南开大学数学分析考研试题

南开大学数学分析考研试题
南开大学数学分析考研试题

南开大学2008年数学分析考研试题

一.计算题

1.求极限2

1lim[ln(1)]x x x x

→∞

-+ 。

2.求和()()

∑∞

=-+-1121n n n n 。 3.已知()()()

1f x x f x ''-=-,求()x f ? 4

.设

2ln 2

6

x

π

=

?

,则x =?

5.设区域()[][]{}

1,1,2,0,-∈∈=y x y x D

,求D

二.设61-≥x 61+=

+n n x x ,(1,2,)n =,证明数列{}n x 收敛,并求其极限。

三.设()[]b a C x f ,∈,并且[]b a x ,∈?,[]b a y ,∈?,使()()x f y f 2

1

≤,

证明[]b a ,∈?ξ,使得()0=ξf .

四.设()x f 在[)+∞,a 一致连续,且广义积分

()a

f x dx +∞

?

收敛,求证()0lim =+∞

→x f x 。

五.设()x f 在(,)-∞+∞上可微,对任意(,)x ∈-∞+∞,()0f x >, ()()f x mf x '≤, 其中10<

证明级数

11

||n

n n a

a ∞

-=-∑收敛。

六.证明函数项级数()1

nx

n f x ne

-==

∑,(1)在()+∞,0上收敛,但不一致收敛;

(2)和函数()x f 在()+∞,0上任意次可导。

七.作变换x

y

u =,x v =,w xz y =-,

将方程2222z z y y y x ??+=??变换为w 关于自变量(),u v 方程。

八.求由曲面2

2

2

4x y az a ++=将球体2

2

2

4x y z az ++≤分成两部分的体积之比。 九、设

()f x 是(0,)+∞上具有二阶连续导数的正函数,且()0f x '≤,(0,)x ∈+∞,

()f x ''在(0,)+∞上有界,则lim ()0x f x →+∞

'=。

南开大学2008年数学分析考研试题解答

一、1、解 2

1lim[ln(1)]x x x x

→∞

-+2

11lim [ln(1)]x x x x

→∞

=-+

2001

1ln(1)

1lim

lim 2t t t t t t

t

→→-

-++==011lim 2(1)2t t →==+ ;

2、解 ()()

=-+-1121n n n n ()1111

11()22n n n n ∞

-==--+∑ ()

1

1

1111()22n n n n ∞

-==--+∑()()1111111[11]22

n n n n n n ∞∞

--===---+∑∑ ()()11111111[111]2222k n k n k n ∞∞

--===-+---++∑∑14

=; 3、解 由已知()()()

1f x x f x ''-=-,

得()()()

()1f x x f x ''=---,把上式代入, 有()()()

()1[(()1)1]f x x f x x x f x '''=---=---

22()x f x x x '=-++,

22221()1111

x x x f x x x x +'==+-+++,

所以21

()ln(1)arctan 2

f x x x x C =+

+-+ 4

、解

2

2ln 2

2ln 2

2ln 22

(arcsin )|6

t t

x

x

x

e π

-

-

===-?

?

ln 2

2

2

arcsin arcsin arcsin 6

x x e

e

e π

--

-=-+=-

+,

2

arcsin 3

x e π

-=

,2

2

x e -=

所以42ln ln 23

x =-= 。

5、解、由区域D 关于设区域x 轴对称,被积函数关于y 是偶函数,所以

001

2

D

x y ≤≤≤≤=??

1

1

22y

dy dy =+??

??

1

13322002

22(2)233y dy y dy =-+?

? 51204242[(2)|]3535y =--

+

52422|35

== 。 二、证明 显然有20x >

,n x >(3,4,)n =

;

11|||n n n n x x x x +--==

-

1|n n x x -≤

-,(3,4,

)n =;

从而}{n x 是压缩型迭代序列, 于是得}{n x 是收敛的,设A x n n =∞

→lim

,显然A ≥

在61+=

+n n x x 两边,令∞→n

取极限得到A =3A =;

故lim 3n n x →∞

=.

