电力电子装置及系统

电力电子装置及系统
电力电子装置及系统

电力电子装置及系统概述

张密李静怡牟书丹李子君

0 引言

在电力系统中,许多功能的实现都需要靠电力电子装置来完成。比如说可再生能源的并网发电、无功和谐波的动态补偿、储能装置的功率转换、配用电能的双向流动、交直流电网的柔性互联等。

随着科技的日益发展,大功率、高电压电力电子器件的发展,变换器单元化、模块化以及智能化水平的提高,控制策略和调制策略性能的提升,电力电子装置在电力系统中的作用会越来越大。

1 电力电子装置及系统的概念

电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。

电力电子装置和负载组成的闭环控制系统称为电力电子控制系统,其基本组成如图所示。它是通过弱电控制强电实现其功能的。控制系统根据运行指令和输入、输出的各种状态,产生控制信号,用来驱动对应的开关器件,完成其特定功能。

2 电力电子装置的主要类型

电力电子装置的种类繁多,根据电能转换形式的不同,基本上可以分为5大类:交流-直流变换器(AC/DC)、直流-交流变换器(DC/AC)、直流-直流变换器(DC/DC)、交流-交流变换器(AC/AC)和电力电子静态开关。

1.AC/DC变换器

AC/DC变换器又称整流器。用于将交流电能变换为直流电能。

2.DC/DC变换器

DC/DC变换器用于将一种规格的直流电能变换为另一种规格的直流电能。采用PWM 控制的DC/DC变换器也称直流斩波器,主要用于直流电机驱动和开关电源。

3.DC/AC变换器

DC/AC变换器又称逆变器。用于将直流电能变换为交流电能。根据输出电压及频率的变化情况,可分为恒压恒频(CVCF)及变压变频(VVVF)两类,前者用作稳压电源,后者用于交流电动机变频调速系统。

4.AC/AC变换器

AC/AC变换器用于将一种规格的交流电能变换为另一种规格的直流电能。输入和输出频率相同的称为交流调压器,频率发生变化的称为周波变换器或变频器。

5.静态开关

静态开关又称无触点开关,它是由电力电子器件组成的可控电力开关。

根据需要,以上各类变换可以组合应用。此外,各类变换器正在向模块化发展,可方便地组成不同功率等级的变换器。

3 电力电子装置的应用概况

3.1发电阶段中的应用

(1)发电机组励磁。

大型发电机组应用静止励磁技术,与励磁机相比,具有调节速度快、控制简单的特点,显著提高

了发电厂的运行性能和效率。

(2)风力发电。

变流器是风力发电中不可或缺的核心环节。风电变流器通过整流器和逆变器将不稳定的风能变换为电压、频率和相位符合并网要求的电能。

(3)光伏电站。

大型光伏电站由光伏阵列组件、汇流器、逆变器组、滤波器和升压变压器构成,是大规模集中利用太阳能的有效方式。

3.2电能存储

(1)抽水储能装置

抽水储能通过实现电力功率方面的转换,来实现电力供能备用紧急能源、调峰填谷等不同的作用,电力功率实现转换的主要方法是利用抽水蓄能机组励磁电流幅值与频率的转换。

(2)电池储能装置

目前在电池储能装置方面,能够把利用任意发电装置生产出来的电力资源储存到电池中,转变为电池装置中的电能。电力电子装置的有效利用,能够得到损耗最小化、储能最优化的储能系统。

(3)压缩空气储能装置

压缩空气储能装置是风力发电所用的电力电子装置。在空气压缩过程中,通过采用变频驱动技术可以大幅度调整电网负荷并提高空气压缩效率;在发电过程中,通过采用控制发电机的励磁可以拓宽储气系统的发电运行范围和发电效率。

3.3输电阶段中的应用

在输电领域,电力系统如果想要低损耗、高容量、长距离地传输电力,必须要有电力电子装置的协助,利用变流器、换流器等降低电能损耗,才能实现高效的电力传输。

3.4有利于电能利用率的提高

(1)无功补偿。采用动态无功补偿器对抑制系统功率振荡、保持母线电压稳定、解决负荷电压闪变和不平衡等问题有重要作用。

(2)谐波治理。谐波治理分为从谐波源本身出发抑制谐波的主动谐波治理和增加额外谐波治理装置的被动谐波治理。

(3)电压暂降抑制。动态电压恢复器(DVR)是一种基于电压源逆变技术的串联型电能质量控制器,可以动态补偿正序、负序和零序电压,抑制不平衡的电压暂降。

4 电力电子装置的发展前景

电力电子装置在电力系统中的应用十分广泛,也是电力系统中的重要组成部分之一,电力电子装置在我国的起步较晚,但是发展却非常迅速。同时,电力电子装置的快速发展与改善,对促进我国电力系统的发展作出了突出贡献,主要表现在以下几个方面:第一,体现在控制方法方面,模拟控制→数字控制;第二,体现在装置方面,半控型装置→全控型装置→复合型装置;第三,体现在关键技术壁垒方面,硬件设计→软件设计;第四,体现在电能传输介质方面,电缆传输→光纤传输等等。

5 结语

综上所述,随着能源消耗问题与环境污染问题的日趋尖锐,节能环保理念深入人心,在这样的背景下,电力系统逐渐向着智能化、可持续发展的方向转型,电力电子装置在电力系统中的合理、有效应用显得非常重要。因此,应当加强对电力电子装置与电力系统的进一步研究,将更多先进的、科学的电力电子装置应用到电力系统建设中,以实现电力行业与国民经济的快速发展。

