课程设计计算书1---副本

课程设计计算书1---副本
课程设计计算书1---副本

(二)计算书

1. 加药间

溶液池

溶液池的容积W 2

417bn

Q

=

2αW

W 2:溶液池容积(m 3);

Q :处理水量(m 3

/h );

α:混凝剂最大投加量(mg/L ),设计中取30mg/L .

b :混合浓度(%),混凝剂溶液一般采用5-20,设计中采用12; n :每日调制次数,设计中取n=2;

329.27m =2

x 12 x 4173092

x 30=W

溶液池设置两个,以便交替使用,保证连续投药。总深H =H 1+H 2+H 3=1++=。形状采用矩形,H 1为有效高度,取1m ;H 2为安全高度,取;H 3为贮渣深度,取。

溶液池取正方形,边长为F 1/2=2=,取。所以溶液池尺寸为长×宽×高=××=,则溶液池实际容积为

池旁设工作台,宽~,池底坡度为。底部设置DN100mm 放空管,采用硬聚氯乙烯塑料管,池内壁用环氧树脂进行防腐处理。沿地面接入药剂稀释用给水管DN80mm 一条,于两池分设放水阀门,按1h 放满考虑。

溶解池

;

溶解池的容积W 1

321m 78.2=x9.273.0=0.3W =W 溶解池取正方形,有效水深H 1=,则 面积F = W 1/H 1,即边长a = F 1/2=,取

溶解池深度H =H 1+H 2+H 3=1++=,其中H 2为超高,设为;H 3为贮渣深度,取。 溶解池形状为矩形,则其尺寸为:长×宽×高=××=。溶解池设为两个。

溶解池放水时间为10分钟,则放水量为:s L t W q /6.4=10

×601000

×78.2=60=1

查水力计算表得放水管管径d 0=50mm ,采用塑料给水管;溶解池底部设管径d=100mm 的排渣管一根。 《

投药管

投药管流量: q =

S L W /21.0=60

×60×241000

×2×27.960

×60×241000

×2×2=

查水力计算表得投药管管径d =30mm ,实际流速为s 溶解池搅拌设备

溶解池搅拌设备采用中心固定式平桨板式搅拌机。 计量投加设备

混凝剂的湿投方式分为重力投加和压力投加两种类型,重力投加方式有泵前投加和高位溶液池重力投加;压力投加方式有水射投加和计量泵投加。计量设备有孔口计量,浮杯计量,定量投药箱和转子流量计。本设计采用耐酸泵和转子流量计配合投加。

计量泵每小时投加药量:

&

h /m 39.0=24

27.9=24w =

q 31

式中:1W ——溶液池容积(m3)

耐腐蚀液下立式泵型号25FYS-16选用2台,一备一用. 药剂仓库的设计计算

混合剂为聚合氯化铝,每袋质量为25kg ,每袋规格为××最大投加量为30mg/L ,水厂设计水量为:67670m 3/d =2820m 3/h ,药剂堆放高度,药剂储存期为30d ,则

聚合氯化铝的袋数为:袋2.2671=10x 10x 2510x 30x 20047x 30=

3

33

N ;取2672袋 药剂可以堆七层高,则堆放面积为:A =

)

-1(e H NV =

2m 7.55=2.0-1×5.12

.0×25.0×5.0×2672)(,取为56m 。房内留有宽的过道,考虑到远期

发展,同时考虑到卸货,所以库房设计尺寸为:×6m

药库层高设,顶部设置电动单梁悬挂起重机。药库与加药间之间采用单轨吊

车运输药剂。 ·

加药间

加药间包括两个溶液池、两个溶解池、两个药剂投加设备和一个药剂仓库。则其面积为: ×+×+×6=

考虑过道和预留面积满足要求的长宽选择为:长15m ,宽12m 。

2混合设备设计

在给排水处理过程中原水与混凝剂,助凝剂等药剂的充分混合是使反应完善,从而使得后处理流程取得良好效果的最基本条件,同时只有原水与药剂的充分混合,才能有效提高药剂使用率,从而节约用药量,降低运行成本。

管式静态混合器是处理水与混凝剂、助凝剂、消毒剂实行瞬间混合的理想设备:具有高效混合、节约用药、设备小等特点,它是有二个一组的混合单元件组成,在不需外动力情况下,水流通过混合器产生对分流、交叉混合和反向旋流三个作用,混合效益达90-95%,构造如图2所示:

图2 管式静态混合器 设计流量 Q=3092m3/h=s 设计流速

静态混合器设在絮凝池进水管中,设计流速v=s ,则管径为:

mm m v πQ

D 1047=047.1=0

.1×14.386

.0×4=4=

采用D=1000mm ,则实际流速v=s 。 混合单元数

原水

管道

药剂

混合单元体

静态混合器

@

25.2=1×1.136.2=36.23

.05.03

.0-5

.0-D

v N ≥

取N=3,则混合器的长度为:

m 3.3=1×3×1.1=1.1=ND L

混合时间

s 0.3=1.13.3==v L T

水头损失

m 26.0=3×9.8×21.1×1

43.1=×g 2×43.1=2=h 2

4.024.02N v D N g v ξ

校核GT 值

#

1-3

2.863=0

.3×10×14.126

.0×9800=

=

s T

μh

G γ

在700~1000s-1 之间,符合设计要求。 GT=×=﹥2000

水力条件符合设计要求。

3.反应设备的设计

根据常用絮凝池的特点、本设计相关资料和类似水厂的工艺特点,经综合比较选用折板絮凝池较合适。

设计流量

折板絮凝池设两个系列

s m h m Q /429.0=/1546=2

3092

=331 设计计算

折板絮凝池每个系列设计成4组。

(1)单组絮凝池有效容积 T Q V 1=

式中,V--单组絮凝池有效面积 Q 1--单组设计处理水量 "

T--絮凝时间,一般采用6~15min

设计中取T=12min , 33.77=12×60

×41546

=

m V (2)絮凝池长度 B

H V

L '

'=

式中,L ′--絮凝池长度 H ′--有效水深 B--单组池宽 ~

设计中取H ′=,B=6m ,则

m L 03.4=6

×2.33

.77=

'

,取。 絮凝池长度方向用隔墙分成三段,首段和中段、末段的各格格宽均为,末段格宽为,隔墙厚为,则絮凝池总长度为: m L 85.4=15.0×5+1.4= (3)各段分格数

与斜管沉淀池组合的絮凝池池宽为,用三道隔墙分成四组,每组池宽:

m B 89.5=4

)

15.0×3-24(=

'

首段分成10格,则每格长度: 【

m

l 06.1=10

)

15.0×4-89.5(2=

1

首段每格面积:

21636.0=6.1×6.0=m f 通过首段单格的平均流速: s m f Q f q v /169.0=636

.0x 4429.0=4==

111 中段分成8格,末段分成7格,则中段、末段的各格格长、面积、平均流速分别为:

m 36.1=8/)15.0×3-89.5(2=2l

2

282.0=36.1×6.0=m f ,s m v /131.0=82

.0x 4429

.0=

2 ·

m 71.0=7/)15.0×6-89.5=

2(l

2

3852.0=71.0×2.1=m f ,s m v /126.0=852

.0x 4429

.0=

3 (4)停留时间计算 首段停留时间计算: T 1=10×÷=≈ 中段停留时间计算: T 2=8×÷=≈ 末段停留时间计算:

T 3=7×÷=≈

实际总停留时间 T=T 1+T 2+T 3=++= (5)隔墙孔洞面积和布置

水流通过折板上下转弯和隔墙上过水孔洞流速,首、中、末可分别为: 第一段:~米/秒 第二段:~米/秒 第三段:~米/秒 >

本次设计首、中、末三段分别取s 、s 和s ,则水流通过各段每格隔墙上孔洞面积为:

2'1

k m 36.0=3

.0x 4429.0=f ,取 ,孔宽为,则孔高为,实际通过首段每格

隔墙上孔洞流速为:

s m k /298.0=36.0x 4429.0=v 1

2'2k m 54.0=2

.0x 4429

.0=

f ,取 ,孔宽为,则孔高为,实际通过中段每格隔墙上孔洞流速为:

s m k /214.0=5

.0107.0=v 2

2'3k m 07.1=1

.0107

.0=

f ,取 ,孔宽为,则孔高为,实际通过末段每格隔墙上孔洞流速为:

s m k /107.0=1

107

.0=

v 2 孔洞在隔墙上上、下交错布置。 (6),

(7)

折板布置

折板布置首段采用峰对峰,中段采用两峰对齐,末段采用平行直板。折板间距采用。 (8)水头损失计算 ①相对折板

g

v v 2-5

.0=h 2

2

211 式中,h 1--折板渐放段水头损失 v 1--峰处流速,一般取~s v 2--谷处流速,一般取~s ~

设计中取v 1=s ,v 2=s

m 00193.0=8

.9×212.0-3.05

.0=h 2

21 []

g

2)

/(-1.0+1=h 2

12

212V F F

式中,h 2--折板渐缩段水头损失 F 1--相对峰的断面积 F 2--相对谷的断面积 设计中取F 1=,F 2=

3-2

2210x 77.3=8

.9x 23.006.156.0-1.0+1=h ))((

/

g

v ζi 2=h 2

3

式中,h i --转弯或孔洞的水头损失 ζ3--阻力系数 v 0--转弯或孔洞流速 设计中取v 0=s

上转弯时:m i 00378.0=8.9×2203.0×

8.1=h 2

下转弯或孔洞时:m i 0063.0=8

.9×2203.0×

0.3=h 2

i h h h n h ∑∑

+)+(=21 ·

式中,Σh--首段相对折板总水头损失

n--折板水流收缩和放大次数,共40次

m h 329.0=0063.0+00378.010+)00377.0+00193.0(×40=)(∑

②平行折板

g

v h 26.0=2

式中,h--折板水头损失

v--板间流速,一般采用~s 设计中取v=s |

m 00122.0=8

.9×22.06

.0=2

h

g

v ξi 2=h 2

3i

式中,h i --上、下转弯或孔洞时的水头损失 v i --转弯或穿过孔洞时的流速 设计中取v i =s

上转弯时:m i 00378.0=8.9×2203.0×

8.1=h 2

下转弯或孔洞时:m i 0063.0=8

.9×2203.0×

0.3=h 2

i h nh ∑∑+=h

~

式中,Σh--平行折板总水头损失

n--90°转弯次数,共24次 n i --上、下转弯处的水头损失

m h 110.0=)0063.0+00378.0(8+00122.0×24=∑ ③平行折板

g

ξ2v =h 2

3

式中,h--转弯水头损失

v--平均流速,一般采用~s ;

设计中v=s

m 00153.0=8

.9×21.0×

3=h 2

m h n 011.0=00153.0×7=×=h ∑(n 为180°转弯个数) ④折板絮凝池总水头损失

h =相对折板+平行折板+平行直板 =++= (8)G 值和GT 值 ①首段G 值和GT 值 —

T

μh ρG 60=

11

式中,G 1--首段速度梯度 ρ--水的密度 h 1--首段水头损失 μ--水的动力黏度 T--反应时间

设计中取h 1=,s P a/10×1.0084=μ-3(水温t=20s ℃时),T 1= 1-3

-1113.40=35

.3×10×0084.1×60329

.0×1000=60=

s T μh ρG }

s T G 3.8100=60×35.3×3.40=11

中段和末端G 值和GT 值分别为: 13

-2229.22=47

.3×10×0084.1×6011

.0×1000=60=

s T μh ρG s 8.4767=60×47.3×9.22=22T G 1

3

-33361.7=14

.3×10×0084.1×60011.0×1000=60=

s T μh ρG s 7.1433=60×14.3×61.7=33T G ②折板絮凝池总G 值和GT 值

13

-s 33.27=96

.9×10×0084.1×6045

.0×1000=

G 《

s T G 4.16332=60×96.9×33.27=

折板絮凝池布置

在絮凝池各段每格隔底部设200mm ×200mm 排泥孔,池底%坡度坡向沉淀池,管径DN200。折板絮凝池布置图3所示:

图3 折板絮凝池

4 斜管沉淀池设计计算 已知参数

设计产水量为: 33148600/2025/Q Q m d m h n

=

==

)

采用两个平流沉淀池,每个沉淀池设计流量为3

31248600/1013/2

Q Q m d m h n === 设计数据的选用: 沉淀池停留时间T=; 沉淀池水平流速v=10mm/s 。

平面计算

沉淀池长:

13.657.6L VT m ==,取58m 。

沉淀池容积:31211013w Q T m =?=

絮凝池容积:3222338w Q T m =?=

沉淀池宽:111013

5.857.6

W b m H L =

==3?,取6m 。

其中,1

H 为沉淀池有效水深,采用3m ,超高采用,则池深为。采用轨距为6的HJX2

型机械吸泥机,每池设置两部,考虑到走道宽度和隔墙尺寸,每格净宽为,其具体的平面及断面布置见图

絮凝池与沉淀池之间采用穿孔布水墙。穿孔墙上的孔口流速采用s ,则孔口总面积为2

0.281/0.30.94m =。每个孔口尺寸定为10cm ×8cm ,则孔口数为=个,取118个。

沉定池放空时间按计,则放空管直径按公式计算:

T

BLH D 5

.07.0=

D ——排泥管直径,m ; B 、L ——长宽的尺寸,m ;

H ——池深,m ;

T ——停留时间,h 。

0.180m D =

=

=

采用DN=200mm 。

出水渠断面宽度采用,出水渠起端按公式计算:

2

3

g 73

.1B Q

H =

Q ——沉淀池流量,s /m 3

; g ——重力加速度2

s /m ;

B ——渠道宽度,m 。

1.73

1.730.20m H ===

为保证堰口自由落水,出水堰保护高采用,则出水渠深度为

条件校核

水流截面积ω=×2= 水流湿度χ=2+2×= 水力半径R 8.7

0.98m 8.9

=

= 弗劳德数Fr 22

-5v 1 1.0410g 98981

R ===??

&

雷诺数Re vR 198

98000.01

?=

==ν(按水温20C °计算)

长宽比58:6>4:1,故符合要求。 长深比58:3>10:1,故符合要求。

5 V 型滤池

平面尺寸计算

(1) 设置一个V 型滤池, v

Q F =

式中,F--每组滤池所需面积 )

Q--滤池设计流量

v--设计滤速,一般采用8~15m/h 设计中取v=10m/h 27.291=10

2917

=

m F (2) 单格滤池面积: N

F =

f 式中,f--单格滤池面积 N--每组滤池分格数 *

设计中取N=4,则

293.72=4

7

.291=

f m 一般规定V 型滤池的长宽比为2:1~4:1,滤池的长度一般不宜小于11m ;滤池中央气、水分配槽将滤池宽度分成两半,每一半的宽度不宜超过4m 。

单格滤池的实际面积: L B ×=f '

式中,f ′--单格滤池的实际面积 B--单格池宽

L--单格池长,一般大于11m 。 )

设计中取长宽比为:1,即取L=12m ,B=5m 。

2'm 60=12×5=f (4)正常过滤时的实际流速

m/h 2.12=60×42917=f

=

v '

N Q

一格冲洗时其他滤格的滤速 h m f

N Q

n /2.16=60

×)1-4(2917

=

)1-(=

v ’

一般采用10~14m/h ,不符合设计要求。需另选一个长宽比。

所以设计取长宽比为:1,即取L=12m ,B= /

2'm 6.69=12×8.5=f

正常过滤时的实际流速

m/h 5.10=6.69×42917=f

=

v '

