壁。

2)使用new part 指令分别创建两个滑块,创建滑块时应注意滑

块与滑块、滑块与侧壁之间的尺寸适当。

3)弹簧连接:分别用弹簧链接滑块、侧壁的中心点。弹簧生成后,依次选中弹簧,在modify 选项中的stiffness and damping 下拉菜单中将damping coefficient 设置成no damping,即弹簧无阻尼。

添加约束:底座和地面固定,滑块和底座用滑动副连接。

弹簧刚度分别改为1、1、2(newton/mm)

滑块质量分别为1.0 2.0

滑块与机体滑动副的阻尼改为1.0E-007

2.模型展示

3.运动仿真结果

设置x10=12

经过Adams 运算后,滑块1、2 运动状态如图所示:

4.matlab验证

程序:k1=1000;k2=1000;k3=2000;

m1=1;m2=2;

a=(k1+k2)/m1;b=k2/m1;c=k2/m2;d=(k2+k3)/m2;

[x1

x2]=dsolve('D2x1+2000*x1-1000*x2=0','2*D2x2-1000*x1+3000*x2=0','x 1(0)=0.012','x2(0)=0','Dx1(0)=0','Dx2(0)=0','t')

t1=0:0.01:2;;

x1=subs(x1,'t',t1);

x2=subs(x2,'t',t1);

figure

plot(t1,x1,'-');

title('系统响应x(1)曲线');

xlabel('时间/s');

ylabel('位移/m');

figure

plot(t1,x2,'-');

title('系统响应x(2)曲线');

xlabel('时间/s');

ylabel('位移/m');

计算结果:

5.结果分析

存在差异的原因是Adams 仿真中并没有完全忽略摩擦力,而

Matlab 计算时没有考虑摩擦,故存在差异,但是在允许范围内。综上所述,利用两种软件得出的结果输出比较接近,可认为仿真结果正确。

四、二自由度系统受迫振动

将机体与地面的锁改为滑动副,同时将滑块移动副初始状态设为0,即可

2.运动结果仿真

将底座和地面的滑动副上输入不同运动方程x=sin(w*t)。当w=10 时,得到滑块1 的一运动曲线;当w 为其固有频率时,得到另一曲线。曲线如图所示:

参数设置

仿真结果

将w改为固有频率31.6

仿真结果

3.实验结果检验

和单自由度系统一样,二自由度系统在受到持续的激振力作用下就会产生强迫振动,而且在一定条件下也会产生共振。

共振是指一物理系统在必须特定频率下,相比其他频率以更大的振幅做振动的情形;这些特定频率称之为共振频率。

利用Matlab 仿真得幅频特性曲线,它表明系统位移对频率的响应特性。

程序如下

k1=1000;k2=1000;k3=2000;

m1=1;m2=2;

w=0:1:100;

a=(k1+k2)/m1;b=k2/m1;c=k2/m2;d=(k2+k3)/m2;q1=1/m1;q2=1/m2;

dw=w.^4-(a+d)*(w.^2)+a*d-b*c;

B1=abs(((d-w.^2)*q1+b*q2)./dw);

B2=abs((c*q1+(a-w.^2)*q2)./dw);

figure

hold on

plot(w,B1,'g-');

title('幅频特性曲线');

xlabel('|./ /s');

ylabel('B1、B2/ m');

plot(w,B2,'r-');

legend('B1','B2',1);

图像

4.实验结果分析

当w=10时,相应的质量块1幅值较小,仅有略微的振动,但是当

w=31.6时,即共振时,其最终的幅值很大。由于在运用Adams进行验证时,并非直接在质量块1、质量块2上施加力-时间方程,而是通过

对底座加设一滑动副,在滑动副上施加一位移-时间变化方程,所以

当w=31.62时,相应的质量块1幅值随着时间是逐渐增大,有一个滞后的过程。

单自由度振动分析

结构动力学三级项目 班级:冶金五班 小组成员:邱林凯李海洋 张富张富增 指导老师:王健 2017年4月18日

目录 摘要 (2) 单自由度系统的振动 (3) 单自由度振动系统数学模型的建立 (3) 参数设定与求解 (5) 单自由度系统的强迫振动 (8) 本章小结 (17) 总结与心得 (17)

