电流的形成

电流的形成

电流的形成

教学目标

1.知道电流的形成,明确电流方向的规定.

2.知道电路中形成持续电流的条件,引出电源的概念.

3.知道电源是把其它形式的能量转化为电能的装置;知道在电源外部,电流的方向是从电源的正极流向负极.

4.通过观察实验,培养学生分析推理的能力.

教学建议

教材分析

本节的教学内容有:电流的形成、电流方向的规定、短暂电流和持续电流、电源的概念.其中关于电流的初步概念,包括电流的形成和电流方向的规定,既是电学中最基本的概念之一,也是本章的教学重点之一.

电流的形成

第六讲 电流的形成 【知识回顾】 2、以下说法中正确的是() A.只有固体与固体之河相互摩擦,才会摩擦起电 B.把A物体和B物体摩擦,结果A物体带负电,B物体带正电.由此可以断定它们的原子核束缚电子的本领一定是A的强 C.分别用丝线吊起甲、乙两通草小球,互相靠近时若互相吸引,则它们一定带有异种电荷 D用丝绸摩擦过的玻璃棒靠近一个用细线吊起的塑料小球,小球被排开.小球一定带负电 3.一个物体不带电时,是因为物体内部( )- A.没有电子 B.没有正电 C.有多余电子 D.既不多电子也不缺电子 【新知讲解】 1、电流形成的原因 (1)电流是电荷的定向移动形成的。 在导体中,大量的自由电荷通常情况下做无规则运动,此时不会形成电流,只有当这些自由电荷发生了定向移动才能形成电流。 (2)形成电流的电荷有:正电荷、负电荷,酸、碱、盐的水溶液中是正、负离子,金属导体中是自由电子,球面显示器中电子枪的电子流等。 2、电源 (1)能够提供持续电流的装置叫电源。如:干电池、蓄电池和发电机等。 (2)电源的作用:在电源内部不断地正极聚集正电荷,负极聚集负电荷,以持续对外供电。 (3)能量转化:电源是把其它形式的能量张化为电能的装置。在供电时,干电池、蓄电池将_______转化为______能,发电机将________能转化为电能。 注意.蓄电池在充电时,将电能转化为________,而不是内能.。3、电流的形成和方向 电荷的定向移动形成电流。 物质中的电荷在不停息的运动着的,当它们一旦朝着一定方向移动时,就会形成电流。电荷有两种,形成电流的可能是正电荷,也可能是负电荷,还可能是两种电荷同时向相反的方向移动而形成的。如果不给予规定,对于我们认识描述电流就会产生很大的麻烦,因此人们对电流

初中物理 例析电流的形成与方向专题辅导

初中物理例析电流的形成与方向专题辅导 张友金 一. 电流的形成 在理解电流形成的原因时,应注意以下几点: 1. 电流可能只是由正电荷的定向移动形成的。 2. 电流可能只是由负电荷的定向移动形成的。 3. 电流可能是由正、负电荷同时向相反的方向定向移动形成的。 二. 电流的方向 电荷有正电荷与负电荷两种,科学实验证明在电路中正电荷、负电荷都可以定向移动,有时还会同时移动,但物理学刚开始研究电流时,并不清楚在不同情况下究竟是什么电荷在移动,当时就规定正电荷定向移动的方向为电流的方向,而负电荷定向移动方向则与电流方向相反。在以后研究和利用电流的过程中并未发现这一规定有什么影响,所以这一规定一直沿用至今。 在电源的外部,电流的方向是从电源正极流向负极;在电源的内部,电流的方向是从电源负极流向正极。 例1. 如图1所示,当开关闭合时,请在电路中标明电流方向。 图1 解析:当开关闭合时,电流的方向是从电源的正极经导线、开关、导线、小灯泡、导线回到电源的负极。如图1中的箭头所示。 例 2. 电荷的___________形成电流,在电源外部,电流方向是___________→用电器→___________。 解析:本题涉及电流的形成及电流方向。大家知道,金属导体中有大量的自由电荷,平时它们运动的方向杂乱无章,接上电源后,出现了大量电荷的定向移动,于是形成了电流。电流和水流类似,也有方向,当把用电器接在电源的正、负极上时,电流沿着“正极→用电器→负极”的方向流动。 例3.在图2所示的电路中,当开关闭合时,通过小灯泡的电流方向是从___________到

___________。 图2 解析:本题着重考查电流方向的规定和干电池正负极的识别。通过观察可知,干电池上端是正极,小灯泡在电源外部。由电源外部的电流方向是从电源的正极流向负极可得出结论。通过小灯泡中的电流方向是从B到A。抓住电荷的定向移动形成电流及电流方向的规定是求解本题的关键。

电流的形成.

