(北师大版) 九年级上学期 相似三角形专题训练(七) 之基本模型(有答案)

专题训练(七) 相似三角形的基本模型

下面仅以X字型、A字型、双垂型、M字型4种模型设置练习,帮助同学们认识基本模型,并能从复杂的几何图形中分辨出相似三角形,进而解决问题.

模型1 X字型及其变形

(1)如图1,对顶角的对边平行,则△ABO∽△DCO;

(2)如图2,对顶角的对边不平行,则△ABO∽△CDO.

1.如图,在ABCD中,AC与B D交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC等于( )

A.1∶4 B.1∶3 C.2∶3 D.1∶2

2.将一副三角尺如图所示叠放在一起,则BE

EC

的值是________.

3.已知:如图,∠ADE=∠ACB,BD=8,CE=4,CF=2,求DF的长.

模型2 A字型及其变形

(1)如图1,公共角所对应的边平行,则△ADE∽△ABC;

(2)如图2,公共角的对边不平行,且有另一对角相等,两个三角形有一条公共边,则△ACD∽△ABC.

4.如图,已知菱形ABCD的边长为3,延长AB到E,使BE=2AB,连接EC并延长交AD的延长线于点F,求AF的长.

5.如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.求证:AB

AE

AC

AD

.

6.如图,AD与BC相交于E,点F在BD上,且AB∥EF∥CD,求证:1

AB +

1

CD

1

EF

.

模型3 双垂型

直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD.

7.如图,在Rt△ABC中,CD⊥AB,D为垂足,且AD=3,AC=35,则斜边AB的长为( )

A.3 6 B.15 C.9 5 D.3+3 5

8.如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,AD=9,BD=4, 那么CD=________,AC=________.

模型4 M字型

Rt△ABD与Rt△BCE的斜边互相垂直,则有△ABD∽△CEB.

9.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,求AB的长.

10.如图,在正方形ABCD 中,E 为边AD 上的点,点F 在边CD 上,且CF =3FD ,∠BEF =90° (1)求证:△ABE ∽△DEF ;

(2)若AB =4,延长EF 交BC 的延长线于点G ,求BG 的长.

参考答案

1.D 2.

33

3.∵∠ADE =∠ACB ,∴180°-∠ADE =180°-∠ACB ,即∠BDF =∠ECF.又∵∠BFD =∠EFC ,∴△BDF ∽△ECF.∴BD

CE

DF CF ,即84=DF

2

.∴DF =4. 4.∵BE =2AB ,AB =3,∴BE =6,AE =9.∵四边形ABCD 是菱形,∴BC ∥AF.∴△EBC ∽△EAF.∴BE AE =BC AF .∴AF =AE·BC

BE

9×36=9

2

. 5.证明:∵AB =AD ,∴∠ADB =∠ABE.又∵∠ADB =∠ACB ,∴∠ABE =∠ACB.又∵∠BAE =∠CAB ,∴△ABE ∽△ACB.∴AB AC =AE AB .又∵AB =AD ,∴AB AC =AE AD .∴AB AE =AC AD

. 6.证明:∵AB ∥EF ,∴△DEF ∽△DAB.∴EF AB =DF BD .又∵EF ∥CD ,∴△BEF ∽△BCD.∴EF CD =BF BD .∴EF AB +EF CD =DF BD +BF BD =

BD

BD

=1.∴1AB +1CD =1

EF .

7.B 8.6 313

9.∵AB ⊥BD ,ED ⊥BD ,∴∠B =∠D =90°,∠A CB +∠A =90°.∵AC ⊥CE ,∴∠ACB +∠ECD =90°.∴∠A =

∠ECD.∴△ABC ∽△CDE.∴AB CD =BC ED .又∵C 是线段BD 的中点,ED =1,BD =4,∴BC =CD =2.∴AB 2=2

1

.∴AB =4.

10.(1)证明:∵四边形ABCD 为正方形,∴∠A =∠D =90°.∴∠ABE +∠A EB =90°.又∵∠BEF =90°,∴∠AEB +∠DEF

=90°.∴∠ABE=∠DEF.∴△ABE∽△DEF.