电力电子装置及系统复习题及答案

概念部分(小题) 1、电力电子装置的主要类型:AC/DC、DC/DC、DC/AC、AC/AC、静态开关 通信电源交流稳压电源 充电电源通用逆变电源 3、直流电源装置电解电镀直流电源交流电源装置不间断UPS电源 开关电源 4、缓冲电路的主要作用:抑制开关器件的di/dt 、du/dt,改变开关轨迹,减少开关损耗 ,使之工作在安全工作区内。 5、常用耗能式缓冲电路:无极性、有极性、复合型注:p14电路模型区分。 6、过电流保护方法:(1)利用参数状态识别对单个期间进行自适保护 (2)利用常规方法进行最终保护。 7、为防止桥臂中两个开关器件直通,通常对两个开关器件的驱动信号进行互锁并设置死区 8、缓冲电路类型(判断或者填空) 无源功率因数校正(在电源输入端加入低频大电感) 9、功率因数校正有源滤波器无功谐波补偿 有源功率因数校正 功率因数校正电路(单项有源校正装置主要是 boost,可分为不连续电流模式和连续电流模式) 10、UPS典型结构:稳压器整流器逆变器转换开关 UPS主要分类:后备式、双变换在线式、在线互动式、双变换电压补偿在线式(delta 变换式) 其中:后备式是以市电供电为主的UPS,一般后备式UPS功率多在2kV A以下。其工作原理图见书P95图4.2 双变换在线式是以逆变器为主的工作方式,原理图书P95图4.3 11此外,在相同开关频率下,单极性的波动频率较双极性波提高一倍。 13、无源的功率因数校正是在输入端加电容电感进行被动补偿这是一种预补偿 有源的是主动补偿比如我们讲的Boost功率因数校正器 14、逆变类型:全桥半桥推挽 15、开关电源结构, 16、功率因数校正概念, 17、逆变器结构, 18、感应加热电源 (这些有的没有写出答案的大家自己对着书看一下啊,要断电了,来不及找了)

电力电子装置及系统设计课程设计

《电力电子装置及系统》 课程设计 题目:基于UC3842的单端反激 开关电源的设计 学院电力学院 专业电子科学与技术 姓名 学号 指导教师 完成时间2016.11.25

目录 摘要 (1) 第一章:开关电源的概述 1.1:开关电源的发展历史 (2) 1.2:开关稳压电源的优点 (2) 1.2.1:内部功率损耗小,转换效率高 (2) 1.2.2:体积小,重量轻 (3) 1.2.3:稳压范围宽 (3) 1.2.4:滤波效率大为提高,滤波电容的容量和体积大为减小 (3) 1.2.5:电路形式灵活多样,选择余地大 (3) 1.3:开关稳压电源的缺点 (3) 1.3.1:开关稳压电源存在着较为严重的开关噪声和干扰 (4) 1.3.2:电路结构复杂,不便于维修 (4) 1.3.3:成本高,可靠性低 (4) 第二章:UC3842的原理及技术参数 2.1:UC3842的工作原理 (5) 2.2:UC3842的引脚及技术参数 (6) 第三章:单端反激开关电源 3.1:单端反激开关电源的原理 (7) 3.2:反激式开关电源设计 (9) 3.2.1:输出直流电压隔离取样反馈外回路 (9) 3.2.2:初级线圈充磁峰值电流取样反馈内回路 (11) 总结 (13) 参考文献 (13)

基于UC3842的单端反激开关电源的设计 摘要 开关电源是一种利用现代电子技术,控制开关晶体管和关断的时间比率,维持稳定输出电压的一种电源,也是一种效率很高的电源变换电路,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。具有高频率,高功率密度,高可靠性等优点。 本文主要介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于UC3842为控制芯片,实现输出电压可调的开关稳压电源电路。 关键词:开关电源脉冲宽度调制 UC3842

电力电子系统的计算机仿真

《电力电子系统的计算机仿真》题目:方波逆变电路的计算机仿真

电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用性很强的课程。由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和困难,一般常用波形分析的方法来研究。仿真技术为电力电子电路的分析提供了崭新的方法。 我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的作用。掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并且可以调动学生的积极性。实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的,也受到学时的限制。而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。仿真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。 【关键字】电力电子,MATLAB,仿真。

第一章电力电子与MATLAB软件的介绍 一、电力电子概况 二、MATLAB软件介绍 第二章电力电子器件介绍 一、电力二极管特性介绍 二、晶闸管特性介绍 三、IGBT特性介绍 第三章主电路工作原理 一、单相桥式逆变电路 二、三相桥式逆变电路 三、PWM控制基本原理 第四章仿真模型的建立 一、单极性SPWM触发脉冲波形的产生 二、双极性SPWM触发脉冲波形的产生 三、单极性SPWM方式下的单相桥式逆变电路 四、双极性SPWM方式下的单相桥式逆变电路第五章仿真结果分析 第六章心得体会 第七章参考文献