电流的形成 2008-01-21 教学目标 1.知道电流的形成,明确电流方向的规定. 2.知道电路中形成持续电流的条件,引出电源的概念. 3.知道电源是把其它形式的能量转化为电能的装置;知道在电源外部,电流的方向是从电源的正极流向负极. 4.通过观察实验,培养学生分析推理的能力. 教学建议 教材分析 本节的教学内容有:电流的形成、电流方向的规定、短暂电流和持续电流、电源的概念.其中关于电流的初步概念,包括电流的形成和电流方向的规定,既是电学中最基本的概念之一,也是本章的教学重点之一. 教法建议 电流概念要从演示实验引出,可以参考课本图4-5的实验,让学生通过观察到的现象,自己推知电荷是从哪个验电器移动到哪个验电器的,进而说明电荷发生了定向移动,而电荷的定向移动形成电流.还可以让学生通过观察到的现象,得知这里形成的电流是短暂电流. 结合课本图4-6的实验,向学生说明:小灯泡持续发光,表示有持续电流通过小灯泡,并且这个持续电流是由干电池提供的,引出电源的概念.并让学生知道电源是把其它形式的能量转化为电能的装置. 强调电流的方向就是正电荷定向移动的方向,并按照这个规定,引导学生标出课本图4-8所示的电路中电流的方向,得出在电源外部,电流的方向是从电源的正极流向负极 教学设计 教学过程应突出以下几个方面:一是在复习上一节知识的基础上通过演示引入新课.二是充分利用电教手段,帮助学生建立电荷定向移动的微观图景,从

而建立电流的概念.也可以用水流和电流做类比,建立电流的概念.三是理论联系实际,使学生的学习过程与日常生活中用电相联系. 1.复习上一节知识 提问1:用毛皮摩擦过的橡胶棒去接触验电器的金属球,金属球带什么电?金属箔片带什么电? 提问2:验电器是通过什么方法带上电的? 2.引入新课 演示本节课本上的图4-5实验,这个实验表明在金属棒中发生了电荷的移动. 3.进行新课. (l)电流的概念:电荷的定向移动形成电流. 用水流和电流做类比:水在水管中沿着一定的方向流动,水管中就有了水流.电荷在电路中沿着一定的方向移动,电路中就有了电流. 提问:在刚才的实验里,金属棒中的电荷是怎样移动的?是从A到B,还是从B 到A? (在这里还可以充分利用电教手段,通过自制的动画课件,帮助学生建立电荷定向移动的微观图景,从而建立电流的概念.) 重做实验,继续观察验电器A、B金属箔片张角的变化.可看到B的金属箔片张开到一定角度就不再增大了,A的金属箔片的张角也不再减小.实验表明电荷不再通过金属棒往验电器B上移动了,金属棒中不再有电流了.这种瞬间电流在实际当中没有多大用处. (2)维持持续电流的条件 演示课本图4-6的实验(挂板实验):把电池、灯座、开关依次用导线连接好.合上开关,小灯泡持续发光;打开开关,小灯泡熄灭.将干电池取走,合上开关,小灯泡也不发光. 引导同学思考:小灯泡持续发光,表示有持续电流通过小灯泡的灯丝.你能否通过上述实验找到维持小灯泡中有持续电流的条件?(①有电池.②合上开关.) (3)电源 使学生知道能够持续提供电流的装置叫电源.大量用电器的电源,是发电厂里的'发电机;发电机是将机械能转化为电能的装置.日常生活中和实验室里常用