(2)∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3.∵△ABE∽△DEF,∴AE

DF=

AB

DE,即

4-DE

1=

4

DE.∴DE=2.又

∵ED∥CG,∴△EDF∽△GCF.∴ED

GC=

DF

CF,即

2

GC=

1

3.∴GC=6.∴BG=BC+CG=4+6=10.

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

2020中考数学 模型构建专题:相似三角形中的基本模型

模型构建专题:相似三角形中的基本模型 ——熟知需要用相似来解决的图形 ◆模型一 “A”字型 1.(2017·湘潭中考)如图,△ABC 中,D 、E 分别为AB 、AC 的中点,则△ADE 与△ABC 的面积比为________. 第1题图 第2题图 2.如图,△ABC 中,点D 、E 分别在边AB 、AC 上,请添加一个条件:____________,使△ABC ∽△AED . 3.如图,在△ABC 中,DE ∥BC ,AD AB =2 3,M 为BC 上一点,AM 交DE 于N . (1)若AE =4,求EC 的长; (2)若M 为BC 的中点,S △ABC =36,求S △ADN 的值. ◆模型二 “X”字型 4.(2016·哈尔滨中考)如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( ) A.AD AB =AE AC B.DF FC =AE EC C.AD DB =DE BC D.DF BF =EF FC 第4题图 第5题图 第6题图 5.(2016·贵港中考)如图,?ABCD 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①∠ACD =30°;②S ?ABCD =AC ·BC ;③OE ∶AC =3∶6;④S △OCF =2S △OEF ,其中成立的有( ) A .1个 B .2个 C .3个 D .4个 6.如图,已知AD 、BC 相交于点O ,AB ∥CD ∥EF ,如果C E =2,EB =4,FD =1.5,那么AD =________. 7.如图,四边形ABCD 中,AD ∥BC ,点E 是边AD 的中点,连接BE 并延长交CD 的延长线于点 F ,交AC 于点 G . (1)若FD =2,ED BC =1 3 ,求线段DC 的长;

初三数学《相似三角形》专题复习

B C 初三数学期末复习 相似三角形及应用 一、比例的基本性质,线段的比、成比例线段,黄金分割. (1)比例的基本性质:b a =d c ?ad=bc (b d ≠0) 1、甲、乙两地的实际距离20千米,则在比例尺为 1∶1000000 的地图上两地间的距离应为 厘米. 2、若3a =5b ,则a b = . 3、若线段a 、b 、c 、d 成比例且a =3cm ,b =6cm ,c =5cm ,则d = cm . 二、两个三角形相似的条件.常用基本图形——A 形、X 形…… 例1、已知如图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个的两个三角形而言,下列说法正确的是( ) A.都相似 B.都不相似 C.只有(1)相似 D.只有(2)相似 2、如图, 小正方形的边长均为1, 则下列图中的三角形(阴影部分)与△ABC 相似的是( ) 三、相似三角形的概念、性质:相似多边形的对应角相等,对应边成比例,面积比等于对应边 比的平方. 例题1.△ABC 的三条边的长分别为3、4、5,与△ABC 相似的△A′B′C′的最长边为15. 求△ A′B′C′最短边的长. 变化:△ABC 的三条边的长分别为3、4、5,与△ABC 相似的△A′B′C′的一边长为15. 求△ A′B′C′的周长. 4、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O , 若1AD =,3BC =,则AO CO 的值为 (1) A B C D O 4 3 6 8 (2)

5、如图,□ ABCD 中,E 为DC 边的中点,AE 交BD 于O ,若DO =4cm ,BO = cm . 6、如图所示,在△ABC 中,∠C=90°,AC=3,D 为BC 上一点,过点D 作DE ⊥BC 交AB 于E ,若ED=1,BD=2,则DC 的长为________. 7、如图所示,在△ABC 中,∠C=90°,AC=3,D 为BC 上一点,过点D 作 DE ⊥AB 于E ,若ED=1,BD=2,则DC 的长为________. 8、如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :AB =1:3,则△ADE 与△ABC 的面积比为 . 9、如图,DE 是△ABC 的中位线,S △ADE =2,则S △ABC =_______. 10、如图所示,已知点E F 、分别是ABC △中AC AB 、边的中点,BE CF 、相交于点G , 2FG =,则CF =_______. 11、如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A 与点B 重合, 折痕为DE ,则S △BCE :S △BDE 等于( ) A . 2:5 B .14:25 C .16:25 D . 4:21 12、如图,△ABC,是一张锐角三角形的硬纸片,AD 是边BC 上的高,BC=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在BC 上,顶点G 、H 分别在AC ,AB 上,AD 与HG 的交点为M. (1)、求证:;AM HG AD BC = (2)、求这个矩形EFGH 的周长. A D E C B O A F E C B