为系统的仿真提供了极大便利。在Simulink平台上,拖拉和连接典型模块就可以绘制仿真对象的模型框图,并对模型进行仿真。在Simulink平台上仿真模型的可读性很强,这就避免了在MATLAB窗口使用MATLAB命令和函数仿真时,需要熟悉记忆大量M函数的麻烦,对广大工程技术人员来说,这无疑是最好的福音。现在的MATLAB都同时捆绑了Simulink,Simulink的版本也在不断地升级,从1993年的MATLAB4.0/Simulink1.0版到2001年的MATLAB6.1/Simulink4.1版2002年即推出了MATLAB6.5/Simulink5.0版。MATLAB已经不再是单纯的"矩阵实验室"了,它已经成为一个高级计算和仿真平台。 Simulink原本是为控制系统的仿真而建立的工具箱,在使用中易编程、易拓展,并且可以解决MATLAB不易解决的非线性、变系数等问题。它能支持连续系统和离散系统的仿真,支持连续离散混合系统的仿真,也支持线性和非线性系统的仿真,并且支持多种采样频率(Multirate)系统的仿真,也就是不同的系统能以不同的采样频率组合,这样就可以仿真较大、较复杂的系统。因此,各科学领域根据自己的仿真需要,以MATLAB为基础,开发了大量的专用仿真程序,并把这些程序以模块的形式都放人Simulink中,形成了模块库。Simulink的模块库实际上就是用MATLAB基本语句编写的子程序集。现在Simulink模块库有三级树状的子目录,在一级目录下就包含了Simulink最早开发的数学计算工具箱、控制系统工具箱的内容,之后开发的信号处理工具箱(DSP Blocks)、通信系统工具箱(Comm)等也并行列入模块库的一级子目录,逐级打开模块库浏览器(Simulink Library Browser)的目录,就可以看到这些模块。 Simulink创建模型、仿真的过程方法介绍如下: 1、Simulink建模 一个典型的Simulink模型由信号源模块、被模拟的系统模块和输出显示 模块三个类型模块构成。其基本特点有:

最新电力电子装置复习题(版)-(1)-2

第五章电力电子装置的设计知识 1、电力电子装置的设计概念、设计流程、设计依据。 2、用电流互感器和霍尔传感器进行电流信号检测各有什么特点。 3、对输入瞬态电压可采取什么措施进行抑制? 4、可采取何措施对电压控制型功率晶体管进行控制极保护? 5、试说明电磁兼容的概念,其包含哪些内容? 6、试说明差模干扰、共模干扰概念;常用的差模干扰、共模干扰滤波电路,试说明其原理; 7、说明热学的欧姆定律;如何设计功率半导体器件的散热器? 8、缓冲电路有哪些类型?试说明RCD缓冲电路工作原理及各元器件的作用及其参数确定。 9、如何对电力电子装置进行过流保护? PWM直流电源装置 1、直流电源装置有哪些类型? AC/DC DC/DC DC/AC/DC 2、AC/DC变换器中输入源电流谐波与输出电压波纹的含义是什么。 输入源电流谐波是指输入源电流除了基波外还有高次谐波,输出电压文波是指输出直流电压中含有的工频交流成分。 3、为什么SCR整流电路不能用大电容滤波电路;对于二极管整流电路,在采用大电容滤波电路时,必须在电路上采取什么措施,为什么? 晶闸管采用相控方式,由于大电容阻碍电压变化,所以不能用大电容滤波电路:二极管整流电路,在采用大电容滤波会产生启动冲击电流问题,因此要在电路中采用启动限流电路,会产生高脉冲电流峰值,谐波电流大,污染电网,降低功率因数,因此要加功率因数校正电路。二极管整流的缺陷及措施 输出中交流分量高滤波(大L C 大L,C) 启动时浪涌电流带NTC(负温度系数热敏电阻) 输入电流呈窄脉冲状,谐波含量高,PF低 4、简述AC/DC整流器功率因数校正的意义与校正原理。传统的整流器为什么会使电网电流产生畸变?进行APFC的必要条件是什么?可采用哪些DC/DC变换器电路进行APFC? AC侧虽然输入交流电压是正玄的,但输入的交流电流的波形却严重畸变,由于谐波电流的存在,使整流电路输入端功率因数下降,负载课得到的实际功率减少,在电网中产生畸变的电流,其谐波电流对电网有危害作用。 有源功率因数校正控制技术原理有源功率因数校正技术主要采用一个变换器串入整流滤波与变换器之间, 通过特殊的控制, 一方面强迫输人电流跟随输人电压, 从而实现单位功率因数,另一方面反馈输出电压使之稳定, 从而使变换器的输人实现预稳。 传统的整流方式通常采用二极管整流或相控整流方式。采用二极管整流方式的整流器存在电网吸取畸变电流,造成电网的谐波污染。采用相控的整流器也存在深度相控下交流侧功率因数很低,因换流引起电网电压波形畸变。 APFC的必要条件一、能高频离散化处理输入电流脉冲二、使输入电流强迫工作在正弦

