水泥凝结时间对混凝土性能的影响

水泥凝结时间对混凝土性能的影响
水泥凝结时间对混凝土性能的影响

水泥凝结时间对混凝土性能的影响

姬常松吕培超石宝东

1、工程实例

实例1:某工程为四层全现浇框架,混凝土强度能级为C20,板厚100MM。机械搅拌,塔吊运输,插入式捣棒和平板式振捣器振捣,水泥为P.0325,使用前检验安定性全格,使用后复检,其细度、安定性、强度均合格,初凝25MIN,终凝55MIN。屋盖混凝土的质量情况①龄期1天走上去有脚印;②龄期2天用铁钉能轻易划动;③龄期3天回弹值2~3。

实例2:某三层住宅,梁柱混凝土强度等级为C20,机械搅拌,人工运输,插入式振捣。水泥为P.0425,质量事故发生后复检,其细度、安定性、强度均合格。初凝15MIN,终凝25MIN。底层柱梁质量情况见表2。其中在浇注L2混凝土时,模板及支撑随地基土沉陷而下挠,最大位移为40MM。底层梁柱混凝土质量情况①Z1龄期52天时强度推定值14.1MPA,多处蜂窝、露筋、缝隙;

②L1龄期30天时强度推定值23.0MPA,有4处蜂窝,2处露筋;③L2龄期28天时强度推定值11.0MPA,表面粗糙,无明显缝隙。

2、水泥的凝结时间对混凝土的影响

(1)影响混凝土强度及密实度

在混凝土浇注过程中,适度振捣使混凝土达到均匀密实,然而振捣必须在水泥浆体处于塑胶状态下进行,即在混凝土初凝以前完成。否则因为初凝以后混凝土内部的水泥颗粒之间以及与骨料之间已发生相互粘结,此时若受到外部振动力作用或受力变形,粘结界面就会受到破坏,混凝土内部出现微裂纹,从而大大降低混凝土的强度。

通过分析可知,水泥的初凝时间过短,以至来不及完成振捣,就会影响混

凝土强度及密实度。例1和例2都使用了初凝时间不合格的废品水泥,其中实例1的楼盖初凝后才进行振捣,实例2的L2同样在初凝后振捣并发生较大的下挠变形,致使混凝土强度达不到原设计的强度等级;即使赶在混凝土初凝前抢着振捣,也不能充分振捣,结果经过振捣部位的混凝土强度达不到要求,漏振的部位即出现了蜂窝、孔洞等缺陷,如实例2中的Z1和L1;下层混凝土初凝后才浇注上层混凝土,即出现冷接缝隙,如实例2的Z1。

(2)影响混凝土的工作性能

混凝土的工作性能包括流动性、可塑性、易密性,工作良好的拌和物便于施工操作并能获得均匀、密实的混凝土。混凝土的流动性、可塑性一般可用混凝土的塌落度来表示。

水化反应速度越快,塌落度损失越快,塌落度的经时损失也越大。水泥凝结时间的长短决定水化反应的快慢。对于初凝时间短的水泥,混凝土的经时损失则越大,因而使混凝土工作性能降低。

(3)影响混凝土的施工性

在混凝土施工过程中,混凝土的凝结时间是一项很重要的技术参数,对施工过程起着控制作用,主要有两个方面:

①许多施工工序的起止时间受混凝土凝结时间的制约。混凝土施工时,应在初凝前完成适度振捣及上层或相邻处混凝土的继续浇注,楼地面混凝土抹压应在初凝后终凝前进行,侧模应在混凝土终凝后才能拆除等。

②许多施工过程参数取决于混凝土的凝结速度。混凝土的浇注速度、分层浇注厚度、滑模中的滑升速度等都必须依据混凝土的凝结速度而确定,这一点在滑模施工、大面积、大体积混凝土施工中显得尤为明显。

从上述建筑施工的要求来看,混凝土理想的凝结硬化过程应该是:a、初凝

慢,以便有充足的时间来完成搅拌、运输、灌注、振捣及抹面等施工过程;b、终凝快,以便及早拆模和养护;c、硬化快,以便尽早拆模及投入使用,及早开始后续工序的施工。

水泥凝结时间是混凝土凝结硬化过程的决定性因素。在不掺外加剂的情况下,水泥的凝结时间的长短,决定了混凝土凝结硬化的快慢。如果水泥的凝结时间不适宜,或初凝过快,或终凝太迟,就不能满足建筑施工的要求,就会降低混凝土的可施工性。因此国家标准规定水泥的初凝时间不得早于45min,终凝时间不得大于10h(硅酸盐水泥不大于390min)。对于凝结时间不合格的水泥不得使用,以免带来施工不便,影响混凝土质量。

(4)影响混凝土的体积稳定性

水泥的水化反应是个放热的过程,当混凝土散热条件较差时,会使混凝土内部温度升高,对于大体积混凝土的温升值可高达30℃以上,对于厚度大于400MM的C40的混凝土墙体的温升值也超过25℃,在随后的降温阶段,混凝土即出现较大的冷缩变形,并可能导致温差裂缝。

水泥的水化反应速度愈快,水化热释放就愈快,最高温升值也就愈高。若延缓水泥的初凝时间,则可减慢水化热释放速度,推迟混凝土温度峰值出现的时间,并降低混凝土的最高温升值。

由此可见,水泥的凝结时间是混凝土体积稳定性的影响因素之一。

(5)影响混凝土的耐久性

从上述的一些情形可以看出,当水泥的凝结时间不适当时,就会诱发或导致混凝土的质量问题,如蜂窝、露筋、裂缝等缺陷,影响混凝土的抗渗性能,降低混凝土的耐久性。因此水泥适宜凝结时间是保证混凝土耐久性的前提条件之一。

2结论

(1)综上所述,我们在使用水泥以前,必须检验其合格与否,防止误用凝结时间不合格的水泥,特别是初凝时间不合格的废品水泥,以免发生质量事故。

(2)一旦误用了初凝时间不合格的废品水泥,应对工程质量进行全面检测,包括必需的所有检验和试验,进行非破损检测,并宜采用有回弹超声综合检测,全面反映混凝土的质量状况,消除所有的质量问题。

(3)依据水泥凝结时间参数,结合每个施工工艺的特点和要求,选用适当的外加剂,并按最佳掺量掺用,适当调节和控制混凝土的凝结时间,配制出高性能混凝土,来满足施工工艺的要求,才能切实保证混凝土的工程质量。

水泥凝结时间的测定及影响因素分析

水泥凝结时间的测定及影响因素分析水泥凝结时间的测定及影响因素分析 2011年08月遑相国蓑旆质检?教学?研究水泥凝结时间的测定及影响因素分析 罗晓卿 (厦门合诚工程检测有限公司) 摘要:本人根据自己近年来积累的工作经验,主要针对影响测定水泥凝结时间的因素进行了分析,并提出一些问题和相应对策. 关键词:凝结时间;测定;影响因素 1定义与意义 1.1水泥凝结时间的定义 水和水泥混合后,从最初的可塑状态逐渐成为不可塑状态,要经历一 定的时间,水泥的凝结时间就是这种过程时间长短的一种定量的表示方法.它以标准试针沉入标准稠度水泥净浆达到一定深度所需的时间来表示,并分为初凝时间和终凝时间.初凝时间是指从水泥全部加入水中到水泥浆开始失去塑性所需的时间.终凝时间是指从水泥全部加入水中到完全失去塑性所需的时间. 1.2水泥凝结时间的长短对水泥混凝土的施工的重要意义试验检测工作对保证工程施工质量具有重要意义,试验数据的准确与否关系到工程施工质量的好坏,试验结果的好坏是监理工程师评判工程质量的依据,因此加强施工过程中的试验监理工作是非常重要的. 水泥凝结时间的长短对水泥混凝土的施工有着重要意义.初凝时间太短,不利于整个混凝土施工工序的正常进行;但终凝时间过长,又不利于混凝土结构的形成,模具的周转,以及会影响到养护周期时间的长短等.因此,水泥凝结时间要求初凝时间不宜过短,终凝时间不宜过长.准确测定水泥凝结时间,不但反