三、证明 方法一 由条件可知,任取1[,]x a b ∈,存在2[,]x a b ∈,满足211

|()||()|2

f x f x ≤,存在3[,]x a b ∈,满足321

|()||()|2

f x f x ≤

,这样继续下取,得到存在[,]n x a b ∈,满足11|()||()|,(1,2,)2n n f x f x n +≤=;进而111

|()||()|,(1,2,)2

n n f x f x n -≤=;存在{}n x 子

列{}k n x 及0[,]x a b ∈,使得{}k n x 收敛于0x ; 在利用()f x 在0x 处连续及

11

1|()||()|2

k k n n f x f x -≤

,即得0|()|0f x ≤,0()0f x =,结论得证.

方法二 由于()f x 在[,]a b 上连续,设min |()|a x b

m f x ≤≤=,利用条件可知,对任意[,]x a b ∈,

存在[,]y a b ∈,满足1|()||()|2f y f x ≤,从而由1

|()|2

m f x ≤,([,])x a b ∈; 进而有1

2

m m ≤,0,0m m ≤=;存在0[,]x a b ∈,使得0()0f x m ==;结论得证.

四、证明 由f 在),[+∞=a I 上一致连续,得,对0>?ε,0>?δ,

当I

x x ∈21,,且δ<-||2

1x x 时,便有ε<-|)()(|21x f x f ;

由于

dx x f a

?

+∞

)(收敛,则有0)(lim

)1(=?

+∞→dx x f n n n δ

δ

,由积分平均值定理,存在])1(,[δδξ+∈n n n ,使得dx x f f n n n ?+=δ

δ

δ

ξ)1()(1)(,于是有0)(lim =∞

→n n f ξ,

对上述0>ε,存在*N N ∈,当N n ≥时,便有εξ<|)(|n f ;

取δ

N M

=,对任意M x

>,必存在正整数N m ≥,使得])1(,[δδ+∈m m x ,

ε

ξξ2|)(||)()(||)(|<+-≤m m f f x f x f ,故得

0)(lim =+∞

→x f x .

五、证明 设()ln ()F x f x = ,由题设条件,知()F x 连续、可导,且()

|()||

|()

f x F x m f x ''=≤, 从而11ln ()()n n n a f a F a --==,(1,2,

)n =,就是熟知的压缩迭代列,

11212|||()()||()()|n n n n n n a a F a F a F a a ξ-----'-=-=- 12||n n m a a --≤-,

从而111210||||||n n n n n a a m a a m a a -----≤-≤≤-

由于01m <<,

1

101

||n n m

a a ∞

-=-∑收敛,

故级数

11

||n

n n a

a ∞

-=-∑收敛。

六、证明 设()nx

n u x ne

-=,

因为1

|()|

lim 1|()|x n n n

u x e u x -+→∞=<,所以nx

n e n -∞

=∑1在(0,)+∞上收敛; 任意

0>δ,当[,)x δ∈+∞时,有|()|n n

u x ne

δ

-≤,

而1

n n ne δ∞-=∑收敛,所以nx n e n -∞

=∑1

在),[+∞δ上一致收敛; 101

sup |()||()|n n n x u x u ne n

β-<<+∞

=≥=不趋向于零,

所以nx n e n -∞

=∑1

在(0,)+∞上不一致收敛;

对任何

),0(0+∞=∈I x ,

存在

0>δ,使得00x <<δ

显然,nx n e n -∞

=∑1

在),[+∞δ上一致收敛,

nx n e n x f -∞

=∑=1

)(在),[+∞δ上连续,

)(x f 在点I

x ∈0处连续。

由于

0x 是I

上的任意点,所以函数

f

),0(+∞=I 上连续。

(2)()

1()(1)k k k nx n

u x n e +-=-,(1)1|()|k k nx n u x n e ++-≤,

对每一正整数

k

,显然()

1

()k n n u x ∞

=∑在(0,)+∞上内闭一致收敛,

()

()1

()()k k n n f

x u x ∞

==∑在(0,)+∞上连续,(0,1,2,)k =;

()f x 在(0,)+∞上有任意阶的连续导数。

七、解 w y

z x x

=

+,求偏导数,并求复合函数的偏导数,代入计算,适当化简,即得。 11y y z w x x =+,11yy yy z w x x

=+,

y u

v u v w w w y y ??=+??2()u x

w y

=-,

2232(())()()()yy u uu uv u x u v x x w w w w w y y y y y y ???=

-=+-+??? 2232()()uu u x x

w w y y

=-

+,

八、解 球体2224x y z az ++≤为2222

(2)(2)x y z a a ++-≤,

球体的体积33432

(2)33

V a a ππ=

=; 两曲面的交线为2

2

2

,3z a x y a =+=,

设2

2

2

{(,):3}D x y x y a =+≤,

22214()

[(2D

a x y V a dxdy a -+=-??