摘要 振动系统问题是个比较虚拟的问题,比较抽象的理论分析,对于问题的分析可以实体化建立数学模型,通过MATLAB可以转化成为图像。单自由度频率、阻尼、振型的分析,我们可以建立数学模型,最后通过利用MATLAB编程实现数据图形;多自由度主要研究矩阵的迭代求解,我们在分析抽象的理论的同时根据MATLAB编程实现数据的迭代最后可以得到所要的数据,使我们的计算更加简便。 关键词:振动系统;单自由度;MATLAB;多自由度 前言 振动系统是研究机械振动的运动学和动力学,研究单自由系统的振动有着实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。模态是振动系统的一种固有振动特性,模态一般包含频率、振型、阻尼。 利用MATLAB编程并验证程序的正确性。通过程序的运行,能快速获得多自由度振动系统的固有频率以及主振型,为设计人员提供了防止系统共振的理论依据,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础。 在结构动力学中,单自由度系统的振动是最简单的运动,但这部分又十分重要。因为从中可得到有关振动理论的一些基本的概念和解决问题的方法,同时它也适用于更为复杂的振动问题,是分析多自由度体系振动问题的基础。因此,搞清楚了单自由度系统的振动,将有助于我们提高分析和解决其他各种振动问题的能力。另外在实际工程中,确实有许多振动问题,可简化为单自由度问题,或近似地用单自由度理论去分析解决。

单自由度系统(自由振动)

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图1.1所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形?:,同时也产生弹簧恢复力K ?,当其等于重力W 时,则处于静平衡位置,即 W=K ?? 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(?+x),显然大于重力W , 由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x == (1-1-5) ()x m x k W F =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x x )

单自由度系统的振动

第2章 单自由度(SDOF)系统振动 (Single Degree of freedom) 如果振动系统任意时刻的空间位置只需要一个独立参数来表达,则称为单自由度系统。本章介绍单自由度系统运动方程的建立,以及自由振动的特点和动力响应的计算问题。 2.1 运动方程的建立 此处分别应用基于达朗贝尔原理的直接平衡法、虚位移原理和哈密顿原理建立振动微分方程。 2.1.1 直接平衡法 承受动力荷载作用的任何单自由度系统均可以由图2—1所示的模型来代表。图2—1(a)中,m 为质量块的质量(kg ),是为弹簧的刚度(m N /),c 为粘滞阻尼系数(m s N /?),)(t P 为干扰力(N )。 将坐标原点设在质量块的静平衡位置处, 坐标y 即为相对于静平衡位置产生的质量块的 动位移。在任意瞬时取质量块的隔离体,如图 2—1(b)所示,作用于质量块上的力有下列四 种: (1)弹性恢复力(它等于弹簧刚度k 与位 移y 的乘积),ky f s =,与位移的方向相反; (2)阻尼力(假设为粘滞阻尼机理,它 等于阻尼常数c 与速度y 的乘积),y c f D =,与速度的方向相反; (3)惯性力(根据d ’Alembert 原理,它等于质量m 与加速度y 的乘积), y m f I =,与加速度的方向相反; (4)干扰力,)(t P .(根据竖向力的动平衡条件即直接平衡法得出) )(t P ky y c y m =++ (2—1) 在振动的任意时刻,这四种力都保持着平衡,只是各个力所占的比例不同而