映了水泥质量是否符合有关技术要求,而且为施工单位决定现场施工进度提供了必要的信息.因此检验水泥的凝 结时间的准确性至关重要. 2水泥凝结时间的测定 2.1测定前准备工作 调整凝结时间测定仪的试针接触玻璃板时,指针对准零点. 2.2试件的制备 以标准稠度用水量制成标准稠度净浆一次装满试模,振动数次刮平,立即放入湿气养护箱中.记录水泥全部加入水中的时间作为凝结时间的起始时间. 2.3初凝时间的测定 试件在湿气养护箱中养护至加水后30min时进行第一次测定.测定时,从湿气养护箱中取出试模放在试针下,降低试针与水泥净浆表面接触.拧紧螺丝l,2s后,突然放松,试针垂直自由沉入水泥净浆.观察试针停止下沉或释放试针3Os时指针的读数.当试针沉至距底板4mm+1him 时,为水泥达到初凝状态;由水泥全部加入水中至初凝状态的时间为水泥的初凝时间,用"min'茛示. 2.4终凝时间的测定 为了准确观测试针沉入的状况,在终凝针上安装了一个环形附件, 在完成初凝时间测定后,立即将试模连同浆体以平移的方式从玻璃板取下,翻转180.将直径大端向上,小端向下放在玻璃板上,再放入湿气养护箱中继续养护,临近终凝时间时每隔15min测定一次,当试针沉入试件 0.5mm时,即环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态,由水泥全部加入水中至终凝状态的时间为水泥的终凝时间,用 " min"表示. 2.5测定时应注意

水泥混凝土拌和物凝结时间试验方法

水泥混凝土拌和物凝结时间试验方法 ⒈本方法使用于从混凝土拌合物中筛出的砂浆用贯入阻力法来确定塌 落值不为零的混凝土拌合物凝结时间的测定。 ⒉贯入阻力仪应由加荷装置、测针、砂浆试样筒和标准筛组成,可以是 手动的,也可以是自动的。贯入阻力仪应符合下列要求: ⑴加荷装置(灌入阻力仪):最大测量值不小于1000N,精确至±10N。

⑵测针:长约100㎜,承压面积为100、50 、和20㎜2三种,在距 离贯入端25㎜处刻有一圈标记。 ⑶砂浆试样筒:上口直径为160㎜,下口直径为150㎜,净高150㎜ 的刚性不透水的,并配有盖子。 ⑷捣棒:直径16㎜,长650㎜,符合JG 3021的规定。 ⑸标准筛:孔径4.75㎜,符合GB/T6005-1997《试验筛金属丝编制 网、穿孔板和电成型薄板筛孔的基本尺寸》规定的金属方孔筛。 ⑹其他:铁制板、吸液管和玻璃片。 ⒊凝结时间试验应按下列步骤进行: ⑴取混凝土拌和物代表样,用4.75㎜筛尽快地筛出砂浆,在经过 人工翻拌均匀后,一次装入一个试模。每批混凝土拌和物取一个试样,共取三个试样,分装三个试模。对塌落度不大于70㎜的

混凝土宜用振实台振实砂浆,振实应持续到表面出浆为止应避免过振;对塌落度大于70㎜的混凝土宜用捣棒人工捣实,沿螺旋方向由外向中心均匀插捣25次,然后用橡皮锤轻击试模侧面以排除在捣实过程中留下的空洞,进一步整平砂浆的表面,使其低于试模上沿约10㎜,砂浆试样筒应立即加盖。

⑵砂浆试样制备完毕,编号后应置于温度为20℃±2℃的环境中或现 场同条件下待试,并在以后的整个测试过程中,环境温度应始终保持(20℃±2℃)。现场同条件下测试时,应与现场条件保持一致。 在整个测试过程中,除在吸取泌水或进行贯入试验外。试样筒应始终加盖。 ⑶凝结时间测定从水泥与水接触瞬间开始计时。根据混凝土拌合物 的性能,确定测针试验时间,以后每隔0.5h测试一次,在邻近初、凝时可增加测定次数。 ⑷在每次测试前2 min,将一片20㎜厚的垫块垫入底部,使其倾斜, 用吸管吸取表面的泌水,吸水后平稳地复原。 ⑸测试时将砂浆试样筒置于贯入阻力仪上,测针端部与砂浆表面接 触,然后在(10±2)s内均匀地使测针贯入砂浆(25±2)㎜深度,记录贯入压力,精确至10N;记录测试时间,精确至1min;记录环境温度,精确至0.5℃。 ⑹各测点的间距应大于测针直径的两倍且不小于15㎜,测点与试样 筒壁的距离应不小于25㎜。 ⑺每个试样做贯入阻力测试在0.2~28MP间,应至少进行6次,最 后一次的单位面积贯入阻力应不低于28MP。从加水时算起,常温下普通混凝土3h后开始测定,每次间隔为0.5h;早强混凝土或气温较高的情况下,则宜在2h后开始测定,以后每隔0.5h测一次; 缓凝混凝土或低温情况下,可在5h后开始测定,以后每隔2h测一次。在临近初、终凝时间时可增加测定次数。

混凝土凝结时间异常问题.

(1)混凝土的急凝:混凝土搅拌后迅速凝结。其原因:水泥过热、水泥中石膏严重不足、冬季时使用热水温度过高同时投料顺序不正确,热水与水泥直接接触等。还有外加剂与水泥严重不适应,例如:有些外加剂大大降低硬石膏在水中的溶解度,使溶液中可溶性SO3 量不足,不能生成足够的钙矾石来抑制C3A 的水化。用硬石膏或氟石膏作水泥调凝剂,遇到木质素类外加剂以及糖蜜类外加剂均会发生急凝。 (2)混凝土的假凝:假凝是指水泥加水拌和后,很短时间内拌合物就显示凝结的特点,但经过剧烈搅拌,混凝土拌合物又恢复塑性并达到正常凝结。假凝对混凝土最终强度影响不大,但影响施工和浇筑。假凝主要原因是C3A 的活性与石膏的活性和数量不匹配所造成的。例如:过细的水泥,使C3A 易过早水化,活性降低,导致早期溶解的C3A 相对较少,,还有多余的形成而溶出的CaSO4 量较多,溶解速度过快,除与C3A 生成钙矾石外较大数量的次生石膏。次生石膏晶体较大,呈片状或长条状,导致水泥浆体迅速失去流动性、变硬。但随着C3A 水化反应的进行,可能会使混凝土拌合物恢复流动性。C3A 来源于熟料,CaSO4 主要来源于石膏等缓凝剂,如何确保熟料的品质、缓凝剂种类及掺量的合理性,并确保水泥在经过粉磨、储存及运输等过程后C3A 的活性与石膏的活性和数量相匹配是解决混凝土假凝的问题关键。