武汉晴川学院级电力电子装置总复习思考题期末复习提纲

1.电力电子装置的定义及基本类型。 电力电子装置是以满足用电要求为目标,以电力电子器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。(p1) 二、电力电子装置的主要类型 AC/DC变换器、DC/AC变换器、DC/DC变换器、AC/AC变换器、静态开关 2.电力电子装置和电力电子技术有哪些相同和不同 之处(p1) 相同之处:所用的电力电子器件、电力变换的功能 不同之处:研究的侧重点不同 电力单子技术主要从技术的层面出发,侧重于研究怎样用相应的电路来试验电力变换,以及电能变换的过程和原理电力电子装置主要从应用的层面出发,侧重于研究如何采用新技术新方法来提高整机的性能和效率,以满足用电对象的要求。 二者关系:电力电子技术的核心是电能形式的变换和控制,它通过电力电子装置来实现。 3.常用的散热措施有哪些(p14) (1)减小器件接触热阻Rθcs:提高接触面的光洁度,接触面上涂导热硅脂,施加合适的安装压力等。 (2)减小散热热阻Rθsa:选择有效散热面积大的铝型材散热器,将散热器作黑 化处理,必要时可采用紫铜材料制作散热器等。 (3)降低环境温度,加快散热过程:注意机箱的通风,装置内部安装风机, 必要时可用水、油或其他液体介质管道,以降低装置内部环境温度帮助冷却。4.缓冲电路的作用与分类。(p14) 抑制开关器件的du/dt和di/dt,减小器件的开关损耗,使开关器件工作在安全区内。 ?关断缓冲电路(du/dt抑制电路) 用于吸收器件的关断过电压和抑制du/dt,减小关断损耗。 ?开通缓冲电路(di/dt抑制电路) 用于抑制器件开通时的di/dt,减小开通损耗。 1)关断缓冲电路和开通缓冲电路 2)耗能缓冲电路和馈能缓冲电路 ?耗能缓冲电路 缓冲电路中储能元件的能量消耗在其内部的吸收电阻上。 ?馈能缓冲电路 将缓冲电路中储能元件上的能量回馈给负载或电源。 3)有极性缓冲电路和无极性缓冲电路 5.常用的过电流过电压保护措施,能看懂主电路中的 主要保护措施。 常用的过电压保护措施(p18): 1)封锁驱动信号 2)阻容吸收电路保护 3)压敏电阻保护 常用的过电流保护措施:(p17) ?电子电路保护——封锁驱动信号 ?快速熔断器保护——熔断器熔断切断回路 动作时间:约20ms ?过电流继电器保护——跳开交流断路器 动作时间:~

电力电子装置及系统 考试 知识点 太原理工大学(13届 葬仪落 任影汐整理)

第一章绪论 1、电力电子技术的核心是电能形式的变换和控制,并通过电力电子装置实现其应用。 2、电力电子装置定义:以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。 3、电力电子控制系统:电力电子装置和负载组成的闭环控制系统称为电力电子控制系统。 4、电力电子装置的主要类型: AC/DC变换器(整流器) DC/DC变换器(采用PWM控制的变换器也叫直流斩波器) AC/AC变换器(输入输出频率相同叫做交流调压器,频率变化叫变频器) DC/AC变换器(逆变器) 静态开关(静态开关通、断时没有触点动作,从而消除了电弧的危害。且静态开关由电子电路控制,自动化程度高。) 5、电力电子装置的应用 (1)直流电源装置:通信电源、充电电源、电解电镀直流电源、开关电源 (2)交流电源装置:交流稳压电源、通用逆变电源、不间断电源UPS (3)特种电源装置:静电除尘用高压电源、超声波电源、感应加热电源、焊接电源 (4)电力系统用装置:高压直流输电、无功功率补偿装置和电力有源滤波器、电力开关(5)电机调速用电力电子装置:直流、交流 (6)其他实用装置:电子整流器和电子变压器、空调电源、微波炉、应急灯等电源 6、电力电子装置的发展前景:交流变频调速、绿色电力电子装置、电动车、新能源发电、信息来源 7、半导体电力电子开关器件:电力二极管、晶闸管、电力晶体三极管、电力场效应晶体管、绝缘门极双极型晶体管IGBT 8、电力转换模块:把同类或不同类的一个或多个开关器件按一定的拓扑结构及转换功能连接并封装在一起的开关器件组合体。 功率集成电路PIC:将电力电子开关器件与电力电子变换器控制系统中的某些环节制作在一个整体上,就叫功率集成电路。 电源管理集成电路:可以提供各种方式来控制电源转换并管理各种器件的集成电路。 9、散热: (1)为什么要散热?答:PN结是电力电子器件的核心,PN结的性能与温度密切相关,因而每种器件都规定最高允许结温,器件运行不得超过这个温度,否则许多特性参数改变,甚至使器件永久性烧坏,不散热,100A的二极管长时间流过50A也可能被烧坏。 (2)散热的原理。散热途径有三种,但电力电子器件采用热传导和热对流两种方式。(3)散热措施:减少器件损耗:采用软开关电路,增加缓冲电路等措施。 散热措施:提高接触面光洁度,涂导热硅脂,施加合适安装压力。 选择有效散热面积大的散热器。 结构设计注意风道的形成,可以用水、油等介质管道帮助冷却。 10、缓冲电路: (1)作用:抑制开关器件的di/dt、du/dt,改变开关轨迹,减少开关损耗,使之工作在安全工作区域内。 (2)普通晶闸管用无极性缓冲电路,GTO、BJT、IGBT等自关断器件,工作频率比SCR高得多,用有极性缓冲电路。