22001

(2d a r rdr a

π

θ=-?

32422211

2[))((4))]43a a r a π=-+--

333972[3]43a a a π=-+333972[3]43a a a π=-+337

6a π=,

32127

6

V V V a π=-=,

所以

123727

V V = 。 九、 证明 先证

lim ()x f x m →+∞

=存在,由()0f x '≤,(0,)x ∈+∞,可知()f x 在(0,)

+∞上是单调递减的,且有下界为0,根据单调有界原理,

lim ()x f x m →+∞

=存在,

()f x ''在(0,)+∞上有界,可知()f x '在(0,)+∞上一致连续,

我们已经知道,若

lim ()x f x →+∞

存在,()f x '在[,)a +∞上一致连续,必有

lim ()0x f x →+∞

'=,

结论得证。

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; , 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

南开大学数学分析考研试卷答案

南开大学年数学分析考研试卷答案 一、 设),,(x y x y x f w -+= 其中),,(z y x f 有二阶连续偏导数,求xy w . 解:令u =x +y ,v =x -y ,z =x ,则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、 设数列}{n a 非负单增且a a n n =∞ →lim ,证明 a a a a n n n n n n =+++∞ →1 21][lim . 解:因为a n 非负单增,故有n n n n n n n n n na a a a a 11 21)(][≤+++≤ . 由a a n n =∞ →lim ;据两边夹定理有极限成立。 三、 设? ??≤>+=0 ,00),1ln()(2 x x x x x f α,试确定α的取值范围,使f (x )分别满足: (1) 极限)(lim 0x f x + →存在 (2) f (x )在x=0连续 (3) f (x )在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 2 0x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++- -→+ α极限存在,则 2+α0≥知α2-≥. (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α . (3)0)0(='- f 所以要使f(x)在0可导则1->α. 四、设f (x )在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关. 解;令U =22 y x +,则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f (x )在R 上连续,故存 在F (u )使d F (u )=f (u )du=ydy xdx y x f ++)(22. 所以积分与路径无关。

2015年数学考研数学分析各名校考研真题及答案

2015年考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学

2014年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},min{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? - =?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2)(lim )(lim )() (lim )('lim 20 0020 00A x dt t f x x f x dt t f x x f x x x x x x x =-=-=?? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ? ?--+--= 1 1 11 )(2)(2])1[(])1[(!!21 )()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2 ) (2 ])1[(])1[(] )1[(])1[(=

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

数学分析报告考研试题

高数考研试题2 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?????+='--x x x x x x x f 若若λλλ 显然当2>λ时,有) 0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续. 【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=2 33与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. (3)设a>0, ,x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则??-=D dxdy x y g x f I )()(= 2 a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域积分即可. 【详解】 ??-=D dxdy x y g x f I )()(=dxdy a x y x ??≤-≤≤≤1 0,102 =. ])1[(21 02101 2a dx x x a dy dx a x x =-+=??? + 【评注】 若被积函数只在某区域不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例8.16-17】 . (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵 T E A αα-=, T a E B αα1+=,

数学分析考研试题 (1)