(3)混凝土的凝结时间过长(缓凝):可分为两种情况,一种是整体混凝土严重缓凝;另一种是混凝土局部严重缓凝。整体混凝土严重缓凝,这对混凝土后期性能影响较大。原因主要是由外加剂造成,由于掺加了不合适的缓凝组分,或外加剂掺量超出了正常掺量,造成混凝土的过度缓凝。缓凝组分不同,受温度等影响以及缓凝效果有很大差异。混凝土局部严重缓凝,这对混凝土后期性能影响不大,可以延长拆模时间解决。如楼板、墙体、柱子等混凝土,绝大部分凝结正常,在局部面积不大的区域,混凝土不凝。原因主要有以下几点:加粉体外加剂,搅拌不均匀,造成外加剂局部富集;现场加水,混凝土粘聚性降低,混凝土离析,浇筑时振捣使局部浆体集中,水灰比变大且外加剂相对过量;使用液体外加剂时,长时间不清理沉淀物,此沉淀物粘稠不易搅碎,其成分基本为不易溶解的缓凝组分,从而造成混凝土的局部过度缓凝。 混凝土公司的技术人员对凝结时间异常并不陌生,缓凝遇到的最多,另外还有严重缓凝、速凝和假凝。混凝土凝结时间异常有时和气候相关,如天气炎热、日照强烈时容易出现坍落度损失严重,从而引起混凝土快速凝结、硬化,造成施工困难;而在南方的冬天,经常会遇到混凝土凝结缓慢,为工期紧张的施工单位所诟病。因气候引起的凝结时间异常,可以通过技术人员的良好意识(预计气候变化,及时调整外加剂的缓凝功效)和配合比及时调整,来减轻不良后果。

混凝土凝结时间偏长影响因素

影响混凝土凝结时间偏长因素 缓凝 判断依据 工程施工要求混凝土凝结时间一般为6 h~10 h左右(特殊要求混凝土除外)。桩基、承台、墩身、隧道混凝土喷涂、衬砌及混凝土砌体等超过24 h甚至几天不凝结。原因分析 1)人为因素。 a.搅拌站人员未按混凝土外加剂厂家外加剂使用说明要求,盲目多掺外加剂(一般掺量为0.8%~1%)。 b.按混凝土配合比要求,将水泥误当粉煤灰使用。 c.工作疏忽导致外加剂混淆使用,如将缓凝剂当早强剂使用。 d.混凝土浇筑过程中,施工人员看混凝土发干流动性小擅自给混凝土加水。 2)机械因素。 a.计量器具未按照要求自检、送检,长期使用产生较大误差。 b.盛放混凝土外加剂的料仓要使用塑料或防腐漆,杜绝外加剂与铁器直接接触。 c.放料口传感器失灵,或放料口长期磨损计量不准误差较大。 3)水泥因素。 a.水泥自身凝结时间长。水泥生料配比不合理或水泥煅烧过程中温度控制不够,导致煅烧后水泥有效成分少,主要靠调凝石膏来调整凝结时间。 b.水泥厂或施工单位不注重水泥存放,将水泥长期漏天放臵导致水泥吸潮结块。 c.水泥厂家根据季节性温度对水泥凝结时间的影响适当的调整水泥,比如夏季温度高,水泥凝结时间快,厂家会适当降低C3A含量,冬季温度低,水泥凝结时间短,会

适当提高C3A含量。 d.水泥工艺流程的重大改变,水泥性能不稳定。 e.水泥生料来源变迁,矿物含量根据实际情况改变工艺流程。 f.水泥厂家大量加粉煤灰作为外掺料提高水泥产量。 4)粉煤灰因素。 从粉煤灰颜色来辨别一般为灰色,颜色越黑含碳量越高,发黄含钙比较高。 a.粉煤灰掺量过高,一般1级粉煤灰需水量为90%,可减少用水量并代替一部分水泥使用,改善工作性能,但过量使用粉煤灰凝结时间长,强度低。 b.粉煤灰厂家为提高粉煤灰产量掺合磨细矿渣等以次充好。 5)矿粉因素。矿粉以玻璃体结构为主,主要化学成分为SiO2,Al2O3,这些活性物质与水泥中C3S和C2S反应填充混凝土孔隙。超掺矿粉会使混凝土凝结时间变长。 6)砂、石料因素。 砂、石料含泥量和泥块含量对混凝土凝结时间影响较大,除此还有如下情况: a.冬季施工应特别注意,含水高的砂料有冻结现象,无形中加重了含水量。 b.砂质量问题,砂厂在砂中掺合大量的土、碎石等提高砂量,而土对外加剂的影响非常大。 c.砂、石料中含泥量和泥块含量偏高。 7)外加剂因素。 a.外加剂种类繁多,工地上不注意外加剂标识,误用外加剂。 b.外加剂对运输、储存、使用掺量有严格要求,未按外加剂厂家说明使用。 c.外加剂有一定适应性,调试过程中混凝土满足各项指标要求,但在大批量生产供货过程中,由于原材料的不稳定,会在凝结时间上有一定的误差。

凝结时间报告

关于蒙西粉磨企业使用熟料凝结时间 专题报告 一、各种物料对水泥凝结时间的影响 兄弟单位熟料情况 2013年我公司使用的清水河熟料初凝为118分钟、终凝为191分钟。2012年我公司使用的清水河熟料初凝为101分钟、终凝为170分钟。2013年股份公司熟料初凝为78分钟、终凝为112分钟。阿荣旗蒙西熟料初凝为107分钟,凝结为154分钟。棋盘井蒙西熟料初凝为79分钟、终凝为106分钟。 我公司本年度使用熟料的凝结时间比2012年长,初凝长17分钟、终凝长21分钟。 根据对兄弟单位2013生产熟料的了解,我公司本年度使用的熟料比以上三家兄弟单位的熟料凝结时间长,比股份公司熟料初凝长40分钟、终凝长79分钟;比阿荣旗熟料初凝长11分钟、终凝长37分钟;比棋盘井熟料初凝长39分钟、终凝长85分钟。 脱硫石膏的影响

上表是脱硫石膏与天然石膏对比实验。根据上表可以看出使用脱硫石膏比使用天然石膏初凝平均增长27分钟、终凝平均长48分钟。 粉煤灰的影响 通过上述粉煤灰对凝结时间的实验,得出每掺加1%的粉煤灰水泥的初凝、终凝分别增长7分钟。 二、周边水泥企业情况

我厂生产的P.C32.5R水泥初凝为315分钟、终凝为411分钟,比冀东P.C32.5水泥初凝长38分钟、终凝长54分钟;比土默川P.C32.5水泥初凝长147分钟、终凝长179分钟。比中联P.C32.5水泥初凝长54分钟、终凝长80分钟;比天皓P.C32.5水泥初凝短36分钟、终凝短10分钟。 我厂生产的P.O42.5(R)水泥初凝为242分钟、终凝为328分钟,比冀东P.O42.5水泥初凝长10分钟、终凝长21分钟;比天皓P.O42.5水泥初凝长2分钟、终凝长21分钟;比中联P.O42.5水泥初凝长31分钟、终凝长47分钟。 我厂生产的P.O52.5水泥初凝为188分钟、终凝为265分钟,比冀东P.O52.5水泥初凝短14分钟、终凝短17分钟。