(完整版)电流知识讲解

电流 【学习目标】 1.知道电流的单位、符号,以及生活中常见用电器的电流; 2.理解电流的概念; 3.知道电流表的用途、符号、使用规则; 4.能将电流表正确的接入电路,并能够画出相应的电路图。 【要点梳理】 要点一、电流的形成和电流方向 1、电流的形成:自由电荷的定向移动形成电流。(金属导体中发生定向移动的是自由电子) 2、电流方向: ①微观角度:物理学中规定正电荷(定向)移动的方向为电流方向(金属导体中电流方向跟自由电子定向移动的方向相反) ②宏观角度:物理学中规定,电流的方向是从电源的正极通过导体流向负极。 3、产生持续电流的条件:①有电源;②通路。 要点二、电流物理意义:表示电流的大小的物理量,常用符号I表示。 1、定义:每秒钟内通过导体横截面的电荷量: Q I t 2、单位:在SI制中,电流的单位是安培,简称安,用符号A表示。电流的常用单位还 有毫安(mA)和微安(μA) ①安培(Andre M.Ampere1875-1836):法国物理学家,数学家。 ● 安培是个数学天才,年纪很小已学会数学的基本知识和几何学;12岁开始学习 微积分;18岁时已能重复拉格朗日的《分析力学》中的某些计算。 ● 他不但创造了“电流”这个名词,又将正电流动的方向定为电流的方向。 ● 根据电流的性质发明了探测和量度电流的电流表。 ● 1827年,安培将他的电磁现象的研究综合在《电动力学现象的数学理论》一书 中,这是电磁学史上一部重要的经典论著。 ②如果1秒内通过导体横截面的电荷量为1库,那么导体中的电流就规定为1A, 即1A=1C/s。 ③单位换算:1mA=10-3A ,1μA=10-6A 3、常见电流值: 要点三、电流表

电流如何形成磁场

摘自《磁场、电场本质》一文 0.1 电磁转换——电流如何转换成磁场 如图3,当电子在导体中运动时,其周边的以太就和电子产生了相对运动,对电子来说,其周围就存在以太风,风向与电子的运动方向相反,这和我们开车会感觉到有风是一样的道理。根据空气动力学原理,在这个以太风的作用下,电子的旋转中心轴应该和电子前进方向平行,这样,电子运动才会稳定,这和旋转的子弹飞行更平稳的道理是一样的。也就是说,电子此时旋转产生的以太气旋的轴心与导线平行,在导线中产生了一个围绕导线旋转的磁场。 由于电子在前进的过程中不断的带动行进路径上的以太旋转,电子经过后,这些运动轨迹上的以太气旋由于惯性作用不会马上停下来,旋转的离心作用造成以太外向逃离,使气旋中心压力降低,由于宇宙磁压的存在,造成的压力差又提供了向心力,维持了气旋的继续转动,这个现象和龙卷风类似,即中心低压的气旋。 大量向同一方向运动的电子产生的以太气旋迭加起来,形成了导线周围的旋转磁场,这就是电流流过导体产生磁场的整个过程,持续不断的电流则维持了这一过程,可类比的自然现象是高速旋转飞行的子弹尾部的旋转气流。同理,一个不自转的电子的运动是不会产生旋转磁场的,也可以说,这样的电子是不呈现电性的,它产生的是以太乱流,就如飞机尾部的乱流。 小结: 1、磁场的本质是以太风。电流产生的磁场就是在电子经过的路径上,其尾部留下的中心低压的旋转以太气流,就如飞机飞过后其尾部会留下气流一样。

2、电流产生的磁场总是以以太气旋形式存在。电子只有在一个充满以太并且存在磁压的空间中运动时,才会产生磁场,这是电流产生磁场的基本环境。在一个绝对真空的环境中,不会存在磁场; 3、电子运动时,对于电子来说,相对运动产生了磁场,虽然这个磁场不对外部显现,但对电子有作用力。由于运动是个相对的概念,所以,是否存在磁场还要看我们选择了哪个参照物。

电流形成的条件主要有什么

电流形成的条件主要有什么 在大自然里,电的机制给出了很多众所熟知的效应,但是形成电流是需要条件。本人在此整理了电流形成的条件,供大家参阅,希望大家在阅读过程中有所收获! 电流形成的条件 (1)电荷的定向移动产生电流,不论是正电荷(阳离子,半导体中的空穴)还是负电荷(阴离子,电子)。导电的是金属 或者半导体器件的话原子是不会发生化学变化的,因为失去了的电子还会从别的地方补回来。但是如果导电的是离子,那 么离子在电极处是会电离成原子而附着在电极上的,发生化学变化。 (2)正电荷也会移动的,最容易想象的就是阳离子, 在导电溶液中移动。规定正电荷移动方向为电流方向是因为方便,如计算的时候你把负电荷代入计算就得到负值,可知电流方向是与负电荷移动方向是反向的。 (3)电池提供电压,这点没有疑问。在电源电压之下,导体内产生电场,电荷在电场的作用下移动,形成电流。但是电流要持续,那么电池必须提供电子,否则导线内的电子都跑光了!但是导线中的电子又跑到哪里去了呢?毫无疑问跑到电源去了。所以电子从电源跑出来又跑回到电源去,电路断开后导线不带电,可见导线的电子没加没减,那么电池的电子也必然没多没少。所以电池不提供电子不消耗电子。电池只提供电压。 在电源的非静电力作用下,同种带电微粒会发生定向移动,正电荷向电源负极移动、负电荷向电源正极移动。带电微粒的定向移动就是电流,一般规定正电荷移动的方向为电 流的正方向。电流方向不随时间变化的电流叫直流电,电流方