相似三角形模型分析大全(非常全面-经典)

相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B

(四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:

二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到。 8字型拓展 C B E D A 共享性 G A B E F 一线三等角的变形 一线三直角的变形

第二部分相似三角形典型例题讲解 母子型相似三角形 例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OE OA OC? = 2. 例2:已知:如图,△ABC中,点E在中线AD上, ABC DEB∠ = ∠. 求证:(1)DA DE DB? = 2;(2)DAC DCE∠ = ∠. C D E B

例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 相关练习: 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。 求证:(1)△AME ∽△NMD; (2)ND 2 =NC ·NB

初三数学的相似三角形的常见模型

相似三角形常见模型一【知识清单】 【典例剖析】 知识点一:A字型的相似三角形 A字型、反A字型(斜A字型) B(平行) B (不平行)

(1)如图,若BC DE ∥,则ABC ADE ∽△△ (2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则 ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连接DE ,可得?=∠+∠180C BDE ,线段BC DE 21=,AE AD 3 2=, 求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, F E D C B A B M 1F 1E 1M E F A B C M N A B C D E F

::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD ∥BC ,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 知识点二:8字型相似三角形 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (1)如图,若CD AB ∥,则DOC AOB ∽△△ (2)如图,若C A ∠=∠,则CDJ ABJ ∽△△ 1、已知,P 为平行四边形ABCD 对角线,AC 上一点,过点 P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相 交于点E ,F ,G ,H 求证:PE PH PF PG = P H G F E D C B A

最新初三数学专题复习(相似三角形)

中考复习--相似三角形 【课前热身】 1.以下列长度(同一单位)为长的四条线段中,不成比例的是( ) A .2,5,10,25 B .4,7,4,7 C .2,0.5,0.5,4 D .2,5,52,25 2.两地的距离是 500 米,地图上的距离为 10 厘米,则这张地图的比例尺为( ) A .1∶50 B .1∶500 C .1∶5000 D .1∶50000 3.下列各组图形不一定相似的是( ) A .两个等边三角形 B .各有一个角是100°的两个等腰三角形 C .两个正方形 D .各有一个角是45°的两个等腰三角形 4.△ABC 的三边之比为 3∶4∶5,若 △ABC∽△A'B'C' ,且△A'B'C' 的最短边长为6,则△A'B'C'的周长为 ( ) A .36 B .24 C .18 D .12 5.如图,在△ABC 中,若D 、E 分别是边AB 、AC 上的点,且DE∥BC,AD=1,DB=2, 则△ADE 与△ABC 的面积比为____________; 【中考考点链接】 一、相似三角形的定义 三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法 判定1. 两个角对应相等的两个三角形__________. 判定2. 两边对应成_________且夹角相等的两个三角形相似. 判定3. 三边对应成比例的两个三角形___________. 【拓展】常见的相似形式: 1. 若DE∥BC(A 型和X 型)则______________. 2. 射影定理:若CD 为Rt△ABC 斜边上的高(双直角图形) 则Rt△ABC∽Rt△ACD∽Rt△CBD 且AC 2=________,CD 2=_______,BC 2=__ ____. 三、相似三角形的性质 1. 相似三角形的对应边_________,对应角________. 2. 相似三角形的对应边的比叫做________,一般用k 表示. 3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______?线的比等于_______比,周长之比也等于________比,面积比等于_________. 【典例精析】 1、比例的性质 例1:若322=-y y x , 则_____=y x ; 变式1.若a ∶3 =b ∶4 =c ∶5 , 且6=-+c b a , 则___________,____,===c b a ; E D C B A 第5题图