混凝土凝结时间

混凝土凝结时间 混凝土凝结时间凝结时间分为初凝时间和终凝时间。初凝时间为水泥加水拌合起至水泥浆开始失去塑性所需的时间。终凝时间从水泥加水拌合起至水泥浆完全失去塑性并开始产生强度所需的时间。水泥凝结时间在施工中有重要意义初凝时间不宜过短终凝时间不宜过长。硅酸盐水泥初凝时间不得早于45min终凝时间不得迟于390min普通水泥初凝时间不得早于45min终凝时间不得迟于600min。水泥初凝时间不合要求该水泥报废终凝时间不合要求视为不合格。混凝土的初凝时间一般是根据水泥品种而定基本没有统一的时间但是有个大致范围就是2-3小时。如果加入早凝剂初凝时间大致可以缩短到半小时如果加入缓凝剂初凝时间可以延长到5-10小时。具体的初凝时间一般由试验决定而且是每家工厂的每一批水泥都要做试验。初凝时间是指水泥加水拌和到水泥浆开始失去可塑性的时间终凝时间是指水泥加水拌和到水泥浆完全失去可塑性并开始产生强度的时间。为保证水泥浆在工程施工中有足够的时间处于塑性状态以便于操作使用国家标准规定了水泥的最短初凝时间为使已形成工程结构形状的水泥浆尽早取得强度以便能够承受荷载国家标准规定水泥终凝时间不得迟于规定的时间。从水泥浆体结构的形成过程可知必须使水化产物长大、增多到足以将各种颗粒初步联接成网形成凝聚结构才能使水泥浆体开始凝结。从水泥浆体的流变特征看必须将外力增加到一定程度所产生的剪应力将形成的网状结构拆散才能使浆体流动。通常将拆散网状结构所需的剪应力称为“屈服值”。水泥拌水后屈服值立即随水化的进展而提高然后变慢接着再以更快的速度上升。一般认为开始的屈服值提高是由于快速形成了钙矾石水泥中如有半水石膏存在还会有二水石膏形成的原因。至于屈服值的第二次快速上升则归结于硅酸三钙强烈水化所形成的C-S-H。所谓“初凝时间”实际上相当于屈服值提高到某一规定数值即将开始第二次快速上升的时间。由此可以表明初凝时间既决定于铝酸三钙和铁相的水化也与硅酸三钙的水化密切相关而初凝到终凝的凝结阶段则主要受硅酸三钙水化的控制。水泥试验条件规定如下试验室温度应为1725℃相对湿度大于50养护箱温度为20±1℃水泥试样、标准砂、拌和水及试模的温度均应与试验室温度相同试验用水须为洁净的淡水。1国家标准规定水泥初凝时间不得早于45min一般为13h终凝时间不得迟于12h一般为58h。2测试方法是在水泥中加入标准稠度的用水量制成净浆试模由加水时起至凝结时间以测定仪的试针沉入净浆中距底板0.51.0mm的时间为初凝时间至试针沉入净浆中不超过1.0mm的时间为终凝时间。

混凝土的初凝时间怎么确定

混凝土的初凝时间怎么确定? 凝结时间分为初凝时间和终凝时间。初凝时间为水泥加水拌合起,至水泥浆开始失去塑性所需的时间。终凝时间从水泥加水拌合起,至水泥浆完全失去塑性并开始产生强度所需的时间。水泥凝结时间在施工中有重要意义,初凝时间不宜过短,终凝时间不宜过长。 硅酸盐水泥初凝时间不得早于45min,终凝时间不得迟于390min;普通水泥初凝时间不得早于45min,终凝时间不得迟于600min。 水泥初凝时间不合要求,该水泥报废;终凝时间不合要求,视为不合格。 混凝土的初凝时间一般是根据水泥品种而定,基本没有统一的时间,但是有个大致范围就是2-3小时。 如果加入早凝剂,初凝时间大致可以缩短到半小时;如果加入缓凝剂,初凝时间可以延长到5-10小时。 具体的初凝时间一般由试验决定,而且是每家工厂的每一批水泥都要做试验。 初凝时间是指水泥加水拌和到水泥浆开始失去可塑性的时间;终凝时间是指水泥加水拌和到水泥浆完全失去可塑性并开始产生强度的时间。 为保证水泥浆在工程施工中有足够的时间处于塑性状态,以便于操作使用,国家标准规定了水泥的最短初凝时间;为使已形成工程结构形状的水泥浆尽早取得强度,以便能够承受荷载,国家标准规定水泥终凝时间不得迟于规定的时间。 从水泥浆体结构的形成过程可知,必须使水化产物长大、增多到足以将各种颗粒初步联接成网,形成凝聚结构,才能使水泥浆体开始凝结。从水泥浆体的流变特征看,必须将外力增加到一定程度,所产生的剪应力将形成的网状结构拆散,才能使浆体流动。通常将拆散网状结构所需的剪应力称为“屈服值”。水泥拌水后,屈服值立即随水化的进展而提高,然后变慢,接着再以更快的速度上升。一般认为,开始的屈服值提高是由于快速形成了钙矾石;水泥中如有半水石膏存在,还会有二水石膏形成的原因。至于屈服值的第二次快速上升则归结于硅酸三钙强烈水化所形成的C-S-H。所谓“初凝时间”实际上相当于屈服值提高到某一规定数值,即将开始第二次快速上升的时间。由此可以表明,初凝时间既决定于铝酸三钙和铁相的水化,也与硅酸三钙的水化密切相关;而初凝到终凝的凝结阶段则主要受硅酸三钙水化的控制。 水泥试验条件规定如下:试验室温度应为17~25℃,相对湿度大于50%;养护箱温度为20±1℃;水泥试样、标准砂、拌和水及试模的温度均应与试验室温度相同;试验用水须为洁净的淡水。 (1)国家标准规定水泥初凝时间不得早于45min,一般为1~3h;终凝时间不得迟于12h,一般为5~8h。 (2)测试方法是在水泥中加入标准稠度的用水量,制成净浆试模,由加水时起,至凝结时间以测定仪的试针沉入净浆中距底板0.5~1.0mm的时间为初凝时间,至试针沉入净浆中不超过1.0mm的时间为终凝时间。 混凝土初凝时间一般在2~4小时,加了缓凝剂可以达到6~10小时,但由于混凝土在运输过程中不断的进行拌和运动,对混凝土初凝时间也会延长。夏季气温高,对混凝土初凝也有很大影响。 凝土初凝和终凝 凝结时间的话,分成初凝和终凝。当混凝土刚开始失去塑性叫做初凝,当混凝土完全失去塑性就叫做终凝。 一般来说混凝土的凝结时间和水泥的凝结时间有关。对普通水泥而言,初凝不小于45min,终凝不迟于10h。混凝土也差不多。 但是现在的混凝土往往都掺有一些混合材和外加剂,会影响正常的凝结时间,尤其是外加剂。混凝土外加剂分很多品种,有关凝结时间的有混凝剂和速凝剂等等,可以延长或者