向随时间变化的电流叫交流电。区分直流和交流,仅仅是其方向而已,与其它的量无关。电流虽然有方向,但是是一个标量。电流的大小称为电流强度,电流强度简称为电流,等于每秒通过电路的电荷量。电流的常用单位是安培(A)或毫安培(mA),即1000mA=1A。电流所流经的路径即电路。在闭合电路中, 实现电能的传递和转换。电路由电源、连接导线、开关电器、负载及其它辅助设备组成。电源是提供电能的设备,电源的功能是把非电能转换为电能,如电池把化学能转换为电能,发电机把机械能转换为电能,太阳能电池将太阳能转化为电能等。 干电池、蓄电池、发电机等是最常用的电源。负载是电路中消耗电能的设备,负载的功能是把电能转变为其它形式的能量。如电炉把电能转变为热能,电动机把电能转变为机械能等。照明器具、家用电器、机床等是最常见的负载。开关电器是负载的控制设备,如闸刀开关、断路器、电磁开关、减压起动器等都属于开关电器。辅助设备包括各种继电器、熔断器以及测量仪表等。辅助设备用于实现对电路的控制、分配、保护及测量。连接导线把电源、负载和其它设备连接成一个闭合回路,连接导线的作用是传输电能或传送电讯号。 电流表简介 电流表是测量电流的仪表。主要类型有转动线圈式电流表、转动铁片式电流表、热偶式电流表以及热线式电流表。电流表内部有一永磁体,在极间产生磁场,在磁场中有一个线圈,线圈两端各有一个游丝弹簧,弹簧各连接电流表的一个接线柱,在弹簧与线圈间由一个转轴连接,在转轴相对于电流表的前端,有一个指针。当有电流通过时,电流沿弹簧、转轴通过磁场,电流切磁感线,所以受磁场力的作用,使线圈发生偏转,带动转轴、指针偏转。

电流形成磁场的原因及过程

电流形成磁场的原因及过程 摘要:电流形成的磁场就是在电子经过的路径上留下的中心低压的旋转“气流”,本文就电流形成的原因及过程进行了阐述。 关键词:磁场本质电磁转换磁子磁压气旋 电流形成的磁场就是在电子经过的路径上留下的中心低压的旋转“气流”,就如飞机飞过后其尾部会留下气流一样。 1 形成磁场的外部环境——磁子及磁压 我们已知电磁波可以在宇宙空间中传播,波的基本特性之一是:波的传播必须借助媒质,譬如声波就不能在真空中传播,同理,任何波都不能在真空中传播,因为真空中没有媒质。故宇宙空间应该存在一种能够传递电磁波的特殊物质微粒,为了便于下面分析,我们暂时称这种看不见的暗物质微粒为:磁子。 空气分子间存在大气压力,空气分子间的这种作用力保证了声波振动能够在空气中传播,同理,为了保证电磁波在空间的传播,磁子应该充满电磁波能够传播到的所有空间,并且磁子间也应该有这种“大气压力”的存在,我们暂时称为:宇宙磁压。这种由磁子组成的空间有着和地球表面大气层所有相似的基本特征。 2 电流如何形成磁场 我们知道,地球在自转,其地表运动速度很快,但为什么我们没感觉到有风呢?原因是空气和地球保持了同步自转,没有相对速度,自然也就没有风。同理,在自转的电子周围,磁子分布情况是一样的,其周边的磁子会和电子保持同步旋转,这样,在电子周围就形成了一个旋转的磁子流,为了便于下面分析,暂称为:磁子风。 如右图,当电子在导体中运动时,其周边的磁子就和电子产生相对运动,对电子来说,其周围就存在磁子风,风向与电子的运动方向相反,这和我们开车会感觉到有风是一样的道理。根据空气动力学原理,在这个风的作用下,电子的自转中心轴应该和电子前进方向平行,这样,电子运动才会稳定,这和旋转的子弹飞行更平稳的道理是一样的。也就是说,电子此时旋转产生的磁子气旋的轴心与导线平行,在导线中产生了一个围绕导线旋转的磁子风。 由于电子在前进的过程中不断带动行进路径上的磁子旋转,电子经过后,这些路径上的磁子气旋由于惯性作用不会马上停下来,旋转的离心作用造成磁子外向逃离,使气旋中心压力降低,由于宇宙磁压的存在,造成的压力差提供了向心