最新九年级数学专题复习 相似三角形解题技巧及口诀

F 相似三角形解题技巧及口诀 A 字形,A ’形,8 旋转形 双垂直结论:射影定理:①直角三角形中, 斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项 ⑴△ACD ∽△CDB →AD:CD=CD:BD →CD2=AD ?BD ⑵△ACD ∽△ABC →AC:AB=AD:AC →AC2=AD ?AB ⑶△CDB ∽△ABC →BC:AC=BD:BC →BC2=BD ?AB 结论:⑵÷⑶得AC2:BC2=AD:BD 结论:面积法得AB ?CD=AC ?BC →比例式 证明等积式(比例式)策略 直接法:找同一三角形两条边 变化:等号同侧两边同一三角形 三点定形法 2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换; ⑵创造条件 ①添加平行线——创造“A ”字型、“8”字型 ②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略: 遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。 彼相似,我角等,两边成比边代换。 (3)等比代换:若是四条线段,欲证,可先证得 ( 是两 条线段)然后证,这 里把叫做中间比。 ①∠ABC=∠ADE .求证:AB ·AE=AC ·AD ②△ABC 中,AB=AC ,△DEF 是等边三角形 求证: BD?CN=BM?CE . ③等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。 求证:BP ?PC=BM ?CN ?有射影,或平行,等比传递我看行 ①在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,E 为AC 的中点,求证:AB ?AF=AC ?DF

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

华东师大版数学九年级上册8.考点综合专题:相似三角形与其他知识的综合

考点综合专题:相似三角形与其他知识的综合 ◆类型一相似与四边形 1.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME =3,则AN=() A.3 B.4 C.5 D.6 第1题图 第2题图 2.如图,在?ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F.S△DEF∶S△ABF =4∶25.则DE∶EC=. 3.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE 与△DEF相似吗?为什么? 4.(上海中考)如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE. (1)求证:DE⊥BE; (2)如果OE⊥CD,求证:BD·CE=CD·DE.

◆类型二相似与函数 5.(滨州中考)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA 的两边分别与函数y=- 1 x、y= 2 x的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大 C.时大时小D.保持不变 第5题图 第6题图 6.(重庆模拟)如图,点A在双曲线y= 3 x上,点B在双曲线y= k x(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12 7.如图,在矩形ABCD中,AB=4,BC=3,O为矩形的对称中心,OE⊥OF,若设OE=x,OF=y,则x与y之间的函数关系为. 考点综合专题:相似三角形与其他知识的综合 1.B 2.2∶3

3.解:△ABE与△DEF相似.理由如下:∵四边形ABCD为正方形,∴∠A=∠D=90°,AB=AD=CD.设AB=AD=CD=4a,∵E为边AD的中点,CF=3FD,∴AE=DE= 2a,DF=a,∴ AB DE= 4a 2a=2, AE DF= 2a a=2,∴ AB DE= AE DF,而∠A=∠D,∴△ABE∽△DEF. 4.证明:(1)∵四边形ABCD是平行四边形,∴BO=OD.∵OE=OB,∴OE=OD,∴∠OBE =∠OEB,∠OED=∠ODE.∵∠OBE+∠OEB+∠OED+∠ODE=180°,∴∠BEO+∠DEO =∠BED=90°,∴DE⊥BE; (2)∵OE⊥CD,∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE.∵OB= OE,∴∠DBE=∠CEO,∴∠DBE=∠CDE.∵∠BED=∠BED,∴△BDE∽△DCE,∴ BD CD = DE CE,∴BD·CE=CD·DE. 5.D 6.B解析: 过点B作BE⊥x轴于E,延长线段BA,交y轴于F.∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y= 3 x上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴ OD AB= CD AC= 1 2,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9.故选B. 7.y= 3 4x 8.解:如图,过点P作PM⊥AB,则∠PMB=90°,当PM⊥AB时,PM最短,因为直 线y= 3 4x-3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,-3).在Rt△AOB中,AO=4,BO=3,AB=32+42=5.∵∠BMP=∠AOB=90°,∠ABO =∠PBM,PB=OP+OB=7,∴△PBM∽△ABO,∴ PB AB= PM AO,即 7 5= PM 4,∴可得PM= 28 5. 8.(宿迁中考)如图,在平面直角坐标系中,点P的坐标为(0,4),直线y= 3 4x-3与x 轴、y轴分别交于点A、B,点M是直线AB上的一个动点,求PM长的最小值.