南京理工大学2005年数学分析试题 一、(10分)设0>n a ,n=1,2, )(,0∞→≠→n a a n ,证 1lim =∞→n n n a 。 二、(15分)求积分 ??∑?ds n F ??其中),,=(x y yz x y F ?,∑为半球面,0z 1z y x 222≥,=++和圆1y x 0z 22≤+, =的外侧 三、(15分)设f 为一阶连续可微函数,且) (0f ''存在,f (0)=0, 定义?????≠'0 x x f x 10 x 0f x g )(=)()=( 证 g 是一个可微,且g '在0点连续。 四、(15分)证明 级数 ∑∞1n x n 2e =- 在),+(∞0上不一致收敛,但和函数在) ,+(∞0上无穷次可微。 五、(15分)设〕,〔b a C f ∈,证明,0>?ε存在连续折线函数g ,使得 ε<)()-(x g x f ,〕〔b a,x ∈ ?。 六、(15分)设),(t x u 为二元二阶连续可微函数且u 的各一阶偏导关于x 是以1为周期 函数,且2222x u t u ????=,证明?????E 1022dx x u t u 21t ))+()(()=(是一个与t 无关的函数。 七、(15分)设f 为〕 ,+〔∞1上实值函数,且f (1)=1,)()(+)=(1x x f x 1x f 22≥',证明)(+x f lim x ∞→存在且小于4 1π+。 八、(15分)设∑∞1n n n x a =为一幂函数,在(-R ,R )上收敛,和函数为f ,若数列{}j x 满足 0x x R 21>>>>Λ且0lim =∞ →j j x ,Λ1,2j 0x f j =,)=(,证明 Λ210n 0a n ,,=,= 九、(15)设f 是 〕〔〕,〔b a b a ??上的二元连续映射,定义 {}〕 ,〔),()=(b a y y x f max x g ∈,证明 g 在〔a ,b 〕上连续。 十、(20分)讨论二元函数连续、可偏导、可微三个概念之间的关系,要有论证和反例。

南开大学数学分析答案2005

2005年南开大学数学分析试题答案 0D .1为成奇函数,所以该积分轴对称,被积函数关于关于由于y x 2.x z f x y f f dx du z y x ??+??+=,其中x z x y ????,由 00=??+??+=??+??+x z h x y h h x z g x y g g z y x z y x 求出 =??--=??x z h g h g g h g h x y y z z y x z z x ,y z z y x y y x h g h g g h g h -- 3.?∑+=-=-=∞→1021 23234)(411lim πx dx n k n n k n 4.t x dt t M +≤?1,2sin 0在),0(+∞∈x 上单调一致趋于0,则)(x f 在),0(+∞∈x 上一致收敛,又t x t +sin 在),0(+∞∈x 上连续,则)(x f 在),0(+∞∈x 上连续。 5.由泰勒公式)!1(!1!21!111+++++=n e n e ξ ,则 )! 1()!1(!1!21!111+≤+=+++-n e n e n e ξ ,后者收敛,则原级数收敛。 6.由拉格朗日中值定理, ,)('1)(122n M n Mx n x f n n x f n ≤≤=ξ后者收敛,由魏尔特拉斯定理,原级数一致收敛。 由)(x s 一致收敛,则可以逐项求导,∑∞== 12)(')('n n n x f x s 也一致收敛且连续,故)(x s 连续可导 7.反证:设存在),(00y x 有0),)((00≠??-??y x y P x Q ,不妨设0),)((00>??-??y x y P x Q ,由连

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

北京大学数学分析考研试题及解答复习进程

北京大学数学分析考研试题及解答

判断无穷积分1sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意*m N ∈,当0x ≥时,有21()0m P x +>; 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞, (m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列 0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

南开大学数学分析考研试题

南开大学2008年数学分析考研试题 一.计算题 1.求极限2 1lim[ln(1)]x x x x →∞ -+ 。 2.求和()() ∑∞ =-+-1121n n n n 。 3.已知()()() 1f x x f x ''-=-,求()x f ? 4 .设 2ln 2 6 x π = ? ,则x =? 5.设区域()[][]{} 1,1,2,0,-∈∈=y x y x D ,求D 。 二.设61-≥x 61+= +n n x x ,(1,2,)n =,证明数列{}n x 收敛,并求其极限。 三.设()[]b a C x f ,∈,并且[]b a x ,∈?,[]b a y ,∈?,使()()x f y f 2 1 ≤, 证明[]b a ,∈?ξ,使得()0=ξf . 四.设()x f 在[)+∞,a 一致连续,且广义积分 ()a f x dx +∞ ? 收敛,求证()0lim =+∞ →x f x 。 五.设()x f 在(,)-∞+∞上可微,对任意(,)x ∈-∞+∞,()0f x >, ()()f x mf x '≤, 其中10<