水泥凝结时间影响因素

水泥的凝结时间分为初凝和终凝。水泥加水拌和到水泥浆体开始失去可塑性的时间。水泥加水拌和到水泥完全失去可塑性并开始产生强度的时间为终凝时间。对于大多数硅酸盐类水泥这两个阶段是很明显的,1初凝时间大多超过1小时,终凝时间一般在初凝后1小时左右,由于水泥水化速度除与自身物理化学因素有关还与水灰比、温度等因素有关,因此凝结时间受到测定时水泥浆状态,环境温度、湿度等诸多因素的影响。 2、水泥凝结时间 水泥凝结时间是水泥的重要技术指标,国家标准对每一种水泥的凝结时间都有规定。这种规定一是基于水泥使用时水泥凝结时间过早导致来不及施工和水泥凝结时间过迟导致施工周期长而影响施工进度。二是基于不同地域水泥生产企业和水泥用户需要有一个根据生产和使用情况选择水泥凝结时间的范围。因此研究对水泥凝结时间的影响因素并确定适宜的凝结时间,是水泥生产过程中一项重要技术工作。 2.1水泥凝结时间的检测概念 水泥初凝时间和终凝时间有国家标准规定的检测方法测定,它是在相同要求的条件下检测出来的不同水泥的凝结时间,这种检测的水泥凝结时间是一种对水泥实际凝结时间的比较,一种总目标的控制要求。凝结时间符合水泥国家标准规定范围内的水泥都是合格的,但合适与优良的评价要靠用户和市场的反映,为了满足用户和市场要求,水泥凝结时间也需要进行合理

确定。

3、水泥凝结时间测定 测定水泥凝结时间的方法目前有维卡法和吉尔摩法两种,我国及世界大多数国家用维卡法。 3.1方法原理 水泥凝结时间的测定方法是采用一定重量的试针自由沉入水泥标准稠度净浆至一定深度所需的时间,由于试体随着时间的延长凝结固化的状态不同,致使试针进入试体深度不同,以此来测定水泥的初结时间和终凝时间。 3.2凝结时间的测定 3.2.1调零 调整凝结时间测定仪的试针接触玻璃板时指针对准标尺零点。 3.2.2试件的制备 将水泥试样按规定程序以标准稠度用水量制成标准稠度净浆,一次装满试模,振动数次并刮平,做好标记,放入湿气养护箱中养护。记录水泥全部加入水中的时间作为凝结时间的起始时间。 3.2.3初凝时间的测定 试模在湿气养护箱中养护至加水后30分钟时进行第一次测定,测定时,从湿气养护箱中取出试模放到试针下,降低试针与水泥净浆表面接触,拧紧螺丝1-2秒后,突然放松,试针垂直、自由的沉入水泥净浆。观察试针停止下沉或释放试针

混凝土凝结时间与水泥凝结时间的关系及混凝土强度的发展

混凝土凝结时间与水泥凝结时间的关系及混凝土强度的发展 水泥在施工中有重要意义,初凝时间不宜过短,终凝时间不宜过长。六大常用均不得早于45min;硅酸盐水泥的终凝时间不得长于,其他五类常用水泥的终凝时间不得迟于600min/10h。不合要求,该水泥报废;终凝时间不合要求,视为不合格。 混凝土的初凝时间一般是根据水泥品种而定,基本没有统一的时间,但是有个大致范围就是2-3小时。 如果加入早凝剂,初凝时间大致可以缩短到半小时;如果加入缓凝剂,初凝时间可以延长到5-10小时。 这个问题没有唯一的答案。对于混凝土浇筑施工而言,一般需要混凝土初凝时间长一些,保证混凝土有足够的运输、浇筑和振捣时间,因为这些工作必须在初凝前完成。混凝土初凝后,终凝越快,即初凝与终凝的时间间隔越短,对提高施工速度越有利,因为终凝越快,强度增长就越快,就可以越快开展后续工作。 然而,对于浇筑体积较大的混凝土结构,需要控制混凝土温升,防止温度应力裂缝,就必须控制水泥的水化慢一些,这时初凝与终凝的时间间隔就会比较大。从初凝到终凝过程,正是水泥水化进程最快阶段,也是水化放热最集中的阶段,延缓水泥水化,必然延迟混凝土终凝。需要注意的是,水泥的初终凝时间,不能代表混凝土的初终凝时间。混凝土的初终凝时间需要根据施工条件来进行控制,混凝土外加剂(缓凝、早环境温度均会影响初终凝时间。、矿粉等)(粉煤灰、矿物

掺合料、强组分). 小时,1~6混凝土的初终凝时间,实际上是在较大范围变化,初凝在所以,小时,都属于正常范围。追问如何控制初终凝时间差?3~24终凝在回答一般来说,使用化学缓凝剂或粉煤灰、矿粉,会同时延缓初凝和终凝时间,并且增大初终凝的时间差。反之,使用化学速凝、早强剂或硅灰,会同时缩短初凝和终凝时间,并减少初终凝的时间差。,同时初凝后马上终小时)现在,最具技术挑战的是,使混凝土缓凝(2~3提高施工或生产效率。加快模板周转,强度快速增长,可以快速脱模,凝,这适合一些薄壁结构或制品。有公司宣称,借助纳米技术的外加剂,可以使硅酸盐水泥做到这样,但至少在中国还没有见到应用。中国使用硫铝酸盐水泥,仅使用缓凝剂倒是也可以达到这样的效果,但实际上是依赖硫铝酸盐水泥强度发展快的特点。混凝土的初凝时间怎么确定? 凝结时间分为初凝时间和终凝时间。初凝时间为水泥加水拌合起,至水开始失去塑性所需的时间。终凝时间从水泥加水拌合起,至水完全失去塑性并开始产生强度所需的时间。水泥凝结时间在施工中有重要意义,初凝时间不宜过短,终凝时间不宜过长。 初凝时间不得早于45min,终凝时间不得迟于390min;普通水泥初凝时间不得早于45min,终凝时间不得迟于600min。 水泥初凝时间不合要求,该水泥报废;终凝时间不合要求,视为不合格。 混凝土的初凝时间一般是根据水泥品种而定,基本没有统一的时间,

水泥凝结时间影响因素

水泥凝结时间影响因素 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

水泥的凝结时间分为初凝和终凝。水泥加水拌和到水泥浆体开始失去可塑性的时间。水泥加水拌和到水泥完全失去可塑性并开始产生强度的时间为终凝时间。对于大多数硅酸盐类水泥这两个阶段是很明显的,1初凝时间大多超过1小时,终凝时间一般在初凝后1小时左右,由于水泥水化速度除与自身物理化学因素有关还与水灰比、温度等因素有关,因此凝结时间受到测定时水泥浆状态,环境温度、湿度等诸多因素的影响。 2、水泥凝结时间 水泥凝结时间是水泥的重要技术指标,国家标准对每一种水泥的凝结时间都有规定。这种规定一是基于水泥使用时水泥凝结时间过早导致来不及施工和水泥凝结时间过迟导致施工周期长而影响施工进度。二是基于不同地域水泥生产企业和水泥用户需要有一个根据生产和使用情况选择水泥凝结时间的范围。因此研究对水泥凝结时间的影响因素并确定适宜的凝结时间,是水泥生产过程中一项重要技术工作。 2.1水泥凝结时间的检测概念 水泥初凝时间和终凝时间有国家标准规定的检测方法测定,它是在相同要求的条件下检测出来的不同水泥的凝结时间,这种检测的水泥凝结时间是一种对水泥实际凝结时间的比较,一种总目标的控制要求。凝结时间符合水泥国家标准规定范围内的水泥都是