电力电子装置大作业

电力电子文献综述 姓名:范毅光 班级:14电气2班 学号:1405130221

电力有源滤波器 电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。 随着现代科技的发展,一方面,危害电能质量的因素不断增加,例如,以电力电子装置为代表的非线性负荷的使用、各种大型用电设备不断普及,如高性能办公设备、精密实验仪器、计算机、通信及数据处理系统、精密生产过程的自动控制设备等。上述问题的矛盾越来越突出,这使得电能质量问题对电网和配电系统造成直接危害和可能对人类生活造成的损失也越来越大,因此电能质量的好坏直接关系到国民经济的总体效益。 一.谐波对电力系统主要危害: 1.谐波增加了公共电网的附加输电损耗,降低了发电、输电设备的利用率。 2.在电缆输电的情况下,谐波以正比于其电压幅值的形式增加了介质的电场强度,缩短了电缆的使用寿命,还增加了事故概率和修理费用。 3.谐波会影响甚至严重影响用电设备的正常工作。 4.谐波还引起某些继电器、接触器的误动作。 5.谐波使得常规电气仪表测量不准确。 6.谐波对周围环境产生电磁干扰,影响通信、电话等设备的正常工作。 7.谐波容易使电网产生局部的并联或串联谐振,而谐振导致的谐波放大效应又进一步恶化和加剧了所有前述问题。 国家标准GB/T14549—1993对电能质量公用电网谐波作出了限定,因此减小谐波影响是电力工程必须考虑的重要问题。 二.抑制谐波的方法: 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点。 目前,谐波抑制的一个重要趋势是采用电力有源滤波器APF。有源电力滤波器也是一种电力电子装置。其基本原理是从补偿对象中检测出谐波电流,由补偿装置产生与该

电力系统电力电子化带来的挑战

电力系统电力电子化带来的挑战 科技前沿 电力电子化大背景之下,要以新视角、新理论、新方法来解决新形势下带来的新问题,找到新办法,发现新机遇,以实现供电系统安全、稳定、高效、长期地运行。 电力系统中的变流器越来越多,二者之间的交互作用(Interaction)越来越复杂,对传统电网运行特性的改造也越来越明显。如何分析,如何设计,如何控制,如何集成,才能确保电力电子化的供电系统仍然能够维持安全、稳定、高效地长期运行?这是摆在电力电子、电力系统等学科研究人员面前的世纪难题。 目前亟需针对电力电子化这一大背景,首先从理论研究上取得重大突破,从而用新视角、新理论、新方法来解决新形势下带来的新问题,找到新办法,发现新机遇。本文根据IEEE电力电子学会主席、荷兰代尔夫特理工大学Braham Ferreira 教授的会议记录进行了整理,与读者们分享大师的观点。 2015年9月,在意大利Verbania召开了第8届The Future of Electronic Power Processing and Conversion国际会议(FEPPCON VIII2015)。本次会议共有50余名全球顶级的电力电子学家参与,对电力电子领域未来10余年的发展趋势做了科学的预测。 FEPPCON是一个小型的国际会议,参与者皆为电力电子领域的大师级人物,会议的目标是探讨电力电子技术的发展机会以及技术瓶颈,展望电力电子学科的发展方向,并对未来的研究和应用等工作提出具体的意见和方向。FEPPCON2015重点关注了电力电子化系统(Power-electronics-enabled Power Systems)的发展趋势,并重点推荐了下述3篇论文,分别是意大利帕多瓦大学Paulo Mattavelli教授的“Interactions of Power Electronics Converters in Distribution Grids:Some Issues and-Challenges”,美国波音公司Kamiar Karimi的“What Are the Bottlenecks and Opportunities of Power Electronics-Based Power Systems”,以及德国慕尼黑联邦国防军大学Rainer Marquardt的“Future Requirements for Reliable Networks of Converters”。

电力电子装置及系统

电力电子装置及系统概述 张密李静怡牟书丹李子君 0 引言 在电力系统中,许多功能的实现都需要靠电力电子装置来完成。比如说可再生能源的并网发电、无功和谐波的动态补偿、储能装置的功率转换、配用电能的双向流动、交直流电网的柔性互联等。 随着科技的日益发展,大功率、高电压电力电子器件的发展,变换器单元化、模块化以及智能化水平的提高,控制策略和调制策略性能的提升,电力电子装置在电力系统中的作用会越来越大。 1 电力电子装置及系统的概念 电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制的装置。 电力电子装置和负载组成的闭环控制系统称为电力电子控制系统,其基本组成如图所示。它是通过弱电控制强电实现其功能的。控制系统根据运行指令和输入、输出的各种状态,产生控制信号,用来驱动对应的开关器件,完成其特定功能。 2 电力电子装置的主要类型 电力电子装置的种类繁多,根据电能转换形式的不同,基本上可以分为5大类:交流-直流变换器(AC/DC)、直流-交流变换器(DC/AC)、直流-直流变换器(DC/DC)、交流-交流变换器(AC/AC)和电力电子静态开关。 1.AC/DC变换器 AC/DC变换器又称整流器。用于将交流电能变换为直流电能。 2.DC/DC变换器 DC/DC变换器用于将一种规格的直流电能变换为另一种规格的直流电能。采用PWM 控制的DC/DC变换器也称直流斩波器,主要用于直流电机驱动和开关电源。 3.DC/AC变换器 DC/AC变换器又称逆变器。用于将直流电能变换为交流电能。根据输出电压及频率的变化情况,可分为恒压恒频(CVCF)及变压变频(VVVF)两类,前者用作稳压电源,后者用于交流电动机变频调速系统。 4.AC/AC变换器 AC/AC变换器用于将一种规格的交流电能变换为另一种规格的直流电能。输入和输出频率相同的称为交流调压器,频率发生变化的称为周波变换器或变频器。 5.静态开关 静态开关又称无触点开关,它是由电力电子器件组成的可控电力开关。 根据需要,以上各类变换可以组合应用。此外,各类变换器正在向模块化发展,可方便地组成不同功率等级的变换器。 3 电力电子装置的应用概况 3.1发电阶段中的应用 (1)发电机组励磁。 大型发电机组应用静止励磁技术,与励磁机相比,具有调节速度快、控制简单的特点,显著提高