南开大学2003年数学分析考研试题及解答

南开大学2003年数学分析考研试题及解答 一.设(),,w f x y x y x =+-,其中(),,f u v s 有二阶连续偏导数,求xy w . 解:令u x y =+,v x y =-,s x =, 则x u v s w f f f =++; ()()()111xy uu uv vu vv su sv w f f f f f f =+-++-++-. 二.设数列{}n a 非负单增,且lim n n a a →∞ =,证明:() 1 12lim n n n n n n a a a a →∞+++=L . 证明:因为 {}n a 非负单增, 所以有()() 1111 2 n n n n n n n n n n n a a a a na n a ≤+++≤=L , 由lim n n a a →∞ =,1lim n n n n a a →∞ =, 根据夹逼定理,得() 11 2 lim n n n n n n a a a a →∞ +++=L . 三.设 ()()2ln 1,00, 0x x x f x x α?+>?=?≤??,试确定α的取值范围,使()f x 分别满足: (1)极限()0 lim x f x + →存在; (2)()f x 在0x =处连续; (3) ()f x 在0x =处可导. 解(1)因为()()2 lim lim ln 1x x f x x x α+ + →→=+ ()2 2 2 ln 1lim x x x x α+ +→+=, ()22 0ln 1lim 1x x x + →+=, 极限存在的条件为20α+≥,即2α≥-,

所以当2α ≥-时,极限()0 lim x f x + →存在; (2)因为()()0 lim 00x f x f -→==, 所以要使()f x 在0x =处连续, 需要求20α+>,2α>-, 所以当2α >-时,()f x 在0x =处连续; (3)显然 ()00f -'=, ()()()12 000lim lim ln 1x x f x f x x x α++ -→→-=+ ()2 1 2 ln 1lim x x x x α+ +→+=, 要使其存在且为0,必须10α+>,1α>-, 所以当1α>-时,()f x 在0x =处可导. 四.设 ()f x 在(),-∞+∞上连续, 证明积分()()22 L f x y xdx ydy ++?与积分路径无关. 证明:设()()22 01,2 x y U x y f t dt +=?, 则有()()()22,dU x y f x y xdx ydy = ++, 即存在势函数, 所以 ()()22L L f x y xdx ydy dU ++=? ?与积分路径无关. 五.设 ()f x 在[],a b 上可导,02a b f +?? = ??? ,且()f x M '≤, 证明: ()()2 4 b a M f x dx b a ≤ -? . 证明:因为 ()f x 在[],a b 上可导, 则由拉格朗日中值定理,存在ξ在x 与2 a b +之间,使得

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集 目录 南开大学 北京大学 清华大学 浙江大学 华中科技大学 一、,,0N ?>?ε当N n >时,ε<>?m a N m , 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('

又2))((''2 1 ))((')()(a x f a x a f a f x f -+ -+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 ,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -=?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--=1 111) (2)(2])1[(])1[(!!21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2)(2])1[(])1[(])1[(])1[(= 0])1][()1[()1(])1[(])1[(11 )(221 1 )1(2)1(2=---==---??-+-+-dx x x dx x x k m m k k m m k k Λ 当k m =时, ?? ----= 1 11 1 )(2)(22 2])1[(])1[(!21)()(dx x x m dx x P x P m m m m m k m ?? -+---------=--1 1 )1(21211 1 221 1 )(2)(2])1[(])1[(])1[(])1[(])1[(])1[(dx x x x x dx x x m m m m m m m m m m m m =?-+----1 1)1(212])1[(])1[(dx x x m m m m =?----=1 1 )2(22])1][()1[()1(dx x x m m m m Λ= ? ---1 1 2])1[()!2()1(dx x m m m =?--1 2])1[()!2()1(2dx x m m m 六、J 是实数,,0,0>?>?δε当δs 时,该积分收敛。 七、∑=-n k k 1 )1(有界,2 1 x n +在),(+∞-∞上单调一致趋于零,由狄利克雷判别法知,∑∞ =+-12)1(n n x n 在),(+∞-∞上一致收敛,∑∞ =+12 1n x n 与∑∞ =11 n n 同敛散,所以发散; 当0=x 时,∑∞ =+122)1(n n x x 绝对收敛,当0≠x 时,∑∞ =+122 ) 1(n n x x 绝对收敛;