合格的,但合适与优良的评价要靠用户和市场的反映,为了满足用户和市场要求,水泥凝结时间也需要进行合理确定。 3、水泥凝结时间测定 测定水泥凝结时间的方法目前有维卡法和吉尔摩法两种,我国及世界大多数国家用维卡法。 3.1方法原理 水泥凝结时间的测定方法是采用一定重量的试针自由沉入水泥标准稠度净浆至一定深度所需的时间,由于试体随着时间的延长凝结固化的状态不同,致使试针进入试体深度不同,以此来测定水泥的初结时间和终凝时间。 3.2凝结时间的测定 3.2.1调零 调整凝结时间测定仪的试针接触玻璃板时指针对准标尺零点。 3.2.2试件的制备 将水泥试样按规定程序以标准稠度用水量制成标准稠度净浆,一次装满试模,振动数次并刮平,做好标记,放入湿气养护箱中养护。记录水泥全部加入水中的时间作为凝结时间的起始时间。 3.2.3初凝时间的测定 试模在湿气养护箱中养护至加水后30分钟时进行第一次测定,测定时,从湿气养护箱中取出试模放到试针下,降低试针与

混凝土拌合物凝结时间差检验细则

混凝土拌合物凝结时间差检验细则 一、依据标准:《混凝土外加剂》(GB 8076-1997)。 二、仪器设备:贯入阻力仪,仪器精度为5N。 三、试验步骤: 将混凝土拌合物用5mm(圆孔筛)振动筛筛出砂浆,拌匀后装入上口内径为160mm,下口内径为150mm,净高150mm的刚性不渗水的金属圆筒,试样表面应低于筒口约10mm,用振动台振实(约(3~5s),置于20±3℃的环境中,容器加盖。一般基准混凝土在成型后3h~4h,掺早强剂的成型后1h~2h,掺缓凝剂的在成型后4h~6h开始测定,以后每0.5h或1h测定一次,但在临近初、终凝时,可以缩短测定间隔时间。每次测点应避开前一次测孔,其净距为试针直径的2倍,但至少不小于15mm,试针与容器边缘之距离不小于25mm。测定初凝时间用截面积为100mm2的试针,测定终凝时间用20mm2的试针。 贯入阻力按下式计算: R=P/A

式中:R――贯入阻力值,MPa; P――贯入深度达25mm时所需的净压力,N; A――贯入仪试针的截面积,mm2。 根据计算结果,以贯入阻力值为纵坐标,测试时间为横坐标,绘制贯入阻力值与时间关曲线,求出贯入阻力值达到3.5MPa时对应的时间作为初凝时间及贯入阻力值达到28MPa时对应的时间作为终凝时间。凝结时间从水泥与水接触时开始计算。 试验时,每批混凝土拌合物取一个试样,凝结时间取三个试样的平均值。若三批试验的最大值或最小值之中有一个与中间值之差超过30min时,则把最大值与最小值一并舍去,取中间值作为该组试验的凝结时间。若两测值与中间值之差均超过30min时,该组试验结果无效,则应重做。 四、结果计算: 凝结时间差△T=T t-T c 式中:△T――凝结时间差,min; T t――掺外加剂混凝土的初凝或终凝时间,min;

混凝土及初凝与终凝时间

凝结时间分为初凝时间和终凝时间。初凝时间为水泥加水拌合起,至水泥浆开始失去塑性所需的时间。终凝时间从水泥加水拌合起,至水泥浆完全失去塑性并开始产生强度所需的时间。水泥凝结时间在施工中有重要意义,初凝时间不宜过短,终凝时间不宜过长。 硅酸盐水泥初凝时间不得早于45min,终凝时间不得迟于390min;普通硅酸盐水泥初凝时间不得早于45min,终凝时间不得迟于600min。 水泥初凝时间不合要求,该水泥报废;终凝时间不合要求,视为不合格。 混凝土的初凝时间一般是根据水泥品种而定,基本没有统一的时间,但是有个大致范围就是2-3小时。 如果加入早凝剂,初凝时间大致可以缩短到半小时;如果加入缓凝剂,初凝时间可以延长到5-10小时。 具体的初凝时间一般由试验决定,而且是每家工厂的每一批水泥都要做试验。 初凝时间是指水泥加水拌和到水泥浆开始失去可塑性的时间;终凝时间是指水泥加水拌和到水泥浆完全失去可塑性并开始产生强度的时间。 为保证水泥浆在工程施工中有足够的时间处于塑性状态,以便于操作使用,国家标准规定了水泥的最短初凝时间;为使已形成工程结构形状的水泥浆尽早取得强度,以便能够承受荷载,国家标准规定水泥终凝时间不得迟于规定的时间。 从水泥浆体结构的形成过程可知,必须使水化产物长大、增多到足以将各种颗粒初步联接成网,形成凝聚结构,才能使水泥浆体开始凝结。从水泥浆体的流变特征看,必须将外力增加到一定程度,所产生的剪应力将形成的网状结构拆散,才能使浆体流动。通常将拆散网状结构所需的剪应力称为“屈服值”。水泥拌水后,屈服值立即随水化的进展而提高,然后变慢,接着再以更快的速度上升。一般认为,开始的屈服值提高是由于快速形成了钙矾石;水泥中如有半水石膏存在,还会有二水石膏形成的原因。至于屈服值的第二次快速上升则归结于硅酸三钙强烈水化所形成的C-S-H。所谓“初凝时间”实际上相当于屈服值提高到某一规定数值,即将开始第二次快速上升的时间。由此可以表明,初凝时间既决定于铝酸三钙和

水泥凝结时间对混凝土性能的影响

水泥凝结时间对混凝土性能的影响 姬常松吕培超石宝东 1、工程实例 实例1:某工程为四层全现浇框架,混凝土强度能级为C20,板厚100MM。机械搅拌,塔吊运输,插入式捣棒和平板式振捣器振捣,水泥为P.0325,使用前检验安定性全格,使用后复检,其细度、安定性、强度均合格,初凝25MIN,终凝55MIN。屋盖混凝土的质量情况①龄期1天走上去有脚印;②龄期2天用铁钉能轻易划动;③龄期3天回弹值2~3。 实例2:某三层住宅,梁柱混凝土强度等级为C20,机械搅拌,人工运输,插入式振捣。水泥为P.0425,质量事故发生后复检,其细度、安定性、强度均合格。初凝15MIN,终凝25MIN。底层柱梁质量情况见表2。其中在浇注L2混凝土时,模板及支撑随地基土沉陷而下挠,最大位移为40MM。底层梁柱混凝土质量情况①Z1龄期52天时强度推定值14.1MPA,多处蜂窝、露筋、缝隙; ②L1龄期30天时强度推定值23.0MPA,有4处蜂窝,2处露筋;③L2龄期28天时强度推定值11.0MPA,表面粗糙,无明显缝隙。 2、水泥的凝结时间对混凝土的影响 (1)影响混凝土强度及密实度 在混凝土浇注过程中,适度振捣使混凝土达到均匀密实,然而振捣必须在水泥浆体处于塑胶状态下进行,即在混凝土初凝以前完成。否则因为初凝以后混凝土内部的水泥颗粒之间以及与骨料之间已发生相互粘结,此时若受到外部振动力作用或受力变形,粘结界面就会受到破坏,混凝土内部出现微裂纹,从而大大降低混凝土的强度。 通过分析可知,水泥的初凝时间过短,以至来不及完成振捣,就会影响混