相似三角形几种基本模型

相似三角形基本模型 经典模型 “平行旋转型” 图形梳理: AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ F'C B B C AEF 旋转到 AE‘F’ A B C AEF 旋转到AE‘F’ 特殊情况:B 、'E 、'F 共线

AEF 旋转到AE‘F’C B A A B C E F E' F'AEF 旋转到AE‘F’ C ,'E ,'F 共线 AEF 旋转到AE‘F’ C B A AEF 旋转到AE‘F’ C B A 母子型 已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 相似三角形常见的图形 1、下面我们来看一看相似三角形的几种基本图形: (1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图) (2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。(有“反A 共角型”、 “反A 共角共边型”、 “蝶型”) A E A D E 4 1 B (3) D B (2) D

(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”“三垂直型”) (4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。 (5)母子型 已知∠ACB=90°,AB⊥CD,则△CBD∽△ABC∽△ACD. 2、几种基本图形的具体应用: (1)若DE∥BC(A型和X型)则△ADE∽△ABC (2)射影定理若CD为Rt△ABC斜边上的高(双直角图形) 则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB ; (3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB. (4)当AD AE AC 或AD·AB=AC·AE时,△ ADE∽△ACB. B E A C D 1 2 B B C(D )

最新九年级圆与相似三角形专题复习

九年级圆中三角形相似复习专题 1.(2014·荆州)如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连接AD ,DE ,AE 与BD 相交于点C , 要使△ADC 与△ABD 相似,可以添加一个条件,下列添加的条件其中错误的是( ) A .∠ACD =∠DA B B .AD =DE C .AD2=B D ·CD D .AD ·AB =AC ·BD (第一题) (第二题) 2.如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连接CD ,OD ,给出以下四 个结论:①AC ∥OD ;②CE =OE ;③△ODE ∽△AOD ;④2CD2=CE ·AB ,其中正确结论的序号是__________. 3.如图,边长为2的正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点F ,作△CPF 的外 接圆⊙O ,连接BP 并延长交⊙O 于点E ,连接EF ,则EF 的长为( ) A .32 B .53 C .35 5 D .45 5 4.如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似 吗?请证明你的结论. (第三题) (第四题) 5.如图,AB 是⊙O 的直径,点E 是AD ︵ 上的一点,∠DBC =∠BED. (1)求证:BC 是⊙O 的切线; (2)已知AD =3,CD =2,求BC 的长.

6.如图,AB 是⊙O 的直径,过点O 作弦BC 的平行线,交过点A 的切线AP 于点P ,连接AC. (1)求证:△ABC ∽△POA ; (2)若OB =2,OP =72,求BC 的长. 7.如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线,交BC 于E. (1)求证:点E 是边BC 的中点; (2)求证:BC2=BD ·BA.

相似三角形模型分析大全(精)

第一部分相似三角形知识要点大全 知识点1..相似图形的含义 把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形) 解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到. (2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同. (3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关. 例1.放大镜中的正方形与原正方形具有怎样的关系呢? 分析:要注意镜中的正方形与原正方形的形状没有改变. 解:是相似图形。因为它们的形状相同,大小不一定相同. 例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号). 解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥. 知识点2.比例线段 对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a c b d =(或 a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段. 解读:(1)四条线段a,b,c,d成比例,记作a c b d =(或a:b=c:d),不能写成其他形式,即比例线段 有顺序性. (2)在比例式a c b d =(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比例内项,d 是第四比例项. (3)如果比例内项是相同的线段,即a b b c =或a:b=b:c,那么线段b叫做线段和的比例中项。 (4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等. 例3.已知线段a=2cm, b=6mm, 求a b . 分析:求a b 即求与长度的比,与的单位不同,先统一单位,再求比. 例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=3 2 dm,求c的长度. 分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c. 知识点3.相似多边形的性质 相似多边形的性质:相似多边形的对应角相等,对应边的比相等. 解读:(1)正确理解相似多边形的定义,明确“对应”关系. (2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性. 例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少? 分析:四边形ABCD与四边形A1B1C1D1相似,且它们的相似比为对应的最大边长的比,即为1 3 ,再根据相似多 边形对应边成比例的性质,利用方程思想求出最小边的长.知识点4.相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比.