浙大2000年-2002年数学分析考研试题及解答

浙江大学2000年数学分析考研试题及解答 一、(1)求极限()1 1lim t t t e t →+-; 解 ()1 1 1 ln(1) ln(1)1 11 lim lim lim t t t t t t t t t e e e e e t t t ++-→→→+---== 1 ln(1)1 ln(1)1 1lim ln(1) 1 t t t t e t e t t t +-→+--=+- 2 00 ln(1) 1 1 1 ln(1)1lim lim lim lim 22(1) 2 t t t t t t t t e t t e e e e t t t t t →→→→+--+--+=====- +; 或()1 ln(1) 1 1 ln(1) 2 1ln(1) ( ) 1(1) lim lim lim 1 t t t t t t t t t e t e e e t t t t t ++→→→+- +--+== 2 ln(1)1lim t t t t e t →-++=2 1 1 (1) 1lim 2t t t e t →- ++=2 lim 2(1) 2 t t e e t t →-==- +。 (2)设01,x a x b ==,211()2 n n n x x x --= -,求 n n x lim ∞ →. 解 由条件,得 12111211()()2 2 n n n n n n n x x x x x x x ------+=-+= +, 反复使用此结果 11 11011()()()()22 n n n n x x x x b a ---+=+=+, ,2,1=n ; 于是 21212221100()()()n n n n n x x x x x x x x ++-=+-++++- 221 11()()()()()22 n n a b a b a b a -=++-++++- 21 11() 222 () ()13 3 1() 2 n b a a b a a b a +-- -=+-→+-= -- ,)(∞→n ; 22212122100()()()n n n n n x x x x x x x x ---=+-++-++

(最新整理)上海交通大学年数学分析考研试题

(完整)上海交通大学2005年数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2005年数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2005年数学分析考研试题的全部内容。

上海交通大学2005年数学分析考研试题 一、 设函数)(x f 定义在R 上,满足R x ∈?,有2 )1()(2x x f x f -=-+,试求)(x f 的表达式; 二、 设}{n x 是收敛数列,}sup{},inf{n n x x ==βα,证明βα,中至少有一个属于}{n x 。 三、 设a>0,c 〉0,数列}{n a 定义如下: 2,1),(),(211211=+=+=+n a a a a n a c n n a c ,证明数列}{n a 收敛,并求其极限; 四、 设.0)0(,0,sin )(01=≠=?f x dt x f x t ,试求)0('f ; 五、 设)(x f 在),1[+∞上可导,1)1(=f ,且满足)(1)('22x f x x f += ,试证:A x f x =+∞→)(lim 存在,且41π +

上海大学数学分析历年考研真题

上海大学2000年度研究生入学考试试题 数学分析 1、 设 122(1)n n x x nx y n n +++= +,若lim n n x a →∞=,证明:(1)当a 为有限数时,lim 2 n n a y →∞=; (2)当a =+∞时,lim n n y →∞ =+∞. 2、设()f x 在[]0,1上有二阶导数(端点分别指左、右导数),(0)(1)0f f ==,且 [] 0,1min ()1f x =- 证明:[] 0,1max ()8f x ''≥ 3、 证明:黎曼函数[]1 , x= (0,,)()0,10,p q p q q q R x ?>? =??? 当为互质整数在上可积当x 为无理数. 4、 证明:1 2210 () lim (0),t tf x dx f t x π+ -→=+?其中()f x 在[]1,1-上连续. 5、 设()1ln 11n n p a n ? ?=+- ???,讨论级数2 n n a +∞ =∑的收敛性. 6、 设 ()f x dx +∞ ? 收敛且()f x 在[]0,+∞上单调,证明:0 1 lim ()()h n h f nh f x dx + +∞ +∞ →==∑?. 7、 计算曲面2 2 2 2 x y z a ++=包含在曲面22 221(0)x y b a a b +=<≤内的那部分的面积. 8、 将函数()f x x =在[]0,2π上展成Fourier 级数,并计算级数 1 sin k k k +∞ =∑的值. 上海大学2001年度研究生入学考试试题 数学分析 1、 计算下列极限、导数和积分: (1) 计算极限1 lim ();x x x + → (2) 计算 2 ()()x x f t dt ?=?的导数()x ?',其中()f x 2 ,(1) .1,(1) t t t t ≤ ?=? +> ? (3) 已知) 211sin x x ' ?=?+?,求积分2011sin I dx x π=+?. (4) 计算()()2222 2 ()0x y z t f t xyz dxdydz t ++≤= >???的导数()f t '(只需写出()f t '的积分表达