电力电子装置与系统考试资料

电力电子装置与系统考试资料仅供参考 学院:机电学院 专业:应用电子 班级: 学号: 姓名:

摘要:本文简单回顾了电力电子技术及其器件的发展过程,介绍了现在主流的电力电子器件的工作原理、应用范围及其优缺点,探讨了在21世纪中新型电力电子器件的应用展望。关键词:电力电子技术;晶闸管;功率集成电路; 引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。从1958年美国通用电气(GE)公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。 由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR、GTO、功率MOSET等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如IGPT、MCT、HVIC等就是这种发展的产物。 电力整流管 整流管产生于本世纪40年代,是电力电子器件中结构最简单、使用最广泛的一种器件。目前已形成普通整流管、快恢复整流管和肖特基整流管等三种主要类型。其中普通整流管的特点是:漏电流小、通态压降较高(1.0~1.8V)、反向恢复时间较长(几十微秒)、可获得很高的电压和电流定额。多用于牵引、充电、电镀等对转换速度要求不高的装置中。较快的反向恢复时间(几百纳秒至几微秒)是快恢复整流管的显著特点,但是它的通态压降却很高(1.6~4.0V)。它主要用于斩波、逆变等电路中充当旁路二极管或阻塞二极管。肖特基整流管兼有快的反向恢复时间(几乎为零)和低的通态压降(0.3~0.6V)的优点,不过其漏电流较大、耐压能力低,常用于高频低压仪表和开关电源。目前的研制水平为:普通整流管(8000V/5000A/400Hz);快恢复整流管(6000V/1200A/1000Hz);肖特基整流管(1000V/100A/200kHz)。

电力电子系统的电磁兼容

外文资料译文 Power Electronics Electromagnetic Compatibility The electromagnetic compatibility issues in power electronic systems are essentially the high levels of conducted electromagnetic interference (EM I) noise because of the fast switching actions of the power semiconductor devices. The advent of high-frequency, high-power switching devices res ulted in the widespread application of power electronic converters for hu man productions and livings. The high-power rating and the high-switchi ng frequency of the actions might result in severe conducted EMI. Particu larly, with the international and national EMC regulations have become m ore strictly, modeling and prediction of EMI issues has been an important research topic. By evaluating different methodologies of conducted EMI modeling and p rediction for power converter systems includes the following two primary limitations: 1) Due to different applications, some of the existing EMI m odeling methods are only valid for specific applications, which results in i nadequate generality. 2) Since most EMI studies are based on the qualitati ve and simplified quantitative models, modeling accuracy of both magnit ude and frequency cannot meet the requirement of the full-span EMI qua ntification studies, which results in worse accuracy. Supported by Nationa l Natural Science Foundation of China under Grant 50421703, this dissert

论述电力电子装置的控制方式(直接拿去打印吧)

信息工程系 电力电子装置论文 题目: 论述电力电子装置的控制方式 专业:电气工程及其自动化 班级:K0309414 学号:K030941410 学生姓名:蔡泉权 电力电子装置(power electronic equipment)由各类电力电子电路组成的装置。用于大

功率电能的变换和控制。又称变流装置。它包括整流器、逆变器、直流变流器、交流变流器、各类电源和开关、电机调速装置、直流输电装置、感应加热装置、无功补偿装置、电镀电解装置、家用电器变流装置等。 其中,直流电源可由整流器或直流变流器组成,用于直流电动机调速、充电(备充电电源)、电镀和科学仪器等的电源。交流电源可由变频器(见交流变换电路)组成。分为变频变压电源(用于交流笼式异步电动机调速)、恒频恒压电源(用以构成交流不停电电源)、交流稳压电源、中频感应加热电源(电源输出频率达8千赫,用于感应加热和淬火)、高频加热电源(电源输出频率高于8千赫,用于淬火和焊接)等。利用电力电子器件的快速开关性能,可构成静止式无触点大功率开关,代替传统的电磁式有触点大功率开关。 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。 总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。 SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。 SVPWM的主要思想是以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦波电源,而SVPWM方法将逆变系统和异步电机看作一个整体来考虑,模型比较简单,也便于微处理器的实时控制。SVPWM的主要特点有: 1.在每个小区间虽有多次开关切换,但每次开关切换只涉及一个器件,所以开关损耗小。 2.利用电压空间矢量直接生成三相PWM波,计算简单。 3.逆变器输出线电压基波最大值为直流侧电压,比一般的SPWM逆变器输出电压高15% VVVF(Variable Voltage Variable Frequency)装置是在早期采用的。PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。