最新九年级圆与相似三角形专题复习

九年级圆中三角形相似复习专题 1、 黄金分割点:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果 AC BC AB AC = ,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。其中AB AC 2 1 5-= ≈0.618AB 。 2、 黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点.作法: (1)过点B 作BD ⊥AB ,使BD=0.5AB ; (2)连结AD ,在DA 上截取DE=DB ; (3)在AB 上截取AC=AE ,则点C 就是所求作的线段AB 的黄金分割点。 (4)矩形中,如果宽与长的比是黄金比,这个矩形叫做黄金矩形 3、相似三角形 1)定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。 几种特殊三角形的相似关系:两个全等三角形一定相似。 两个等腰直角三角形一定相似。 两个等边三角形一定相似。 两个直角三角形和两个等腰三角形不一定相似。 补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等); 4、 性质:两个相似三角形中,对应角相等、对应边成比例。 5、 相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。 如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。相似比为k 。 6、判定:①定义法:对应角相等,对应边成比例的两个三角形相似。 ②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。 三角形相似的判定定理: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似。(此定理用的最多) 判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似。 判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似;简述为:三边对应成比例,两三角形相似。 7、 直角三角形相似判定定理: (1) 斜边与一条直角边对应成比例的两直角三角形相似。 (2) 直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角 形也相似。

(完整版)相似三角形经典模型总结及例题分类.doc

WORD 格式可编辑 相似三角形经典模型总结 经典模型 平移旋转 180° ∽ 平行型 平行型 翻折 180° 翻折 180° 一般 特殊 翻折 180° 斜交型 斜交型 特殊一边平移 一般 平移 特殊 双垂直 斜交型 双垂直 一般 【精选例题】 “平行型” 【例 1】如图,EE1∥FF1∥MM1,若AE EF FM MB , 则S AEE : S四边形EE FF : S四边形FF M M : S四边形 MM C B _________ 1 1 1 1 1 1 A E E1 F F 1 M M1 B C

WORD 格式可编辑 【例 2】如图,AD∥EF∥MN∥BC,若AD 9,BC 18 , AE:EM :MB 2:3:4,则EF _____ , MN _____ A D E F M N B C 【例 3】已知,P为平行四边形ABCD 对角线, AC 上一点,过点P 的直线与 AD , BC , CD 的延长线, AB 的延长线分别相交于点 E , F , G , H 求证: PE PH PF PG G D C E P F A B H 【例 4】已知:在ABC 中, D 为 AB 中点, E 为 AC 上一点,且 AE 2, BE、 CD相交于点 F , 求BF 的 值 EC EF A D F E B C 【例 5】已知:在ABC 中, AD 1 AB,延长 BC到F ,使CF 1 BC,连接 FD交 AC于点 E 2 3 求证:① DE EF ② AE 2CE A D E B

专业知识分享

【例 6】已知:D,E为三角形ABC 中 AB 、BC 边上的点,连接 DE 并延长交 AC 的延长线于点 F ,BD: DE AB: AC 求证:CEF 为等腰三角形 A C D E B F 【例7】如图,已知 AB / / EF / /CD ,若 AB a , CD b , EF c ,求证:1 1 1 . c a b A C E B F D 【例 8】如图,找出S ABD、 S BED、 S BCD之间的关系,并证明你的结论. C A E B F D 【例 9】如图,四边形ABCD 中, B D90M 是 AC 上一点, ME AD 于点 EMF BC ,, 于点 F 求证:MF ME 1 AB CD D E M A C F B

(北师大版) 九年级上学期 相似三角形专题训练(七) 之基本模型(有答案)

专题训练(七) 相似三角形的基本模型 下面仅以X字型、A字型、双垂型、M字型4种模型设置练习,帮助同学们认识基本模型,并能从复杂的几何图形中分辨出相似三角形,进而解决问题. 模型1 X字型及其变形 (1)如图1,对顶角的对边平行,则△ABO∽△DCO; (2)如图2,对顶角的对边不平行,则△ABO∽△CDO. 1.如图,在ABCD中,AC与B D交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF∶FC等于( ) A.1∶4 B.1∶3 C.2∶3 D.1∶2 2.将一副三角尺如图所示叠放在一起,则BE EC 的值是________. 3.已知:如图,∠ADE=∠ACB,BD=8,CE=4,CF=2,求DF的长. 模型2 A字型及其变形 (1)如图1,公共角所对应的边平行,则△ADE∽△ABC; (2)如图2,公共角的对边不平行,且有另一对角相等,两个三角形有一条公共边,则△ACD∽△ABC. 4.如图,已知菱形ABCD的边长为3,延长AB到E,使BE=2AB,连接EC并延长交AD的延长线于点F,求AF的长.