已。由方程(2—1)可知,相对于动力系统的静力平衡位置所建立的运动方程是不受重力影响的。换言之,此类情况可以不考虑重力影响建立方程。由于这个原因,建立方程时,位移都以静力平衡位置作为坐标原点,由此方程仅能得到系统的动位移,而总的位移应该是动力位移响应和静力位移值的叠加。 2.1.2 虚位移原理 以图2—1所示的结构系统说明如何应用虚位移原理建立方程。令质量m 发生虚位移y δ,则作用在质量m 上的四个力所作的总虚功应该等于零,即 0)(=+---y t P y f y f y f s D I δδδδ 式中的负号是因为力的方向和虚位移的方向相反。因为上式中的虚位移不等于零,很容易得到式(2—1)所示的振动方程。 0)(=+---y t P y f y f y f s D I δδδδ, ?0)]([=+---y t P f f f s D I δ, 因为0≠y δ,将四种力的表达式代入前式可推出)12(-?式 在结构系统中某些结构具有这样的特点:弹性变形完全限定于局部的弹簧元件中发生,而结构本身没有弹性变形, 称此为刚体集合系统。现在介绍采用虚 位移原理建立这类振动系统的运动方 程。 例2.1 图2—2所示的系统由两根 刚性杆组成,两根杆用铰连接在一起。在O 点和D 点分别受到阻尼器和弹簧的约束,AD 杆的单位长度的质量m 是均匀的,在无重刚杆DB 中点有一个质量m ,并且m 上作用一个集中力)(t P ,现用虚位移原理建立该系统的振动方程。 解 因为两个杆都是刚性的,所以整个系统仅一个自由度,故其动力响应可以用一个方程来表达。该体系可以用直接平衡法建立方程,但是用虚位移原理更简便。 选择铰的垂向位移)(t y 为基本自由度,而其他的一切位移均可以通过它来表达。例如阻尼器处的位移为2y ,质量m 处的位移为2 y ,作用于结构上的全部力为:

1 单自由度体系的自由振动

y s y(t) s=-k(y+y s )w=mg F(t)=-m y §1 单自由度体系的自由振动 一、无阻尼的自由振动: 如下图,以单自由度体系为例,设此梁上的集中质量为m ,其重量为W mg =, 梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相 应的质量位置称为质量的静力平衡位置。若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。由于振动的方向与梁轴垂直,故称为横向振动。在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。 1、建立运动方程 建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。 今考虑在振动过程的某一瞬时t ,设质量在此瞬时离开其平衡位置的位移为y ,取质量为隔离体,则在质量上作用有三种力:质量的重量W ,杆件对质量的弹性恢复力S 和惯性力F(t)。根据达朗伯原理,这三个力应成平衡,即 W+S+F(t)=0 (1) 在弹性体系中,弹性恢复力S 为 ()s k y y s =-+

上式中的K 为一常数,称为刚度系数,代表简支梁上使质量在运动方向产生单位位移时需要加在质量上的沿质量运动方向的集中力的量值。式中负号表示s 的指向和位移的方向相反。 而 1y s W k =? 即 y s W k =? 因此,将()s k y y s =-+和y s W k =?代入式(1)得 ()0 F t ky =-+ (2) 上式表明,如果以静力平衡位置作为计算位移的起点,则建立体系的运动方程时,可以不考虑重力W 的影响。这对其他体系的振动(包括受迫振动)也同样适用。 将2 2 ()d y F t m dt =-代入式(2)得: 2 2()0d y m ky t dt += 令2 k m ω= dy y dt = (速度) 2 2 d y y dt = (加速度) 则 2 2 ()0d y m ky t dt += 可变为 2 y y ω+= (3) 此为单自由度体系无阻尼自由振动的运动方程,它反映了这种振动的一般规律。 若采用柔度法建立运动方程(建立位移方程),以静力平衡位置作为计算位移的起点,则梁在质量m 处除惯性力2 2()d y F t m dt =-这个假想的 外荷载作用外,再无其他外力作用。所以由达朗伯原理可知,梁在集中质量m 处任一运动瞬时的位移为

相关主题
相关文档
最新文档