北京大学数学分析考研试题及解答

1 2 判断无穷积分 1 解 根据不等式|sinu sin x 、 sin x i 得到 |sin( ) | x x sin x sin x 从而 (s in (叱)叱)dx 绝对收敛,因而收敛, 1 x x sin x 再根据1〒dx 是条件收敛的, 丄 sin x sin x sin x sin x 由 sin( ) (sin( ) ) x x x x sin x 可知积分 sin( )dx 收 敛,且易知是是条件收敛的。 1 x 2 x 例5339设巳(x) 1 x 2! n x ,X m 是P ?m 1(x) 0的实 根, n! 求证:x m 0,且 lim x m m N ,当 x 0 时,有 F 2m 1( x) 0 ; 又 P>m 1 (x) F 2m (x) 0,F 2m1(x)严格递增,所以根唯一, X m 0。 任意 x ( ,0), lim F n (x) e x 0,所以 F 2m1(x)的根 X m n 因为若m 时,Rm1(x) 0的根,X m 不趋向于 则存在M 0 ,使得(M ,0)中含有{ X m }的一个无穷子列,从而存在收敛子列X m k X 。, ( X 。 为某有限数M ); 0 e M lim F 2m k 1( M) lim F 2叫 1 (X m k ) 0,矛盾。 K K (1)n 例、设a n ln(1 右),讨论级数 a n 的收敛性。 n P n 2 1 .3 . u| |u | ,| u | 6 2 1, 1 sin , 3 1 1 “ r 1 1 3 , x L 1, 6 X 6 X 证明(1)任意m 当x 0且x 充分大时,有F 2m1(x) 0,所以F 2m 1(X ) 0的根X m 存在, (2) ,(m )。 sin(Sin x )dx 的收敛性。 x ) ;

(最新整理)上海交通大学2003年数学分析考研试题

(完整)上海交通大学2003年数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)上海交通大学2003年数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)上海交通大学2003年数学分析考研试题的全部内容。

上海交通大学2003年数学分析考研试题 一 判断以下各题,正确的给出证明,错误的举反例并说明理由。(每小题6分,共24分) 1. 若()x f 在R 上有定义,且在所有无理点处连续,则()x f 在R 上处处连续。 2. 若()x f ,()x g 连续,则()()()()x g x f x ,m in =?连续。 3. 任意两个周期函数之和仍为周期函数。 4. 若函数()y x f ,在区域D 内关于x ,y 的偏导数均存在,则()y x f ,在D 内必连续。 二(12分)设()x f 在[]b a ,上无界,试证对任意0 δ,在[]b a ,上至少有一点x ,使得()x f 在0x 的 δ邻域上无界。 三(12分)设()x f 对任意R x ∈有()()2x f x f =且()x f 在0=x 和1=x 处连续。试证明()x f 在R 上为常数。 四(12分)已知0,...,,21 n a a a ,()2≥n 且()x x n x x n a a a x f 12 1 ...??? ? ? ?+++=,试求()n n x a a a x f ...lim 210=→ 五(12分)若实系数多项式()n n n n n a x a x a x a x P +++=--1110,00≠a 的一切根均为实数。试证明导函数()x P n '也仅有实根。 六(12分)设{}n na 收敛,级数()∑∞ =--2 1n n n a a n 收敛。试证级数∑∞ =1 n n a 收敛。 七(12分)设()x y ?=,0≥x 是严格单调增加的连续函数,()00=?是它的反函数.试证明对 0,0 b a 有()()ab dy y dx x b a ≥+??0 ψ? 八 计算题(每小题12分,共24分) 1. 求函数()4 4 4 ,,z y x z y x f ++=在条件1=xyz 下的极值。 2. 计算积分()dz arctgzdxdy z y I V ??? -= ,其中V 为由曲面()222 2 1R z y x =-+,0=z 和h z =所围成的区域。 九(10分)设()x g 在[)+∞,a 上一致连续,且对任意的a x ≥有()A n x g n =++∞ →lim ,是试证()A x g x =+∞ →lim

相关文档
最新文档