N Q 一格冲洗时其他滤格的滤速

h m f N Q

n /0.14=6.69×)1-4(2917

=)1-(=

v ’

符合要求 进水系统 进水总渠

>

1

11=

v Q

B H 式中 H1—进水总渠内水深 B 1—进水总渠净宽

V 1—进水总渠内流速,一般采用~s 。 设计中取H 1=,v 1=s

n

v

m B 81.0=0

.1×0.181

.0=

1

气动隔膜阀口的阀口面积

2

2

V Q =

A :

式中 A—气动隔膜阀口面积

Q 2—每格滤池的进水量(m3/s),Q 2=

N

Q 1

; v 2—通过阀门的流速(m/s),一般采用~s 。 设计中取v 2=s s m Q /20.0=4

0.81

=

32 220.0=1.0

0.20

=

m A 气动隔膜阀阀口处的水头损失

2g

v ξ=h 22

1

|

式中 ξ--气动隔膜阀阀口处的局部阻力系数。

设计中取ξ=

m 051.0=8

.9x 20.1x

0.1=h 2

1

进水堰堰上水头 h 2=(

g

mb Q 22

)2/3

式中 h 2—堰上水头(m);

m —薄壁堰流量系数,一般采用~; b —堰宽(m)。 】

设计中取m=,b=3m

h 2=(

8

.9×2×

3×5.020.0)2/3=

V 型进水槽

tga

v Q x 2=h 33

3

式中 h 3—V 型进水槽内水深(m); Q 3—进入V 型进水槽的流量(m3/s);

v 3—V 型进水槽内的流速(m/s); 一般采用~s 。 a —V 型槽夹角,a =50°~55°。 )

设计中每格滤池设两个V 型进水槽,则s m Q Q /10.0=2

20

.0=

2

=32

3,

取v3=s, a=50°

h 3=

°

50×8.010

.0×2tg =

V 型槽扫洗小孔

1000

x =24f

q Q

3

4

12=

gh μQ A

1000×4=

2

1

n A d π 式中 Q 4—表面扫洗流量(m 3/s);

q —表面扫洗水强度【L/(s ﹒m 2)】,一般采用~ L/(s ﹒m2); ^

A 1—小孔总面积(m2);

—孔口流量系数; d —小孔直径(mm); n 2—小孔数目(个)。

设计中取q 2= L/(s ﹒m2),μ=,取每个V 型槽上扫洗小孔数目28个,则n 2=56个

s m Q /125.0=10006

.69×8.1=

34 21067.0=46

.0×8.9×2×

62.0125

.0=

m A

mm d 0.39=1000×56

×14.3067

.0×4=

~

验算小孔流速v 4

s m s A v /0.1/m 87.1=067

.0125

.0=

Q =

1

4

4>

反冲洗系统

气水分配渠(按反冲洗水流量计算) 1000

xq f'=

1

5Q 5

5

22Q =

×v B H

式中 Q 5—反冲洗水流量(m3/s);

q 1—反冲洗强度【L/(s ﹒m2)】,一般采用4~6L/(s ﹒m 2); (

v 5—气水分配渠中水的流速(m/s), 一般采用~s;

H 2—气水分配渠内水深(m); B 2—气水分配渠宽度(m)。 设计中取q 1=5 L/(s ﹒m2),v 5=s,B 2=

s m Q /348.0=10005

×6.69=

35 m H 87.0=4

.0×0.1348

.0=2

配水方孔面积和间距

6

5

1=v Q F

%

1

13=

f F n

式中 F 1—配水方孔总面积(m2);

v 6—配水方孔流速(m/s),一般采用v 6=s; f 1—单个方孔的面积(m2);

建筑结构课程设计计算书

《建筑结构》课程设计计算书 --整体式单向板肋梁楼盖设计 指导老师:刘雁 班级:建学0901班 学生姓名:张楠 学号: 091402110 设计时间: 2012年1月 扬州大学建筑科学与工程学院建筑学系

目录 1、设计任务书———————————3 2、设计计算书———————————5 3、平面结构布置——————————5 4、板的设计————————————6 5、次梁的设计———————————8 6、主梁的设计———————————12

一、设计题目 整体式单向板肋梁楼盖设计 二、设计资料 1.扬州大学图书馆, 层高均为5.0米,开间5米,进深6.6米。试设计第三层楼盖。楼盖拟采用整体式单向板肋梁楼盖,混凝土强度等级为C30,钢筋采用HRB400。 2.楼面做法:楼面面层为20mm厚1:2水泥白石子磨光打蜡,找平层为20mm厚1:3水泥砂浆,板底为20mm厚混合砂浆抹灰。 三、设计内容 1.结构布置 楼盖采用整体式单向板肋梁楼盖方案,确定梁板截面尺寸。 2.板的计算 (1)确定板厚 (2)计算板上荷载 (3)按照塑性理论计算板的内力 (4)计算板的配筋

3.次梁计算 (1)确定次梁尺寸 (2)计算次梁上荷载 (3)按照塑性理论计算次梁内力 (4)计算次梁配筋 4.主梁计算 (1)确定主梁尺寸 (2)计算主梁上荷载 (3)按照弹性理论计算主梁内力,应考虑活荷载的不利布置及调幅 (4)绘制主梁内力包罗图 (5)计算主梁的配筋,选用只考虑箍筋抗剪的方案 (6)绘制主梁抵抗弯矩图,布置钢筋 5.平面布置简图

成果应包括: 1.计算书 (1)结构布置简图 (2)板和次梁的内力计算,配筋 (3)主梁的内力计算,内力包络图,配筋 2.图纸 (1)绘制结构平面布置图(包括梁板编号,板配筋),比例1:100(2)绘制次梁配筋图(包括立面、剖面详图),比例1:50,1:20 (3)绘制主梁弯矩包罗图、抵抗弯矩图及配筋图(包括立面、剖面详图),比例1:50,1:20 (4)设计说明

挡土墙计算书

省道S206重力式挡土墙设计 专业:土木工程 班级: 姓名: 学号: 二零一七年六月 XXXXXXX大学 建筑工程学院 土木系道桥方向

目录 1、设计资料 (1) 1.1基础资料 (1) 1.2设计依据 (2) 2、初拟挡土墙结构形式和尺寸 (2) 3、确定车辆荷载 (3) 4、破裂棱体位置确定 (4) 4.1破裂角 的计算 (4) 4.2验算破裂面是否交于荷载范围内 (4) 5、土压力计算 (5) 5.1土压力计算 (5) 6、稳定性验算 (6) 6.1受力分析 (7) 6.2抗滑稳定性验算 (7) 6.2.1 抗滑稳定性验算 (7) 6.2.2抗滑动稳定性系数 (8) 6.3抗倾覆稳定性验算 (8) 6.3.1抗倾覆稳定性方程 (8) 6.3.2抗倾覆稳定性系数 (9) 6.4基底应力和合力偏心矩验算 (9) 6.4.1 合力偏心矩计算 (9) 6.4.2 基底应力计算 (10) 6.5墙身截面应力计算 (10) 7、改善措施 (12) 7.1改善措施 (12) 7.2工程数量表 (13) 8、附属设施的设计 (13) 8.1泄水孔设计 (13) 8.2沉降缝与伸缩缝 (14) 8.3墙厚排水层 (14) 8.4结构大样图 (15) 9、立面设计 (16) 9.1整体布局 (16) 9.2挡土墙总体方案布置图 (16) 10、参考文献 (17)