凝土强度及密实度。例1和例2都使用了初凝时间不合格的废品水泥,其中实例1的楼盖初凝后才进行振捣,实例2的L2同样在初凝后振捣并发生较大的下挠变形,致使混凝土强度达不到原设计的强度等级;即使赶在混凝土初凝前抢着振捣,也不能充分振捣,结果经过振捣部位的混凝土强度达不到要求,漏振的部位即出现了蜂窝、孔洞等缺陷,如实例2中的Z1和L1;下层混凝土初凝后才浇注上层混凝土,即出现冷接缝隙,如实例2的Z1。 (2)影响混凝土的工作性能 混凝土的工作性能包括流动性、可塑性、易密性,工作良好的拌和物便于施工操作并能获得均匀、密实的混凝土。混凝土的流动性、可塑性一般可用混凝土的塌落度来表示。 水化反应速度越快,塌落度损失越快,塌落度的经时损失也越大。水泥凝结时间的长短决定水化反应的快慢。对于初凝时间短的水泥,混凝土的经时损失则越大,因而使混凝土工作性能降低。 (3)影响混凝土的施工性 在混凝土施工过程中,混凝土的凝结时间是一项很重要的技术参数,对施工过程起着控制作用,主要有两个方面: ①许多施工工序的起止时间受混凝土凝结时间的制约。混凝土施工时,应在初凝前完成适度振捣及上层或相邻处混凝土的继续浇注,楼地面混凝土抹压应在初凝后终凝前进行,侧模应在混凝土终凝后才能拆除等。 ②许多施工过程参数取决于混凝土的凝结速度。混凝土的浇注速度、分层浇注厚度、滑模中的滑升速度等都必须依据混凝土的凝结速度而确定,这一点在滑模施工、大面积、大体积混凝土施工中显得尤为明显。 从上述建筑施工的要求来看,混凝土理想的凝结硬化过程应该是:a、初凝

水泥混凝土拌合物凝结时间试验方法

T 0527-2005 水泥混凝土拌合物凝结时间试验方法 1、目的、适用范围和引用标准 本方法规定了测定水泥混凝土拌合物凝结时间的方法,以控制现场施工流程。 本方法适用于各通用水泥和常见外加剂以及不同水泥混凝土配合比、坍落度值不为零的水泥混凝土拌合物的凝结时间测定。 引用标准: GB/T50080-2002 《普通混凝土拌合物性能试验方法标准》 GB/T6005-1997 《试验筛金属丝编织网、穿孔板和电成型薄板筛孔的基本尺寸》 JG 3021-1994 《水泥混凝土坍落度仪》 T 0521-2005 《水泥混凝土拌合物的拌和与现场取样方法》 2、仪器设备 (1)贯入阻力仪:最大测量值不小于1000N,刻度盘分度值为10N。 (2)测针:长约100mm,平面针头圆面积为100mm2、50mm2和20mm2三种,在距离贯入端25mm处刻有标记。 (3)试模:上口径为160mm,下口径为150mm,净高150mm的刚性容器,并配有盖子。 (4)捣棒:直径16mm,长650mm,符合JG 3021的规定。 (5)标准筛:孔径4.75mm,符合GB/T6005-1997《试验筛金属丝编织网、穿孔板和电成型薄板筛孔的基本尺寸》规定的金属方孔筛。 (6)其他:铁制拌合板、吸液管和玻璃片。 3、试样制备 3.1 取混凝土拌合物代表样,用 4.75mm筛尽快地筛出砂浆,再经人工翻拌后,装入一个试模。每批混凝土拌合物取一个试样,共取三个试样,分装三个试模。 3.2 对于坍落度不大于70mm的混凝土宜用振动台振实砂浆,振动应持续到表面出浆为止且应避免过振;对于坍落度大于70mm的宜用捣棒人工捣实,沿螺旋方向由外向中心均匀插捣25次,然后用橡皮锤轻击试模侧面以排除在捣实过程中留下的空洞。进一步整平砂浆的表面,使其低于试模上沿约10mm,砂浆试样筒应立即加盖。

20 混凝土凝结时间

试验技能答辩综合考核打分表(混凝土凝结时间) 序 号 考核内容考核情况优秀满意合格较差 1 目的测定不同材料、不同混凝土配合比以及不同气温环境 下混凝土拌合物的凝结时间,以控制现场施工工艺流 程。 10 9-7 6-4 3-0 2 原理用金属测针垂直贯入混凝土拌和物砂浆中,记录贯入 一定深度25±2mm时的阻力值.规定阻力值达到 3.5MPa和28 MPa时的时间为混凝土的初凝时间和终 凝时间。 20 19-15 14-10 9-0 3 主要设备1、贯入阻力仪:最大测量值不大于1000N,精 度为±10N。2、测针:长为100mm,承压面积 为100mm2、50mm220mm2三种测针; 3、砂浆试 样筒:4、标准筛:筛孔为5mm(国标)或4.75mm (公路标准)。5、其他:捣棒、吸液管。 10 9-7 6-4 3-0 4 环境条件试样置于20±2℃或模拟现场的与现场同条件下10 9-7 6-4 3-0 5 取样制样1、用5mm(4.75mm)筛出砂浆,拌合均匀,分别装入 3个试样筒中。2、混凝土坍落度≤70mm 的混凝 土宜用振动台振实砂浆;3、取样混凝土坍落度 >70mm 的宜用捣棒人工捣实,应沿螺旋方向由 外向中心均匀插捣25 次,然后用橡皮锤轻轻敲 打筒壁,直至插捣孔消失为止。4、砂浆表面应 低于砂浆试样筒口约10mm,应立即加盖。 15 14-11 10-6 5-0 6 试验步骤1、试验前两分钟,垫高2cm吸水。 2、测针端部与砂浆表面接触,然后在10±2s 内 均匀地贯入砂浆25±2mm 深度,精确至10N; 记录时间精确至lmin;环境温度,精确至0.5℃。 3、测点间距大于测针直径的2倍且不小于 15mm。测点与试样筒壁的距离应不小于25mm。 4、贯入阻力测试在0.2~28MPa 之间应至少进 行6 次,直至贯入阻力大于28MPa 为止。 5、(0.2-3.5)MPa——100mm2针,(3.5-20)MPa ——50mm2,(20-28)MPa——20mm2 20 19-15 14-10 9-0 7 记录、报告 及结论 1、凝结时间用h︰min 表示,并修约至5min 2、用三个试验结果算术平均值,如果最大值或 最小值中有一个与中间值之差超过中间值的 15 14-11 10-6 5-0