交变电流的产生和变化规律

交变电流的产生和变化规律 目标认知 学习目标 1.了解交变电流,理解正弦交流电的概念。 2.理解正弦交流电的产生过程及产生条件,能够利用电磁感应定律推导计算正弦交流 电的瞬时值表达式。 3.从正弦交流电产生过程、变化图象及解析式三个方面的结合上去理解它的变化规律。 4.理解描述交流电的物理量:最大值、有效值、周期、频率等的意义及相应计算,尤其是有效值的意义和相关计算。 5.能够熟练地写出正弦交流电的瞬时值表达式以及从它的变化图象上读出有用信息。 6.了解电感电容对交流电的影响以及交流电、直流电作用于电感电路的不同之处;了解电感和电容在交流电路中的应用。 7.能将电磁感应的相关知识迁移到本部分内容中解决问题;能理解物理学等效思想的意义。 学习重点 1.对正弦交流电的产生过程和变化规律的理解。 2.理解描写交流电的物理量,能熟练地写出正弦交流电的瞬时值表达式,熟练地进行最大值与有效值的计算。 学习难点 1.正弦交流电产生过程以及对中性面特点的理解。 2.有效值的意义以及应用有效值的概念进行能的转化和守恒的有关计算。 3.电感和电容对交流电影响。 知识要点梳理 知识点一:直流电和交流电 要点诠释: 1.直流电 电流的方向不随时间变化的电流或电压叫做直流电。直流电可以分为:脉动直流电和恒定电流两种形式。 脉动直流电:电流或电压的大小随时间发生变化,但方向不发生变化,如图甲、乙所示。 恒定电流(或恒定电压):电流或电压的大小和方向都不随时间发生变化,如图丙、丁。

2.交流电 电路中的电流大小和方向都随时间做周期性的变化,这样的电流叫交变电流,简称交流(AC)。 实际应用中,交变电流有不同的变化规律,常见的有以下几种,如图所示。 知识点二:正弦交流电的产生和变化规律 要点诠释: 1.实验装置 如图所示,一个线圈在匀强磁场中绕着垂直于磁场的轴匀速转动时,就会在线圈中产生正弦交流电。

交变电流的产生和描述(含答案)

考点内容 要求 考纲解读 交变电流、交变电流的图象 Ⅰ 1.交变电流的产生及其各物理量的变化规律,应用交流电的图象解决问题. 2.利用有效值的定义,对交变电流的有效值进行计算. 3.理想变压器原、副线圈中电流、电压、功率之间的关系应用,变压器动态变化的分析方法. 4.远距离输电的原理和相关计算. 5.传感器的简单使用,能够解决与科技、社会紧密结合的问题. 正弦交变电流的函数表达式、峰值和有效值 Ⅰ 理想变压器 Ⅰ 远距离输电 Ⅰ 实验:传感器的简单使用 第1课时 交变电流的产生和描述 导学目标 1.能掌握交变电流的产生和描述,会写出交变电流的瞬时值表达式.2.能认识交变电流的图象和进行有效值、最大值的计算. 一、交变电流的产生和变化规律 [基础导引] 关于线圈在匀强磁场中转动产生的交流电,以下说法中正确的是 ( ) A .线圈平面每经过中性面一次,感应电流方向就改变一次,感应电动势方向不变 B .线圈每转动一周,感应电流方向就改变一次 C .线圈在中性面位置时,磁通量最大,磁通量的变化率为零 D .线圈在与中性面垂直的位置时,磁通量为零,感应电动势最大 [知识梳理] 1.交变电流 大小和方向都随时间做__________变化的电流.如图1(a)、(b)、(c)、(d)所示都属于交变电流.其中按正弦规律变化的交变电流叫正弦式交变电流,简称正弦式电流,如图(a)所示. 图1