1、设计资料 1.1基础资料 省道S313,路基宽12米,路面宽9米,两侧路肩宽各1.5米。在桩号K5+100-K5+200路段为填方路段,填方边坡坡度1:1.5。为了保证路堤边坡稳定,少占地拆迁,故设置路堤挡土墙,拟采用重力式挡土墙。最大墙高见表1。 表1 挡土墙相关设计参数 墙高、墙背仰斜坡度等初始拟定的尺寸详见表1所示,挡土墙顶宽1米,基底水平。挡土墙分段长度为12-20米不等,初始拟定的挡墙断面形式如图1所示。 图1 初始拟定的路肩式挡土墙断面示意图

渡槽课程设计--三峡大学版

不带横杆的矩形渡槽结构计算: 1. 槽身横向计算:沿纵向取单位长度1 m 槽身为脱离体进行计算,计算简图如图1所示。 图1.槽身横向计算简图 作用于所切取的单位长度脱离体上的荷载q 等于水重、人群荷载及槽身自重之和,除此之外,在脱离体两个侧面作用着剪力1Q 和2Q ,并由1Q 和2Q 的差值Q ?与竖向力q 保持平衡,即q Q Q Q =-=?21。 (1)人行道板计算 人行道板为一支承在侧墙上的悬臂板,计算跨长为mm a 100020012001=-=,承受的均布荷载1q 等于人群荷载加板的自重。人行道板承受的最大弯矩为: m kN a g q a q M k G k Q ?-=?+??-=+-=-= 3.11)5.21.0531.2(5.02 121212110)(γγ mm a 30=; =-=a h h 0100-30=70mm ; 0.0793*******.6103.111.226 20 =????==bh f KM c s α 468.085.00.0827211=<=--=b s ξαξ

20851300 708270.010009.6mm f h b f A y c s =???==ξ 为与侧墙钢筋协调,实配B 025@8,20201mm A =。 (2)侧墙计算 侧墙中最大计算弯矩的截面是侧墙的截面1,该处的水深为2.8m,另外为了截断部分由截面1延伸向上的竖向钢筋,距墙底1.0m 处再选取一计算截面2计算。 在工程实践中,侧墙近似的按受弯构件设计(略去轴向力影响)。侧墙底端的最大弯矩为(弯矩符号以槽壁外侧受拉为正): 截面1配筋: m kN a q H M ?-=+???-=+-=39.73.111.02.8106 12161321131)()(γ mm a 30=;=-=a h h 0300-30=270mm ;mm b 0100=; 0.056727010009.61039.71.026 20 =????==bh f KM c s α 468.085.00.0584211=<=--=b s ξαξ 20504300 2700584.010009.6mm f h b f A y c s =???==ξ 取用B 125@10,2628mm A s =。 截面2配筋: m kN a q H M ?-=+-??-=+'-=12.833.1112.8106 12161321132))(()(γ mm a 30=;=-=a h h 0300-30=270mm ;mm b 0100=; 0.018327010009.61012.831.026 20 =????==bh f KM c s α 468.085.00.0185211=<=--=b s ξαξ 20160300 2700185.010009.6mm f h b f A y c s =???==ξ 取用B 025@8,20201mm A =。 抗裂校核: 计算截面取在拖承(0.2x0.2)顶边截面3处,校核水深=H 2.8-0.2=2.6m 则:

工程结构课程设计计算书

辽宁工业大学 工程结构课程设计说明书 题目:工程结构课程设计(36组) 院(系):管理学院 专业班级:工程管理132班 学号:XXXXXXXXXX 学生姓名:XXXXXXXX 指导教师:XXXXXX 教师职称:教授 起止时间:2016.1. 4-2016.1.15 课程设计(论文)任务及评语 院(系):土木建筑工程学院教研室:结构教研室

目录 1.设计资料---------------------------------------------------------------1 2.楼盖的结构平面布置---------------------------------------------------1 3.板的设计-------------------------------------------------------------- 2 (1)荷载计算---------------------------------------------------------------2(2)计算简图--------------------------------------------------------------2(3)弯矩设计值------------------------------------------------------------3(4)正截面承载力计算-------------------------------------------------------3 4.次梁设计---------------------------------------------------------------4(1)荷载设计值-------------------------------------------------------------4(2)计算简图-------------------------------------------------------------- 4(3)内力计算---------------------------------------------------------------4(4)承载力计算------------------------------------------------------------5 5.主梁设计---------------------------------------------------------------6(1)荷载设计值-------------------------------------------------------------6(2)计算简图--------------------------------------------------------------6(3)内力设计值及包络图-----------------------------------------------------7

挡土墙计算书

挡土墙设计 一、设计路线 K58+07LK58+130,傍山路线,设计高程均为1654.5,山坡为砾石地层,附近有开挖石方路堑的石灰岩片石可供作挡土墙材料。 1 、设计路段为直线段,横断面资料如表; 2、山坡基础为中密砾石土,摩阻系数f=0.4,基本承载力(S)=520千帕; 3、填土边坡为1:m=1:1.5 ,路基宽度为7.0 米; 4、墙背填料为就地开挖砾石土,容重Y=18.6KN/m,计算内摩阻角①=35; 5、墙体用50号砂浆砌片石,容重为丫=22.5KN/m3,容许压应力[S ]=2450千帕, 容许 剪应力[T ]=862.4千帕,外摩阻力Z二①/2=17.5 ° ; 6、设计荷载用公路-U级车辆荷载(详见《公路桥涵设计通用规范》); 7、稳定系数:滑动稳定系数[K c]=1.3 ,倾覆稳定系数[K0]=1.5 。 二、需提交的文件、图纸和要求 1、详细的设计计算书; A、分析确定挡土墙设计方案,选择挡土墙形式(最好以两个以上墙型的工程量比 较后确定); B、挡土墙基础与断面设计: *. 基础形式及埋置深度 *. 拟定墙身尺寸 *. 荷载换算土层厚 *. 土压力计算 C、稳定性验算 2、按横断面资料绘制等高线地形图(比例1:200),路线横断面图(1:200),路基外侧 边缘纵向地形图(1 :200 )并在其上进行挡土墙立面布置,绘立面图。 参考设计步骤 一、设计资料:(见任务书有关内容) 二、绘制平面图及横断面图:(见任务书之一1. ) 三、确定设计方案: 1 、阐述设挡土墙的理由。 2、选定挡墙类型(路堤,路肩,路堑),要有比较

3、选定挡墙形式(仰斜,俯斜,衡重…)最好选两种分别计算。 四、初拟断面尺寸 1、确定分段长及与路堤的衔接方式。 2、确定埋深、墙高及墙背倾角,以上步骤后即可绘出挡土墙的纵断面图。 3、初拟其他部位的尺寸(按各部分对尺寸的基本要求拟定)。 五、计算换算土层厚h。 六、土压力计算。 七、确定断面尺寸。 1、滑动稳定性验算:(一般重力式挡墙以此控制设计)K C控制在1.3?1.5之间 2、确定挡墙其他部位尺寸,即可画出挡墙典型断面图。 八、稳定性验算(5个项目均要计算)。 九、将确定的挡墙依次按比例绘在平面及横断面图上。 横断面地形资料表

钢结构课程设计计算书

一由设计任务书可知: 厂房总长为120m,柱距6m,跨度为24m,屋架端部高度为2m,车间内设有两台中级工作制吊车,该地区冬季最低温度为-22℃。暂不考虑地震设防。 屋面采用1.5m×6.0m预应力大型屋面板,屋面坡度为i=1:10。卷材防水层面(上铺120mm 泡沫混凝土保温层和三毡四油防水层)。屋面活荷载标准值为0.7KN/㎡,雪荷载标准值为0.4KN/㎡,积灰荷载标准值为0.5KN/㎡。 屋架采用梯形钢屋架,钢屋架简支于钢筋混凝土柱上,混凝土强度等级C20. 二选材: 根据该地区温度及荷载性质,钢材采用Q235-C。其设计强度为215KN/㎡,焊条采用E43型,手工焊接,构件采用钢板及热轧钢筋,构件与支撑的连接用M20普通螺栓。 屋架的计算跨度L。=24000-2×150=23700,端部高度:h=2000mm(轴线处),h=2150(计算跨度处)。 三结构形式与布置: 屋架形式及几何尺寸见图1所示: 图1 屋架支撑布置见图2所示:

图2 四荷载与内力计算: 1.荷载计算: 活荷载于雪荷载不会同时出现,故取两者较大的活荷载计算。 永久荷载标准值: 防水层(三毡四油上铺小石子)0.35KN/㎡找平层(20mm厚水泥砂浆)0.02×20=0.40 KN/㎡保温层(40mm厚泡沫混凝土0.25 KN/㎡预应力混凝土大型屋面板 1.4 KN/㎡钢屋架和支撑自重0.12+0.011×24=0.384 KN/㎡ 总计:2.784 KN/㎡可变荷载标准值: 雪荷载<屋面活荷载(取两者较大值)0.7KN/㎡积灰荷载0.5KN/㎡风载为吸力,起卸载作用,一般不予考虑。 总计:1.2 KN/㎡永久荷载设计值 1.2×2.784 KN/㎡=3.3408KN/㎡可变荷载设计值 1.4×1.2KN/㎡=1.68KN/㎡2.荷载组合: 设计屋架时应考虑以下三种组合: 组合一全跨永久荷载+全跨可变荷载 屋架上弦荷载P=(3.3408KN/㎡+1.68KN/㎡) ×1.5×6=45.1872KN 组合二全跨永久荷载+半跨可变荷载 屋架上弦荷载P1=3.3408KN/㎡×1.5×6=30.07KN P2=1.68KN/㎡×1.5×6=15.12KN 组合三全跨屋架及支撑自重+半跨大型屋面板自重+半跨屋面活荷载

重力式挡土墙课程设计(通用版)

重力式挡土墙课程设计 作者姓名 学号 班级 学科专业土木工程 指导教师 所在院系建筑工程系 提交日期

设计任务书 一、 设计题目 本次课程设计题目:重力式挡土墙设计 二、 设计资料 1、线路资料:建设地点为某一级公路DK23+415.00~DK23+520.00段,在穿过一条深沟时,由于地形限制,无法按规定放坡修筑路堤,而采取了贴坡式(仰斜式)浆砌片石挡土墙。线路经过的此处是丘陵地区,石材比较丰富,挡土墙在设计过程中应就地选材,结合当地的地形条件,节省工程费用。 2、墙后填土为碎石土,重度30/18m kN =γ,内摩擦角 35=?;墙后填土表面为水平,即 0=β,其上汽车等代荷载值2/15m kN q =;地基为砾石类土,承载力特征值 kPa f k 750=;外摩擦角δ取 14;墙底与岩土摩擦系数6.0=μ。 3、墙体材料采用MU80片石,M10水泥砂浆,砌体抗压强1.142/mm N ,砌体重度30/24m kN =γ。 4、挡土墙布置形式及各项计算参数如下图所示: 图4-1 挡土墙参数图(单位:m )

目录 设计任务书 (2) 一、设计题目 (2) 二、设计资料 (2) 设计计算书 (4) 一、设计挡土墙的基础埋深、断面形状和尺寸 (4) 二、主动土压力计算 (4) 1、计算破裂角 (4) 2 、计算主动土压力系数K和K1 (4) 3、计算主动土压力的合力作用点 (5) 三、挡土墙截面计算 (5) 1、计算墙身重G及力臂Z G (6) 2、抗滑稳定性验算 (6) 3、抗倾覆稳定性验算 (6) 4、基底应力验算 (7) 5、墙身截面应力验算 (7) 四、设计挡土墙的排水措施 (8) 五、设计挡土墙的伸缩缝和沉降缝 (8) 六、参考文献 (8) 七、附图 (8)

1.(游戏界面(UI)设计)课程标准

重庆工程学院 《游戏界面与UI设计》课程标准 课程代码: 2014030032 适用专业:数字媒体艺术 课程学时: 32学时 课程学分: 2分 编制人: 审核人: 审批人: 日期:

一、课程定位 《游戏界面与UI设计》是数字媒体艺术专业重要的基础课程,是一门集技术与艺术一体化的游戏基础学科,课程的设置面向职业岗位要求,职业岗位针对性较强,涉及的专业技能具有很强的专业性,其主要任务是培养学生的游戏设计的制作能力,使学生了解当今游戏设计制作的基本知识。 二、课程目标 1.总体目标: 《游戏界面与UI设计》是一门专业课很强的课程,它不仅要对学生的绘画技法有很强的针对性,还要对学生的平常生活中观察能力的培养。通过案例式教学,实现学生职业技能与工作岗位群的对接,促进本专业学生全面职业素质的养成。通过教学模式的创新、教学内容的选取,教学方法的改革培养学生在策划审美上有很强的审美能力的提高,还对自己在游戏策划创作中起到帮助的作用,为其它设计课程的学习以及将来的岗位工作打下良好的基础。 2.知识目标: 游戏界面与UI设计基础概念讲解、基础造型平面构成点线面的形式美原理、二维空间、三维空间、多维空间的造型表现、色彩构成基础知识与色环、色彩的表示、对比、彩度对比、明度对比、色彩调和、填色与色彩构成、色彩构成的综合应用等等知识。 3.能力目标: 让学生逐步地具有一定的游戏策划审美的能力,可以独立完成游戏策划的设计与制作,对各种游戏策划的要求都能处理。 素质目标: 游戏界面与UI设计课在整个教学的过程中,运用启发、引导和实践的方式,通过进行游戏造型设计基础知识点的逐步讲解并实例绘制

课程设计计算书

四川理工学院课程设计 某综合楼给排水工程设计 学生:王玥 学号:12141020128 专业:给水排水工程 班级:2012级1班 指导教师:陈妮 四川理工学院建筑工程学院 二○一五年一月

四川理工学院 建筑工程学院课程设计任务书 设计题目:《某综合楼给排水工程设计》专业:给排水工程 班级:2012级1班学号:12141020128 学生:王玥指导教师:陈妮 接受任务时间 2014.12.01 教研室主任(签名) 1.课程设计的主要内容及基本要求 一.课程设计内容: (A)项目简介 根据有关部门批准的建设任务书,拟在某市修建一综合楼,地上9层,建筑面积约为8000㎡,建筑高度为28.50m。一层为商业用房,层高4.50米;二至九层为普通住宅,层高3.00米。 (B)设计资料 上级主管部门批准的设计任务书 建筑给水排水设计规范 建筑防火设计规范 高层民用建筑设计防火规范 自动喷水灭火设计规范 建筑设计资料 建筑物各层平面图等。 根据建筑物的性质、用途及建设单位的要求,室内要设有完善的给排水卫生设备。生活供水要安全可靠,水泵要求自动启闭。该建筑物要求消防给水安全可靠,设置独立的消火栓系统和自动喷水灭火系统。屋面雨水采用内排水系统。室内管道全部暗敷。 城市给水排水资料 1.给水水源 建筑以城市自来水管网作为给水水源。建筑物前面道路有一条市政给水可供接管,给水管管径DN200,常年水压不低于200Kpa。 最低月平均气温7℃,总硬度月平均最高值10德国度,城市管网不允许直接吸水。 2.排水条件 本地区有集中污水处理厂,城市污水处理率为85%,城市排水体制为雨水、污水分流制。市内生活污水需经化粪池处理后排入城市污水管道。本建筑右后方有一条市政污水管和一条市政雨水管预留的检查井可供接管。