检测水泥凝结时间的准确性的影响因素

河南科技2011.07 下 84 建筑工程 ARCHITECTURAL ENGINEERING 水泥是重要的建筑材料之一,水泥凝结时间是反映水泥质量的重要指标。准确、稳定地测定水泥凝结时间一直是水泥检验的难题。从近年来我中心与各个水泥企业进行的比对实验来看,比对结果不太理想,造成此结果的因素是多方面的。笔者根据多年的工作经验及检测标准的规定,对影响测定水泥凝结时间的因素进行了多方面的分析,并且提出了相应的建议,以供同行在实际工作中参考。一、仪器设备和实验室环境对凝结时间的影响1. 仪器设备。 (1)维卡仪。保证维卡仪滑动部分的总质量为300 g±1g,与试锥、试针连接的滑动杆表面应光滑,能靠重力自由下落,不得有紧涩和旷动现象。平时要定期检查和维护仪器,维护时可涂少许润滑油,不能涂得过厚,润滑油过厚,就会堆积在维卡仪滑动部分的联结处,使得滑动部分不能完全自由下落。若滑动部分不能靠重力自由下落,或者其质量、试针的偏离度及试针的截面尺寸等不符合JC/T727标准要求时,均会减少试针下落的势能,使得凝结时间的测定结果偏短。在每次测定前,必须使指针对准标尺零点。 (2)搅拌机。搅拌时搅拌叶片与锅底、锅壁的最小间隙要符合JC/T729标准的要求。若间隙小于规定值,叶片与锅壁摩擦发热,易损坏机器 ,也会使温度升高,需水量加大。若间隙大于规定值,净浆粘在锅壁及锅底上,搅拌不均匀,则影响水泥凝结时间检测的准确性。 (3)量水器。用来测定水泥标准稠度用水量的量水器,需是相关部门检定合格的量水器,且满足于GB/T1346-2001标准中量水器的要求。在走访的几家水泥企业中,发现好多企业用于检验的量水器并没有经相关部门检定,买回来后,直接用于检验工作当中,有的甚至用肉眼都能看出量水器系劣质产品。量水器是测定水泥标准稠度用水量的工具,如果量水器不合格,将直接导致水泥标准稠度用水量的不准确性,从而影响水泥凝结时间测定的准确性,所以检验用的量水器必须定期拿到相关部门进行校准。 2. 实验环境条件。实验室的温湿度及湿气养护箱的温湿度对测定水泥凝结时间的准确性影响很大,要符合GB/T1346-2001标准要求,水泥试样、拌和水、仪器和用具的温度也应与实验室保持一致。好多水泥企业实验室的温湿度控制住了,但对水泥试样及拌和水的温度却没有严格控制,有的企业竟直接测定刚出磨没多久的水泥的凝结时间,这样水泥试样的温度过高,水泥需水量会加大,从而引起水泥标准稠度用水量结果偏高,凝结时间偏长,反之亦然。笔者提倡在实验前一晚将水泥试样和拌和水、实验用具放到此实验室,这样水泥试样和拌和水的温湿度就与实验室达成一致了,并提前打开温湿度控制仪及养护箱。对养护箱也要不定期,进行监控,对每层的温湿度都应该实施监控,这样一来,养护箱哪个区域的温湿度更符合实验要求就显得一目了然了。有好多水泥企业在养护箱的使用中从未对它实施过监控,每次实验时只看养护箱的电子显示,却没有明白电子显示的只是养护箱靠近探头区域的温湿度,却不是各个区域的温湿度。如果电子显示或温湿度测定仪的探头出现问题,那么在此条件下的温湿度很大程度上不符合实验要求,鉴于这种情况,笔者认为在实验时应在养护箱的每一层放上温湿度测定仪,时不时地对它进行监控。当然用来监控用的温湿度测定仪需定期拿到相关计量部门进行校准。 影响水泥凝结时间检测准确性的因素 青海省产品质量监督检验所 李成花 常立娟 张锦萍 二、检验人员操作的影响 1. 水泥净浆的拌制。搅拌前称好样,用湿毛巾擦搅拌锅和叶片(锅内要保持湿润且不挂水珠),将拌和水倒入搅拌锅内,然后在5~10 s 内将称好的500g 水泥试样小心地加入水中,防止水和水泥溅出。在拌制过程中,要避免中途目测后再次加拌和水,以免引起凝结时间的无规则变化。 2. 标准稠度用水量的测定。拌和结束后,立即将拌制好的水泥净浆一次装入锥模中,用小刀使劲插捣,轻轻振动数次,并从模中心线开始分两下刮去多余的净浆,然后一次抹平后迅速将其放到试锥下面的固定位置上。将试锥降至净浆表面,拧紧螺丝1~2s 后,突然放松,使其垂直自由地沉入水泥净浆中,到试锥停止下沉或释放试锥30s 时记录试锥下沉深度,整个操作应在搅拌后1.5min 内完成,GB/T1346-2001标准规定以试锥下沉深度28mm±2mm 时的净浆为标准稠度净浆。为了确保检测数据的准确性,笔者提倡在每次测定时都将试锥下沉深度控制在28mm 处,试锥释放的速度尽量每次统一,这样就可以更好地确保数据的再现性。当水泥净浆符合标准稠度净浆的要求时,将一定量的净浆一次性装入圆模,轻轻振动数次抹平。在填充过程中要保证净浆的均匀性和填实程度。抹平次数不能过多,以防止水分渗出,使上下净浆稠度不同,影响水泥凝结时间的准确性。最后将装好净浆的圆模迅速放入养护箱中养护。 3. 凝结时间的判定。凝结时间指试针沉入水泥标准稠度净浆至一定深度所需的时间。在测定凝结时间前,必须使指针对准标尺零点,在最初测定时应轻轻扶持金属杆,使其徐徐下降,以防试针撞弯,但结果以自由下落为准,在整个测试过程中试针沉入的位置至少要距试模内壁10mm。先每隔5min 测定一次,临近终凝时每隔15min 测定一次,到达初凝或终凝时应立即重复测一次,当两次结论相同时,才能定为到达初凝或终凝状态。每次测定不能让试针落入原针孔,落入原针孔会导致凝结时间偏长。每次测试完毕,须将试针擦净并将试模迅速放回湿气养护箱内,整个测试过程要防止试模受振。试针擦不干净,试针下落过程中会有阻力,这样就导致凝结时间偏短。在测试过程中如果试模受振,将会在试模表面形成一层水膜使得凝结时间偏长。GB/T 1346-2001标准规定当试针距底板4mm±1mm 时为水泥达到初凝状态,试验时最好将试针距底板的距离控制到4mm 处,这样每次判断的标准就一致了,减少了试验中的人员手法误差,试验偏差就会更小一些,所得的检验数据再现性也将会更高。 三、结论 综上所述,影响水泥凝结时间的因素很多,要准确测定水泥的凝结时间需将试验条件、仪器、设备调整到良好状态,在符合相关标准要求的前提下,测定水泥的凝结时间。在试验过程中严格按照标准和相关试验规范要求做好凝结时间的测定工作,同时要经常参与各个试验室的能力比对,总结相关经验稳定整个试验操作过程,找出自己试验手法的偏差,进行分析并改进。凝结时间测定过程中检验数据再现性差的主要原因是人员操作的不稳定和大部分试验室频繁换人造成的,所以在检验过程中一定要统一并且稳定自己的操作手法,熟练准确地检测水泥凝结时间,确保检测工作的稳定性、科学性、准确性。

相关文档
最新文档