《电力电子装置及控制》课程教学大纲

《电力电子装置及控制》课程教学大纲 Power Electronic Devices and Control 课程编号:2000151 适用专业:电气工程及其自动化 学时数:48 学分数:3 执笔者:叶斌编写日期:2002.5 一、课程的性质和目的 课程性质:《电力电子装置及控制》是电气工程及其自动化专业的专业课、必修课,主要内容为电力电子实用技术和典型电力电子装置的控制技术。 主要任务 1.使学生了解电力电子技术在国民经济中的重大作用以及电力电子技术的发展现状,扩大学生视野,启发学生创新思维; 2.在先修课“电力电子器件”和“电力电子技术”课程的基础上,进一步介绍大功率变流电路的结构、工作原理、功能指标,理解大功率电力电子实用装置的构成、基本电量的计算方法和所有装置需解决的共同技术问题; 3.介绍几类电力电子实用装置,使学生掌握其工作原理、运行特性、以及依据装置所服务的实际负载特点所采用的控制手段,培养学生面向生产、面向实际、面向工程的实际运用能力。 4.本门课是在学生学习过多门技术基础课的基础上开设的,它涵盖知识的内容多,面广,难度大,实用性强,能培养学生融会贯通知识、提高综合应用知识解决实际问题的能力。 二、课程教学内容 第一章整流装置(6学时) 内容:介绍大功率整流电路的典型结构和控制方式;整流装置的功能指标、改善功率因数的措施;电力电子装置的谐波及其抑制、快速静止无功补偿装置的基本原则。 学习要求及重点:掌握大功率整流的典型电路结构,技术性能,功能指标、抑制谐波以及提高功率因数的措施。 作业本章作业4~6题,内容:大功率多相整流基本电量计算2题;多重化整流电路的谐波分析计算2题;功率因数的计算1题;静止无功补尝装置原理分析1题。 第二章逆变装置(6学时) 内容:重点介绍逆变器输出谐波的抑制及波形的改善、三点式逆变电路工作原理、谐振直流环节逆变器以及DC/AC变换技术的应用。 学习要求及重点:重点掌握谐波的抑制、SPWM波调制技术、三电平逆变器和谐振直流环节逆变器的工作原理,以及DC/AC变换技术的应用。 作业:基本逆变电路的计算2题;逆变器的多重化技术2题;结合教学内容,查阅文献资料,写出有关逆变技术的应用论文1篇。 第三章直流传动装置(10学时) 内容:本章主要内容为由AC/DC和DC/DC变流装置供电的直流电动机系统特性及典型系统的控制技术。重点介绍V—M系统的开、闭环控制特性、直流电动机不可逆双闭环调速系统及可逆调速系统的控制技术及系统性能。

电力电子装置及系统课程设计报告doc..

三相正弦波变频电源设计 1设计任务分析 设计并制作一个三相正弦波变频电源,输出频率范围为20-100Hz,输出线电压有效值为36V,最大负载电流有效值为3A,负载为三相对称阻性负载(Y型接法)。三相正弦波变频电源原理方框图如图1-1所示。 图1-1 三相正弦波变频电源原理框图 2 三相正弦波变频电源系统设计方案选择 2.1 整流滤波电路方案选择 方案一:三相半波整流电路。该整流电路在控制角小于30°时,输出电压和输出电流波形是连续的,每个晶闸管按相序依次被触发导通,同时关断前面已经导通的晶闸管,每个晶闸管导通120°;当控制角大于30°时,输出电压,电流的波形是断续的。 方案二:三相桥式整流电路。该整流电路是由一组共阴极电路和一组共阳极电路串联组成的。三相桥式的整流电压为三相半波的两倍。 三相桥式整流电路在任何时候都有两个晶闸管导通,而且这两个晶闸管中一个是共阴极组的,一个是共阳极组的。他们同时导通,形成导电回路。 比较以上两种方案,方案二整流输出电压高,纹波电压较小且不存在断续现象,同时因电源变压器在正,负半周内部有电流供给负载,电源变压器得到了充分的

利用,效率高,因此选用方案二。滤波电路用于滤波整流输出电压中的纹波,采用负载电阻两端并联电容器C的方式。 2.2 逆变电路方案选择 根据题目要求,选用三相桥式逆变电路 方案一:采用电流型三相桥式逆变电路。在电流型逆变电路中,直流输入是交流整流后,由大电感滤波后形成的电流源。此电流源的交流内阻抗近似于无穷大,他吸收负载端的谐波无功功率。逆变电路工作时,输出电流是幅值等于输入电流的方波电流。 方案二:采用电压型三相桥式逆变电路。在电压型逆变电路中,直流电源是交流整流后,由大电容滤波后形成的电压源。此电压源的交流内阻抗近似于零,他吸收负载端的谐波无功功率。逆变电路工作时,输出电压幅值等于输入电压的方波电压。 比较以上两种方案,电流型逆变器适合单机传动,加,减速频繁运行或需要经常反向的场合。电压型逆变器适合于向多机供电,不可逆传动或稳速系统以及对快速性要求不高的场合。根据题目要求,选择方案二。 2.3 SPWM(正弦脉宽调制)波产生方案选择 在给设计中,变频的核心技术是SPWM波的生成。 方案一:采用SPWM集成电路。因SPWM集成电路可输出三相彼此相位严格互差120°的调制脉冲,随意可作为三相变频电源的控制电路。这样的设计避免了应用分立元件构成SPWM波形发生器离散性,调试困难,稳定性较差。 方案二:采用AD9851DDS集成芯片。AD9851芯片由告诉DDS电路,数据输入寄存器,频率相位数据寄存器,告诉D/A转换器和比较器组成。由该芯片生成正弦波和锯齿波,利用比较器进行比较,可生成SPWM波。 方案三:利用FPGA通过编程直接生成SPWM波。利用其中分频器来改变脉冲信号的占空比和频率,主要是可通过外部按钮发出计数脉冲来改变分频预置数,实现外部动作来控制FPGA的输出信号。