挡土墙课程设计任务书

《挡土墙课程设计》任务书 通过本设计使学生掌握挡土墙的基本设计理论,设计方法及设计内容,为毕业后在生产中解决挡土墙设计问题打下基础,使之适应生产上的需要。 一、设计题目 重力式挡土墙设计 二、设计资料 某二级公路填方路堤段,为保证路堤边坡稳定,少占地拆迁,故设置路堤挡土墙,拟采用路肩重力式挡土墙(示意图见示例)。 1、该路段,地表较平坦; 2、挡土墙在横断面上的布置及经验尺寸见图示; 3、地基为密实的硬塑亚粘土,其容许承载力[σ]=250KPa ,基地摩阻系数f=0.4; 4、墙后填料的容重3/18m kN =γ,计算内摩擦角?=35?; 5、墙体材料M7.5砂浆砌筑MU30片石,其容重3/22m kN =γ,填料与墙背间的摩擦角δ=2/3?; 6、挡土墙高度(原始地面至墙顶距离): H =4+0.1x (学号后两位数)(m ) 三、设计方法与设计内容 1、拟定挡土墙的结构形式及断面尺寸 2、拟定挡土墙基础的形式及尺寸

3、车辆荷载换算 4、土压力计算 5、稳定性与承载能力验算 (1)墙身抗滑稳定性 (2)墙身抗倾覆稳定性 (3)地基基底应力验算 (4)墙身截面应力验算 6、绘制挡土墙平面图、纵断面、横断面的布置图。 四、设计要求 1、整个设计应符合设计要求 2、设计、计算过程条例清晰,内容完整 3、设计图清晰,线条均匀,图幅规格A3图纸。计算书采用A4纸。 五、主要参考资料 1、《公路路基设计规范》 2、《路基路面工程》教材 3、《公路圬工桥涵设计规范》

《挡土墙课程设计》指导书 一、课程设计的目的和要求 课程设计是高等学校学生在校学习专业课的一个重要环节,也是学生综合运用所学的知识解决实际问题和独立钻研的良好机会。课程设计在教学上的要求是: 1、培养综合运用所学知识、解决实际问题的独立工作能力; 2、系统巩固并提高基础理论课与专业知识; 3、掌握挡土墙设计计算方法; 4、了解路基路面整体设计与个体设计的有机联系; 5、加强与提高设计、计算、绘图及编制说明书的基本技能; 6、对本专业某些理论性或技术性问题进行比较深入的探讨。 二、课程设计的步骤与方法 1、研读挡土墙设计算例及有关例题。 2、认真分析设计任务书所提供的设计依据。 3、进行挡土墙的设计计算。 (1) 进行车辆荷载换算; (2) 利用有关主动土压力计算的相应公式,计算主动土压力,求出土压力的大小、方向及作用点; (3) 设计挡土墙截面。 先拟定墙身尺寸,然后进行: a) 抗滑稳定性计算;

渡槽课程设计

设计基本资料 一.设计题目:钢筋混凝土渡槽(设计图见尾页) xx灌区干渠上钢筋混凝土渡槽,矩形槽身设计,支撑排架和基础结构布置二.基本资料 1.地形:干渠跨越xx沟位于干渠桩号6+000处,沟宽约75m,深15m左右。根据地形图和实测渡槽处xx沟横断面如下表; 桩号6+000 6+015 6+025 6+035 6+045 6+055 6+065 6+090 6+100 地面高 程(m) 97.80 92.70 87.66 83.85 83.80 87.60 89.90 97.68 97.70 2.干渠水利要素:设计流量Q 设 =10 m3/s、加大流量Q 加 =11.5 m3/s,纵坡 i=1/5000,糙率n=0.025.渠底宽B=2m,内坡1:1,填方处堤顶宽2.5m,外坡1:1.干渠桩号6+000处渠底高程为95.00m。 3.地质:该处为第四纪沉积层,表面为壤土深2米,下层为细砂砾石深度为10米,再下层为砂壤土。 经试验测定,地基允许承载能力(P)=200KN/ m2 4.水文气象:实测该处地面在10米高处,三十年一遇10分钟统计平均最大风速为24m/s。 设计洪水位,按二十年一遇的防洪标准,低于排架顶1m,洪水平均流速为 2m/s,漂浮物重50KN。 5.建筑物等级:按灌区规模,确定渡槽为三级建筑物。 6.材料:钢筋Ⅱ级3号钢,槽身采用C25混凝土,排架及基础采用C20混凝土。 7.荷载: 1)自重:钢筋混凝土Υ=25 KN/ m3水Υ=10 KN/ m3 2)人群荷载: 3 KN/ m3

3)施工荷载: 4 KN/ m3 4)基础及其上部填土的平均容重为20 KN/ m3 三.设计原则与要求 1.构件强度及裂缝计算应遵守“水工钢筋混凝土结构设计规范“(SDJ20-78) 2.为了减少应力集中,构件内角处应加补角,但计算可以忽略不计。 3.计算说明书要求内容完全、书写工整。 4.图纸要求布局适当、图面清洁、字体工整。 四.设计内容 1.水力计算:确定渡槽纵坡、过水断面尺寸、水面衔接、水头损失和上下游链接。 2.对槽身进行纵向、横向结构计算,按照强度、刚度和构件要求配置钢筋。 3.拟定排架及基础尺寸。 4.两岸链接和布置。 五.设计成果 1.计算说明书一份 2.设计图纸一张(A1) 总体布置图:纵剖面及平面图 一节槽身钢筋布置图:槽身中部、端部剖面,侧墙钢筋布置及底板上、下层钢筋布置图,并列处钢筋用量明细表。排架和基础尺寸,钢筋布置等。 六.参考书 1.《水工建筑物》 2.《工程力学》 3.《建筑结构》 4.《水工钢筋混凝土》 5. 《工程力学与工程结构》

基础工程课程设计计算书

基础工程课程设计 说明书 二零一三年六月 土木工程

某框架结构条形基础设计计算书 一、工程概况 威海近郊五层两跨钢筋混凝土框架结构(相当于七层以上民用建筑),车间有三排柱,柱截面尺寸为400×600mm2,平面图如图1。作用在基础顶面的荷载特征值如表1,弯矩作用于跨度方向。室内外高差0.30m。 图1混凝土框架结构平面图 表1 荷载效应特征值 二、地质资料 1.综合地质柱状图如表2,地下水位在细砂层底,标准冻深为2m; 2.冻胀类别为冻胀。

表2 综合地质柱状图 三、设计要求 1.设计柱下钢筋混凝土条形基础; 2.计算该条形基础相邻两柱的沉降差; 3.绘制基础平面图(局部),基础剖面图,配筋图。 四、设计步骤 1.考虑冻胀因素影响确定基础埋深; 2.持力层承载力特征值修正; 3.计算基础底面尺寸,确定基础构造高度; 4.计算条形基础相邻两柱的沉降差; 5.按倒梁法计算梁纵向内力,并进行结构设计; 6.计算基础的横向配筋及翼缘高度; 7.绘制施工图。