2.正弦交流电的产生和变化规律 (1)产生:在匀强磁场里,线圈绕________________方向的轴匀速转动. (2)中性面:①定义:与磁场方向________的平面. ②特点:a.线圈位于中性面时,穿过线圈的磁通量________,磁通量的变化率为______,感应电动势为______.b.线圈转动一周,________经过中性面.线圈每经过____________一次,电流的方向就改变一次. (3)图象:用以描述交流电随时间变化的规律,如果线圈从中性面位置开始计时,其图象为__________曲线.如图1(a)所示. 思考:由正弦交流电的图象可以得出哪些物理量? 二、描述交变电流的物理量 [基础导引] 我们日常生活用电的交变电压是e =2202sin 100πt V ,它是由矩形线圈在匀强磁场中匀速转动产生的,则下列说法正确的是________. ①交流电的频率是50 Hz ②交流电压的有效值是220 V ③当t =0时,线圈平面恰好与中性面平行 ④当t =1 50 s 时,e 有最大值220 2 V ⑤电流每秒方向改变50次 [知识梳理] 1.周期和频率 (1)周期T :交变电流完成________________变化(线圈转一周)所需的时间,单位是秒 (s).公式:T =2π ω. (2)频率f :交变电流在1 s 内完成周期性变化的________,单位是赫兹(Hz). (3)周期和频率的关系:T =________或f =________. 2.交变电流的瞬时值、峰值、有效值和平均值 (1)瞬时值:交变电流某一________的值,是时间的函数. (2)峰值:交变电流的电流或电压所能达到的________. (3)有效值:让交流与恒定电流分别通过________的电阻,如果它们在交流的一个周期内产生的________相等,则这个恒定电流I 、恒定电压U 就是这个交流的__________. (4)正弦式交变电流的有效值与峰值之间的关系 I =____________,U =____________,E =____________. (5)平均值:是交变电流图象中波形与横轴所围面积跟时间的比值. 考点一 正弦交流电的变化规律 考点解读

电流的形成练习题

电流的形成练习题 1.某根导线中的电流为1.6A,则在0.5s内通过这根导线某一横截面的电量为() A. 0.8C B. 1.2C C. 0.8K D. 1.2K 2.一横截面积为S的金属导线,设单位体积的导线中有n个自由电子,电子的电荷量为e,则导线内电流强度为I时电子定向移动的速度为() A. B. IneS C. InS D. 3.如图所示,一根横截面积为S的均匀长直橡胶棒上均匀带有负电荷,每米电荷量为q,当此棒沿轴线方向做速率为v的匀速直线运动时,由于棒运动而形成的等效电流大小为()A. vq B. C. qvS D. 4.(多选)对于有恒定电流通过的导体,下列说法正确的是() A.导体内部的电场强度为零 B.导体是个等势体 C.导体两端有恒定的电压存在 D.通过导体某个截面的电量在任意相等的时间内都相等 5.如图1所示,一根长为L、横截面积为S的金属棒,其材料的电阻率为ρ,棒内单位体积自由电子数为n,电子的质量为m,电荷量为e.在棒两端加上恒定的电压时,棒内产生电流,自由电子定向运动的平均速率为v,则金属棒内的电场强度大小为( ) 图1

A. B. C.ρnev D. 6.如图所示,一根截面积为S的均匀长直橡胶棒上均匀带有负电荷,单位体积内的电荷量为q,当此棒沿轴线方向做速度为v的匀速直线运动时,由于棒运动而形成的等效电流大小为( ) A.vq B. C.qv S D. 7.安培提出来著名的分子电流假说.根据这一假说,电子绕核运动可等效为一环形电流.设电量为e的电子以速率v绕原子核沿顺时针方向做半径为r的匀速圆周运动,关于该环形电流的说法,正确的是() A.电流强度为,电流方向为顺时针 B.电流强度为,电流方向为顺时针 C.电流强度为,电流方向为逆时针 D.,电流方向为逆时针 8.某段金属导体两端电压为U时,导体中电子平均定向移动速度为v.如果把这段导体均匀拉长1倍后仍保持它两端的电压为矾则导体中电子平均定向移动速度为()