电力电子装置-打印版

一、电力电子装置GC 1.电力电子装置是以满足用电要求为目标,以电力半导体器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现和控制的装置。 2.电力电子装置和负载组成的闭环控制系统称为电力电子控制系统。3.电力电子装置及其控制系统的基本组成:它是通过弱电控制强电实现其功能的 4.电力电子装置的主要类型 (1)根据电能转换形式的不 同,基本上可以分为5大 类:交流-直流变换器(AC/ DC)、直流-交流变换器(D C/AC)、直流-直流变换器 (DC/DC)、交流-交流变换 器(AC/AC)和电力电子静 态开关。 ① AC/DC变换器又称整流器。用于将交流电能变换为直流电能。 ② DC/DC变换器用于将一种规格的直流电能变换为另一种规格的直流 电能。 ③ DC/AC变换器又称逆变器。用于将直流电能变换为交流电能。 ④ AC/AC变换器用于将一种规格的交流电能变换为另一种规格的交流 电能。 ⑤静态开关又称无触点开关,它是由电力电子器件组成的可控电力开 关。 5.电力电子装置的应用概况: (1)电力电子装置在供电电源、电机调速、电方至统'等方面都得到了广泛的应用。 ①直流电源装置通信电源充电电源电解、电镀直流电源开关电源 ②交流电源装置交流稳压电源通用逆变电源不间断电源UPS ③特种电源装置静电除尘用高压电超声波电源感应加热电源焊 接电源④电力系统用装置高压直流输电无功功率补偿装置和电力有源滤 波器电力开关 ⑤电机调速用电力电子装置交、直流调速装置 ⑥其他实用装置电子整流器和电子变压器空调电源微波炉、应急 灯等电源 6.发展前景 (1)交流变频调速绿色电力电子装置电动车新能源发电信息电源7.应用技术: (1)散热技术:PN结的性能与温度密切相关,每种电力电子器件都要规定最高允许结温Tim,器件在运行时不应超过7V和功耗的最大允许值Pm,否则器件的许多特性和参数都要有较大变化,甚至使器件被永久性地烧坏。 (2)缓冲电路:抑制开关器件的di/dt、du/d t,改变开关轨迹,减少开关损耗,使之 工作在安全工作区内。能量以热的形式 消耗在缓冲电路的电阻上。采用有极性 的缓冲电路,以便加快电容或电感的抑 制作用。 (3)保护技术 ①防止过电流的措施:为了防止桥臂中两个 开关器件直通,通常对两个开关器件的 驱动信号进行互锁并设置死区。 1)互锁就是桥臂中一开关器件有驱动信号 时,绝对不允许另一开关器件有驱动信号,可以利用门电路将桥臂中两个驱动信号进行互锁。 2)死区是指桥臂中两个开关器件都不允许开通的时间。一般元件的关断时间往往大于开通时间,当接收到开通信号后应该推迟一定的死区时间再驱动开关管,才能避免(死区t取关断t1.5~2倍) ②电流信号检测慢速型快速型;输出过压保护;输入瞬态电压抑制; 输入欠压保护;过温保护;器件控制极保护;自锁式保护电路 二、高频开关电源 1 / 4

电力电子装置

目录 无功功率发生器(7000VA)设计 (2) 1 无功补偿装置概述 (2) 1.1无功补偿的作用和意义 (2) 1.2阻抗补偿方案 (5) 1.2.1 晶闸管投切电容器TSC (5) 1.2.2 晶闸管控制电抗器TCR (6) 1.2.3晶闸管控制串联电容器TSC (7) 1.3 电压源变流器型补偿方案 (7) 1.3.1 无功功率发生器 (8) 1.3.2 开关型串联基波电压补偿器 (9) 2静止无功发生器(SVG)的设计 (9) 2.1 静止无功发生器(SVG)主电路 (10) 2.2 无功电流检测电路 (13) 2.3 无功控制电路 (14) 3 系统仿真及分析 (15) 3.1 系统仿真模型 (15) 3.2 仿真结果与分析 (17) 结束语 (21) 参考文献 (22)

无功功率发生器(7000VA)设计1 无功补偿装置概述 1.1无功补偿的作用和意义 自二十一世纪以来,我国经济飞速发展,电力系统作为国民经济基础,也因需求的不断增大,其规模也越来越大。而各行各业,对电力的需求和依赖变得越来越强烈,使得电力系统得到了迅速的发展。在保证电能质量的前提下,如何保证电力系统稳定、安全、经济的运行及提高用电效率是目前面临的一个重大而迫切的问题。 电网中电力设备大多是根据电磁感应原理工作的,它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等。电源能量在通过纯电感或纯电容电路时并没有能量消耗,仅在用电负荷和电源之间往复交换,由于这种交换功率不对外做功,因此称为无功功率。无功功率反映了内部与外部往返交换能量的情况,它并不像有功功率那样表示单位时间所做的平均功率,但是它和有功功率一样是维护电力系统稳定,保证电能质量和安全运行必不可少的。 如果电网中的无功功率不足,致使用电设备没有足够的无功功率来建立和维持正常的电磁场,就会造成设备的端电压下降,不能保证电力设备在额定的技术参数下工作,从而影响用电设备的正常工作。具体表现在以下三方面:(1)降低有功功率,使电力系统内的电气设备容量不能得到充分利用。在额定电压和额定电流下,由cos =可以看出,若功率因数降低,则有功功率 P UIφ 随之降低,是设备容量不能充分利用。 (2)增加输、配线电路中的有功功率和电能损耗。设备功率因数降低,在线路输送同样有功功率时,线路中就会流过更多的电流,是线路中的有功功率损耗增加。 (3)是线路的电压损失增加。使负载端的电压下降,有时甚至低于允许值,从而严重影响电动机及其他用电设备的正常运行。特别是在用电高峰季节,功率

相关文档
最新文档