5.如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.求证:AB AE = AC AD . 6.如图,AD与BC相交于E,点F在BD上,且AB∥EF∥CD,求证:1 AB + 1 CD = 1 EF . 模型3 双垂型 直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,即△ACD∽△ABC∽△CBD. 7.如图,在Rt△ABC中,CD⊥AB,D为垂足,且AD=3,AC=35,则斜边AB的长为( ) A.3 6 B.15 C.9 5 D.3+3 5 8.如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,AD=9,BD=4, 那么CD=________,AC=________. 模型4 M字型 Rt△ABD与Rt△BCE的斜边互相垂直,则有△ABD∽△CEB. 9.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,求AB的长.

相似三角形”A“字模型(含详细答案)-经典

1 / 3 教师辅导教案 授课日期: 年 月 日 授课课时: 课时 学员姓名 年 级 辅导科目 数学 学科教师 班 主 任 授课时间 教学课题 教学目标 教学重难点 课前检查 作业完成情况: 优□ 良□ 中□ 差□ 建 议: 教学内容 一、相似三角形的性质 1.相似三角形的对应角相等 ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠, ,. 2.相似三角形的对应边成比例 ABC △与A B C '''△相似,则有 AB BC AC k A B B C A C ==='''''' (k 为相似比). 3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比. ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AM k A B B C A C A M ==== ''''''''(k 为相似比). ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ==== '''''''' (k 为相似比). ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分 线,则有AB BC AC AD k A B B C A C A D ==== ''''''''(k 为相似比). 4.相似三角形周长的比等于相似比. ABC △与A B C '''△相似,则有 AB BC AC k A B B C A C ==='''''' (k 为相似比).应用比例的等比性质有AB BC AC AB BC AC k A B B C A C A B B C A C ++===='''''''''''' ++. 5.相似三角形面积的比等于相似比的平方. ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有

人教版初三数学下册三垂直模型-相似三角形专题(学案)

三垂直模型相似三角形(学案) 班别姓名 一、学习目标 1、掌握相似三角形的性质和判定,并能熟练运用三垂直模型解决问题。 2、经历运用相似三角形的基础知识解决的过程,体验图形的运动以及方程等数学思想。 二、授课 (一)【导入新课】 (二)【探究活动】 【探究1】构造格点三角形 请在图1中画一个直角三角形ABC, 满足条件:(1)以线段AC为斜边; (2)顶点B落在线段MT的格点上。 【探究2】构造三垂直模型 在图1正方形中,且∠ABC=90°,ΔAMB与ΔBTC这两个三角形相似吗?请写出依据。

F E D C B A 例题1:如图,在矩形ABCD 中,点E 、F 分别在边AD 、D C 上, ∠BEF=90°,AB=6,AE=9,DE=2,求线段EF 的长度。 【探究3】构造折叠 例题2:如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知CE=6cm,AB=16cm,求BF 的长。 (三)下面我们研究一下三垂直模型中,三个三角形出现两两相似的情况。 【探究4】综合运用 如图2,在矩形ABCD 中,AB=5,BC=2,且A ,B ,C ,D 四点均在正方形网格(网格中每个小正方形的边长为1) 的格点(即每个小正方形的顶点)上,试在图2中画出 矩形ABCD 的边AB 上的一个点E ,连接ED 、EC,使得Rt ? CED 、Rt ?DAE 、Rt ?EBC ,三个三角形两两相似。

【探究5】 如图,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处。若Rt ?EMC、Rt?AME、Rt?BEC,三个三角形两两相似,则请试探究AB和BC的数量关系。 三、课堂检测: 如图,已知矩形ABCD中, AB=3,AD=2,点P是AB上的一个动点,与点A、B 不重合,过点P作PE垂直DP,交边BC于点E, 设PA=x,BE=y。求y关于x的函数关系式,写出x的取值范围, 并求出y的最大值。 四、小结收获,交流归纳

相关文档
最新文档