五、工作量 1. 设计柱下钢筋混凝土条形基础; 2. 计算该条形基础相邻两柱的沉降差; 3. 完成课程设计计算说明书一份; 4. 完成铅笔绘制2号施工图一张; 5. 配合教师安排进行答辩。 六、内力计算 (一) 确定基础埋深 根据地质资料进入土层1.2m 为粘土层,其基本承载力特征值为147kPa ak f =,可知其为最优持力层,基础进入持力层大于30cm 。又有考虑冻胀因素的影响,根据规范可知,其设计冻深d z 应按下式计算:0 2.0 1.00.90.95 1.71m ...zs zw ze d z z ψψψ=???==,基础 埋深应在设计冻深以下,据此可初步确定基础埋深为2.3m 。根据基础埋深 2.3m>0.5m d =需进行持力层承载力特征值的深度修正,持力层为黄褐色粘性土层。液性指数 2618 0.50.853418 p L L p w w I w w --= = =<--,又0.70.85 e =<,查表可得,承载力修正系数0.3, 1.6b d ηη==,基础底面以上土的加权平均重度m γ= 317 1.2190.8 17.8kN/m 2.0 ?+?=, 条形基础的基础埋深一般自室内底面算起,室内外高差为0.3m ,取 2.30.3 2.6m d =+=, 则可得修正值为:(0.5)147 1.617.8(2.60.5)206.81kPa a ak d m f f d ηγ=+-=+??-=。 (二) 确定基础梁的高度、长度和外伸尺寸 根据规范要求,柱下条形基础梁的高度应该取为柱距的1/81/4倍 ,又有此处柱距取为6500mm ,故可得到基础梁的高度(1/81/4)6200(7751550)mm h =?=,取 1500mm h =,即为 1.5m h =。根据构造要求,条形基础端部外伸长度应为边跨跨距的1/41/3倍,故考虑到柱端存在弯矩及其方向,可以得到基础端部左侧延伸 1(1/4 1/3)(1/41/3)6200(1550 2067)m m l l ==?=,取1 2.0m l =。计算简图如图 2所示:

渡槽课程设计

渡槽课程设计

设计基本资料 一.设计题目:钢筋混凝土渡槽(设计图见尾页) xx灌区干渠上钢筋混凝土渡槽,矩形槽身设计,支撑排架和基础结构布置二.基本资料 1.地形:干渠跨越xx沟位于干渠桩号6+000处,沟宽约75m,深15m左右。根据地形图和实测渡槽处xx沟横断面如下表; 2.干渠水利要素:设计流量Q 设 =10 m3/s、加大流量Q 加 =11.5 m3/s,纵坡 i=1/5000,糙率n=0.025.渠底宽B=2m,内坡1:1,填方处堤顶宽2.5m,外坡1:1.干渠桩号6+000处渠底高程为95.00m。 3.地质:该处为第四纪沉积层,表面为壤土深2米,下层为细砂砾石深度为10米,再下层为砂壤土。 经试验测定,地基允许承载能力(P)=200KN/ m2 4.水文气象:实测该处地面在10米高处,三十年一遇10分钟统计平均最大风速为24m/s。 设计洪水位,按二十年一遇的防洪标准,低于排架顶1m,洪水平均流速为 2m/s,漂浮物重50KN。 5.建筑物等级:按灌区规模,确定渡槽为三级建筑物。 6.材料:钢筋Ⅱ级3号钢,槽身采用C25混凝土,排架及基础采用C20混凝土。 7.荷载: 1)自重:钢筋混凝土Υ=25 KN/ m3水Υ=10 KN/ m3

2)人群荷载: 3 KN/ m3 3)施工荷载: 4 KN/ m3 4)基础及其上部填土的平均容重为20 KN/ m3 三.设计原则与要求 1.构件强度及裂缝计算应遵守“水工钢筋混凝土结构设计规范“(SDJ20-78) 2.为了减少应力集中,构件内角处应加补角,但计算可以忽略不计。 3.计算说明书要求内容完全、书写工整。 4.图纸要求布局适当、图面清洁、字体工整。 四.设计内容 1.水力计算:确定渡槽纵坡、过水断面尺寸、水面衔接、水头损失和上下游链接。 2.对槽身进行纵向、横向结构计算,按照强度、刚度和构件要求配置钢筋。 3.拟定排架及基础尺寸。 4.两岸链接和布置。 五.设计成果 1.计算说明书一份 2.设计图纸一张(A1) 总体布置图:纵剖面及平面图 一节槽身钢筋布置图:槽身中部、端部剖面,侧墙钢筋布置及底板上、下层钢筋布置图,并列处钢筋用量明细表。排架和基础尺寸,钢筋布置等。 六.参考书 1.《水工建筑物》 2.《工程力学》 3.《建筑结构》 4.《水工钢筋混凝土》 5. 《工程力学与工程结构》

基础工程课程设计计算书

《基础工程》课程设计任务书 (一)设计题目 某宾馆,采用钢筋混凝土框架结构,基础采用柱下桩基础,首层柱网布置如附件所示,试按要求设计该基础。 (二)设计资料 1. 场地工程地质条件 场地岩土层按成因类型自上而下划分:1、人工填土层(Q ml);2、第四系冲积层(Q al);3、残积层(Q el);4、白垩系上统沉积岩层(K2)。 各土(岩)层特征如下: 1)人工填土层(Q ml) 杂填土:主要成分为粘性土,含较多建筑垃圾(碎砖、碎石、余泥等)。本层重度为16kN/m3。松散为主,局部稍密,很湿。层厚1.50m。 2)第四系冲积层(Q al) ②-1淤泥质粉质粘土:灰黑,可塑,含细砂及少量碎石。该层层厚3.50m。其主要物理力学性质指标值为:ω=44.36%;ρ= 1.65 g/cm3;e= 1.30;I L= 1.27; E s= 2.49MPa;C= 5.07kPa,φ= 6.07°。 承载力特征值取f ak=55kPa。 ②-2 粉质粘土:灰、灰黑色,软塑状为主,局部呈可塑状。层厚2.45m。其主要物理力学性质指标值为:ω= 33.45%;ρ= 1.86 g/cm3;e= 0.918;I L=0.78; Es=3.00Mpa;C=5.50kPa,Φ=6.55°。 ②-3粉质粘土:褐色,硬塑。该层层厚3.4m。其主要物理力学性质指标值为:ω= 38.00%;ρ= 1.98 g/cm3;e= 0.60;I L=0.20; Es=10.2MPa。 3)第四系残积层(Q el) ③-1 粉土:褐红色、褐红色间白色斑点;密实,稍湿-湿。该层层厚2.09m。其主要物理力学性质指标值为:ω= 17.50%;ρ= 1.99 g/cm3;e= 0.604;I L=0~

挡土墙课程设计计算书

1. 设计资料 1.1基础资料 ①省道S313,路基宽10米,路面宽7米,两侧路肩宽各1.5米,在桩号 段为填方路堤,填方边坡坡度为1:1.5。为保证路堤边坡稳定,少占地拆迁,拟采用重力式挡土墙。 ②墙高6.2米,墙背仰斜坡度1:0.24 (=13.5 °),墙身分段长度20米 ③墙背填土重度,内摩擦角角,地基为岩石,地基谷许承载力 f=0.45 ④砌体重度一,砌体容许压应力°;填土与墙背间摩擦 ,基底摩擦系数 ,容许剪应力 1.2设计依据 ①挡土墙课程设计任务书 ②《公路路基设计规范》JTG D30-245 ③《路基路面工程》第四版一一人民交通出版社2014

2. 初拟挡土墙结构形式、尺寸 2.1墙身结构形式、尺寸 挡土墙咼6.2m ,挡墙以上边坡咼a=1m 初拟挡墙顶宽1.0m 2.2基础结构形式、尺寸 采用扩大浅基础,初选基础埋深为 1.0m ,厚度为0.5m ,净边宽为0.25m, 高宽比为2: 1 0挡墙形式如图2-1 1.0 1.5 图2-1挡墙形式 76 50 斗 26

3. 确定车辆荷载及当量土柱高度 挡土墙设计中,换算均布土层厚度()可直接由挡土墙高度确定的付家何在强度计算。即 - (3-1) 式中:——墙后填土重度 H=6.2m,由线性内插法确定()—— =14.75(KPa) 换算均布土层厚度-=——

4. 破裂面棱体位置确定 4.1破裂角计算 假设破裂面交于荷载中部,如图4-1,则有: O O O O 式中:一一墙背倾斜角(°),俯斜墙背为正,仰斜墙背为负 ――墙背与填土间的摩擦角(°) ――填土的内摩擦角(°) 因为 1.0 1.5 图4-1假设破裂面位置图令破裂棱体的断面面积S= =31.68 =9.24 =-0.95+ =0.7129