电流的形成练习题

电流的形成练习题 1.某根导线中的电流为,则在内通过这根导线某一横截面的电量为() A.B. C.D. 2.一横截面积为S的金属导线,设单位体积的导线中有n个自由电子,电子的电荷量为e,则导线内电流强度为I时电子定向移动的速度为() A. B. IneS C. InS D. 3.如图所示,一根横截面积为S的均匀长直橡胶棒上均匀带有负电荷,每米电荷量为q,当此棒沿轴线方向做速率为v的匀速直线运动时,由于棒运动而形成的等效电流大小为() A. vq B. C. qvS D. 4.(多选)对于有恒定电流通过的导体,下列说法正确的是() A.导体内部的电场强度为零 B.导体是个等势体 C.导体两端有恒定的电压存在 D.通过导体某个截面的电量在任意相等的时间内都相等 5.如图1所示,一根长为L、横截面积为S的金属棒,其材料的电阻率为ρ,棒内单位体积自由电子数为n,电子的质量为m,电荷量为e.在棒两端加上恒定的电压时,棒内产生电流,自由电子定向运动的平均速率为v,则金属棒内的电场强度大小为( )

图1 A. B. C.ρnev D. 6.如图所示,一根截面积为S的均匀长直橡胶棒上均匀带有负电荷,单位体积内的电荷量为q,当此棒沿轴线方向做速度为v的匀速直线运动时,由于棒运动而形成的等效电流大小为( ) A.vq B. C.qv S D. 7.安培提出来著名的分子电流假说.根据这一假说,电子绕核运动可等效为一环形电流.设电量为e的电子以速率v绕原子核沿顺时针方向做半径为r的匀速圆周运动,关于该环形电流的说法,正确的是() A.电流强度为,电流方向为顺时针 B.电流强度为,电流方向为顺时针 C.电流强度为,电流方向为逆时针

振荡电流的形成及其变化规律

振荡电流的形成及其变化规律 下图所示,将电键K扳到1,给电容器充电,然后将电键K扳到2,此时可以见到G 表的指针来回摆动。 小结:能产生大小和方向都作周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 那么振荡电路中的交变电流有一些什么样的性质: (1)介绍振荡电路中交变电流的一些重要性质: (2)电路分析: 甲图:电场能达到最大,磁场能为零,电路感应电流i=0 甲→乙:电场能↓,磁场能↑,电路中电流i↑,电路中电场能向磁场能转化,叫放电过程。 乙图:磁场能达到最大,电场能为零,电路中电流I达到最大。 乙→丙:电场能↑,磁场能↓,电路中电流i↓,电路中电场能向磁场能转化,叫充电过程。 丙图:电场能达到最大(与甲图的电场反向),磁场能为零,电路中电流为零。 丙→丁:电场能↓,磁场能↑,电路中电流i↑,电路中电场能向磁场能转化,叫放电过程。 丁图:磁场能达到最大,电场能为零,回路中电流达到最大(方向与原方向相反),丁→戊:电场能↑,磁场能↓,电路中电流i↓,电路中电场能向磁场能转化,叫充电过程。 戊与甲是重合的,从而振荡电路完成了一个周期。 小结:

① 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 ② 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 ③ 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 ④ 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 归纳:在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。 在振荡电流的形成过程中,几个主要物理量的变化情况是:① 电容器电量Q 、两极间电压U 、电场能E 电变化规律相同;② 线圈中电流I 、磁场能E 磁变化规律相同。电容器放电时,Q 、U 、E 电均减小,I 、E 磁则增大,放电结束时,Q 、U 、E 电为零而I 、E 磁达最大,电容器充电时,情况相反。 2. LC 回路工作时,电感线圈两端电压U L ,线圈中自感电动势E 、电容器两极间电压U 始终保持相同。应当注意,当电流最大时,U L 或E 为零,U L 或E 最大时,电流I 则为零。因为此处电路为非纯电阻电路,欧姆定律不适用。 3. 阻尼振荡与无阻尼振荡。 (1)阻尼振荡:在振荡电路中由于能量被逐渐消耗,振荡电路中的电流要逐渐减小,直到最后停下来。 (2)无阻尼振荡:在电磁振荡的电路中,如果没有能量损失,振荡应该永远地持续下去,电路中振荡电流的振幅应该永远保持不变,这种振荡叫无阻尼振荡 4. 电磁振荡完成一次周期性变化需要的时间叫做周期,ls 内完成周期性变化的次数叫做频率。如果电磁振荡时,没有能量损失,也不受其他外界的影响,这时电磁振荡的周期和频率叫做振荡电路的固有周期和固有频率。理论和实验都可以证明,周期T 和频率跟自感系数L 和电容C 的关系是T =2πLC 。LC f π21=。 5. LC 电路的周期和频率都由组成电路的线圈和电容器本身的特性决定,与板上电量的 多少、板间电压的高低、是否接入电路等因素无关。要想改变LC 回路中的周期和频率,只有改变电容器的电容C 或自感线圈的自感系数L 。改变电容的方法有:改变电容器两极板间的距离,改变两极板的正对面积,改变两极板间的介质;改变线圈自感系数的方法有:在线圈中插入铁心,改变线圈的长度、横截面积,改变单位长度上的匝数。 6. 麦克斯韦电磁场理论:(1)变化的磁场产生电场,均匀变化的磁场产生稳定的电场,周期性变化的磁场产生周期性变化的电场;(2)变化的电场产生磁场,均匀变化的电场产生稳定的磁场,周期性变化的电场产生周期性变化的磁场;(3)变化的电场和磁场总是相互联系的,形成一个不可分离的统一场,这就是电磁场,电磁场是变化着的统一体,静电场和静磁场即使在空间重叠,也是两个各自独立的场。 7. 电磁波的基本特点是:(1)电磁波传播时不需要介质,可在真空中传播;(2)电磁波是横波,电场方向和磁场方向都跟传播方向垂直;(3)电磁波具有波的共性,能产生干涉、衍射、反射等现象;(4)电磁波传递的是电磁场的能量。 8. 一般音频信号的频率较低,向外辐射能量的本领较弱,为了使音频信号传向远方,可将音频信号“加”到高频振荡电流上去,这个过程叫调制。理解调制的物理意义,我们可以作如下比喻:人的远行能力有限,但可以乘坐飞机迅速到达远方;音频信号的远行能力有限,但可以“乘坐”高频信号迅速到达远方,也就是说高频信号是音频信号的载体。 9. 要正确理解调谐的作用:当调谐电路的固有频率等于某一电磁波频率时,在调谐电路

初中九年级:物理教案-电流的形成

新修订初中阶段原创精品配套教材 物理教案-电流的形成教材定制 / 提高课堂效率 /内容可修改 Physics Lessons-Formation of Electricity 教师:风老师 风顺第二中学 编订:FoonShion教育

物理教案-电流的形成 教学目标 1.知道电流的形成,明确电流方向的规定. 2.知道电路中形成持续电流的条件,引出电源的概念.3.知道电源是把其它形式的能量转化为电能的装置;知道在电源外部,电流的方向是从电源的正极流向负极.4.通过观察实验,培养学生分析推理的能力. 教学建议 教材分析 本节的教学内容有:电流的形成、电流方向的规定、短暂电流和持续电流、电源的概念.其中关于电流的初步概念,包括电流的形成和电流方向的规定,既是电学中最基本的概念之一,也是本章的教学重点之一. 教法建议 电流概念要从演示实验引出,可以参考课本图4-5的实验,让学生通过观察到的现象,自己推知电荷是从哪个验电器移动到哪个验电器的,进而说明电荷发生了定向移动,而

电荷的定向移动形成电流.还可以让学生通过观察到的现象,得知这里形成的电流是短暂电流. 结合课本图4-6的实验,向学生说明:小灯泡持续发光,表示有持续电流通过小灯泡,并且这个持续电流是由干电池提供的,引出电源的概念.并让学生知道电源是把其它形式的能量转化为电能的装置. 强调电流的方向就是正电荷定向移动的方向,并按照这个规定,引导学生标出课本图4-8所示的电路中电流的方向,得出在电源外部,电流的方向是从电源的正极流向负极教学设计方案 教学过程应突出以下几个方面:一是在复习上一节知识的基础上通过演示引入新课.二是充分利用电教手段,帮助学生建立电荷定向移动的微观图景,从而建立电流的概念.也可以用水流和电流做类比,建立电流的概念.三是理论联系实际,使学生的学习过程与日常生活中用电相联系.1.复习上一节知识 提问1:用毛皮摩擦过的橡胶棒去接触验电器的金属球,金属球带什么电?金属箔片带什么电? 提问2:验电器是通过什么方法带上电的? 2.引入新课 演示本节课本上的图4-5实验,这个实验表明在金属棒中发生了电荷的移动.

相关主题
相关文档
最新文档