2012年渡课程设计指导

渡槽课程设计指导书 (无拉杆矩形槽) 第一部分课程设计任务书 简要叙述课程设计的任务,包括原始数据、要求计算的内容、以及要求绘图的内容。 第二部分渡槽尺寸的确定 在该部分的计算书中,要按比例绘制相应的尺寸图,以便判断是否合理。 1、槽身纵向尺寸:例如渡槽纵向长12 m,包含槽身之间的伸缩缝缝隙长度30~50mm;支座采用板式橡胶支座,尺寸为φ200 mm,厚50 mm。支座的边缘到槽身的边缘,以及到刚架牛腿的边缘应符合教材369页表11-15的规定。 2、槽身横向尺寸: 槽身的净宽(过水部分):按设计水深深宽比H/B = 0.6~0.8 确定 槽身的净高= 校核水深+ 0.4~0.2 m 有通航要求时不设拉杆,侧墙做成变厚度的,顶厚不小于100mm,底厚常大于150mm,矩形槽身底板底面可与侧墙底缘齐平或适当高于侧墙底缘,后者用于简支梁式槽身时可以减小底板的拉应力。 槽身侧墙的厚度可以和底板的厚度不一致,但是厚度(平均)都不应该小于200mm。 人行道板的宽度可取为700~1500mm,板厚60~200mm。 3、槽身局部尺寸 贴角尺寸:45°,高度200~300mm。 4、刚架尺寸 刚架柱的截面最小尺寸不应该小于300 mm。 立柱断面尺寸:长边(顺槽向)1b为排架总高的(1/20~1/30),常采用

m b 7.0~4.01=;短边(横槽向)11)8.0~5.0(b h =,常采用m h 5.0~3.01=。 横梁间距可等于或略大于立柱间距。横梁高2h 可为跨度(即立柱间距)的1/6~1/8,梁宽2b 为2)7.0~5.0(h 1-1 侧墙的配筋要选择最不利的组合的内力计算结果进行。

课程设计计算书资料

东东南大学成人教育学院夜大学 课程设计计算书 题目:混凝土单向板肋梁楼盖设计 课程:工程结构设计原理 院部:继续教育学院 专业:土木工程 班级:YS05115 学生姓名:刘晓强 学号:5320005115152023 设计期限:2016. 06——2016. 08 指导教师:谢鲁齐 教研室主任: 院长(主任): 东南大学继续教育学院 2016年8月30 日

目录 1 设计资料 (1) 2 平面结构布置 (1) 3 板的设计 (2) 3.1 荷载计算 (2) 3.2 板的计算简图 (2) 3.3 板弯矩设计值 (3) 3.4 板正截面受弯承载力计算 (4) 3.5 绘制板施工图 (5) 4 次梁设计 (5) 4.1 次梁的支承情况 (5) 4.2 次梁荷载计算 (5) 4.3 次梁计算跨度及计算简图 (6) 4.4 次梁内力计算 (6) 4.5 次梁正截面承载力计算 (7) 4.6 次梁斜截面承载力计算 (8) 5 主梁设计 (8) 5.1 主梁支承情况 (8) 5.2 主梁荷载计算 (9) 5.3 主梁计算跨度及计算简图 (9) 5.4 主梁内力计算 (9) 5.5 主梁正截面受弯承载力计算 (11) 5.6 主梁斜截面受剪承载力计算 (12)

1 设计资料 某工业车间楼盖,平面如图所示(楼梯在平面外)。墙体厚度370mm,柱子截面尺寸按400×400mm。 楼面活载为6.20kN/m2。采用C30混凝土,板中钢筋一律采用HPB300级钢筋,梁中受力纵筋采用HRB335级钢筋,其余采用HPB300级钢筋。楼面采用20mm厚水泥砂浆面层(20kN/m3),板底抹灰采用15mm厚石灰砂浆(17kN/m3)。厂房安全等级为一级。 2 平面结构布置 (1)主梁沿着纵向布置,跨度为3.60m,次梁的跨度为6.30m,主梁每跨内布置一根次梁,板的跨度为2.10m。楼盖结构布置图如下: 图2.1楼盖结构布置图 (2)按高跨比条件,当h≥1/40l=1500/40=37.50mm时,满足刚度要求,可不验算挠

挡土墙设计计算书(长沙理工大学版)

挡土墙设计 在路基段K3+680-K3+800、K2+300-K2+400左侧设置浆砌块石俯斜式路堤墙,用以收缩坡脚。现取K2+300段挡土墙进行设计验算。 3.1 挡土墙资料 在该次设计任务段K3+680-K3+800、K2+300-K2+400两段地面向某一边倾斜,且斜率较大。为了减少填土及解决占地过大的问题,在该两段均设路堤墙以收缩坡脚。K2+300段采用俯斜式路堤墙,M7.5浆砌片石砌筑,墙身分段长为10m,墙上填土高度为4m,墙高8.8m,填土边坡为1:1.5;路基填土为粘性土,粘聚力c=18kPa,填土重度γ=18kN/m3,内摩擦角ψ=35°。 墙面坡度为1:0.05,墙背坡度为1:0.34,基底水平,墙趾垂直,墙趾宽0.45m,高0.8m。墙背摩擦角δ=17.5°;墙身容重为23kN/m3,截面容许应力为1000kPa,拉应力[бa]=90kPa,剪应力[б1]=180kPa。地基为全风化花岗斑岩,基底摩擦系数f1=0.41,圬工间摩擦系数f2=0.5;地基容许承载力为500kPa。 3.1.1挡土墙构造 以K2+300横断面挡墙为例进行验算,墙体结构如图3-1所示: 图3-1

挡土墙尺寸图如图3-2所示 图3-2 3.1.2 车辆荷载换算 h 0=0.868m 3.2 挡土墙验算 3.2.1 破裂棱体位置确定 破裂角θ的计算 Ψ=α+δ+φ=19°+17.5°+35°=71.5° 假设破裂角交于荷载范围内,则有: A 0= 21(a+H+2h 0)(a+H)=2 1?(4+10+2?0.868)(4+10)=99.43 B 0=21ab+(b+d)h 0-2 1H (H+2a+2h 0)tan α =21?4?6+(6+0.75)?0.868-21?10?(10+2?4+2?0.868)?tan19°=-16.12 D -±-=ψψθ2sec tan tan ()()()4984.0cos sin cos cos sin 000=?? ????-++---=?λ?ψψ?ψ?c h a H c A B A D

工程结构课程设计计算书

工业大学 工程结构课程设计说明书 题目:工程结构课程设计(36组) 院(系):管理学院 专业班级:工程管理132班 学号: XXXXXXXXXX 学生: XXXXXXXX 指导教师: XXXXXX 教师职称:教授 起止时间:2016.1. 4-2016.1.15

课程设计(论文)任务及评语

目录 1.设计资料---------------------------------------------------------------1 2.楼盖的结构平面布置---------------------------------------------------1 3.板的设计-------------------------------------------------------------- 2 (1)荷载计算---------------------------------------------------------------2 (2)计算简图--------------------------------------------------------------2 (3)弯矩设计值------------------------------------------------------------3 (4)正截面承载力计算-------------------------------------------------------3 4.次梁设计---------------------------------------------------------------4(1)荷载设计值-------------------------------------------------------------4 (2)计算简图-------------------------------------------------------------- 4 (3)力计算---------------------------------------------------------------4 (4)承载力计算------------------------------------------------------------5 5.主梁设计---------------------------------------------------------------6 (1)荷载设计值-------------------------------------------------------------6 (2)计算简图--------------------------------------------------------------6 (3)力设计值及包络图-----------------------------------------------------7 (4)承载力计算-------------------------------------------------------------9 6.参考文献--------------------------------------------------------------11

相关文档
最新文档