人工神经网络概论

人工神经网络概论
人工神经网络概论

人工神经网络概论

梁飞

(中国矿业大学计算机科学与技术学院信科09-1班,江苏,徐州,221116)

摘要:进入21世纪以来,神经网络近来越来越受到人们的关注,因为神经网络可以很容易的解决具有上百个参数的问题,它为大复杂度问题提供了解决一种相对来说比较有效的简单方法。人工神经网络是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。本文简要介绍了人工神经网络的工作原理、属性、特点和优缺点、网络模型、发展历史及它的应用和发展前景等。

关键词:人工神经网络;人工智能;神经网络;神经系统

1.人工神经网络的简介

人工神经网络(Artificial Neural Networks,简写为 ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。

2.人工神经网络的工作原理

人脑的处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高,但它通过超并行处理使得整个系统实现处理的高速性和表现的多样性。

因此,从处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能处理方法,一直是人工智能追求的目标。

人脑神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。

人们正是通过对人脑神经系统的初步认识,尝试构造出人工神经元以组成人工神经网络系统来对人的智能,甚至是思维行为进行研究:尝试从理性角度阐明大脑的高级机能。经过几十年的努力与发展,己涌现出上百种人工神经网络模型,它们的网络结构、性能、算法及应用领域各异,但均是根据生物学事实衍生出来的。由于其基本处理单元是对生物神经元的近似仿真,因而被称之为人工神经元。它用于仿效生物神经细胞最基本的特性,与生物原型相对应。

人工神经元的主要结构单元是信号的输入、综合处理和输出,其输出信号的强度大小反映了该单元对相邻单元影响的强弱。人工神经元之间通过互相联接形成网络,称为人工神经网络。神经元之间相互联接的方式称为联接模式,相互之间的联接度由联接权值体现在人工神经网络中,改变信息处理过程及其能力,就是修改网络权值的过程。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

人工神经网络处理信息的方式和人类大脑的工作方式类似。神经网络通过对示例进行学习,而不是通过编程用于完成某一具体任务。示例必须经过挑选,否则,会浪费宝贵的时间甚至有可能引起网络不能正常地发挥作用。而这样做的缺点就是因为网络完全依靠自己的能力来寻找解决该问题的方法,那么也就是说它的运行时间是不可预测的。

3.人工神经网络与人工智能

从广义上说,人工智能是计算机科学的一个分支,对于人工智能的研究,有实现功能的模拟和生理结构的模拟两种方法,前者即通常所说的人工智能(AI),后者即人工神经网络(ANN)。

人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。

人工神经网络具有某些和人工智能相同的目的,两者都试图建立智能机器,都试图模拟人类的思考推理能力,两种技术的研究人员也都试图理解和揭示人类的智能特性。两者在历史上有过共同的发展,然而两者从不同的方向去研究智能性质问题。

人工神经网络把注意力放在大脑的工作机理上。它采用自下而上的方法,从基础开始研究,即从生物学角度,由最简单的人工神经元开始,然后将它们按照大脑的基本结构连接组合为层次模型;它通过神经元的兴奋和抑制产生信息,通过神经元之间的相互作用对

信息经行处理和传递,通过学习使其具备智能性。

人工智能方法则是自上而下的。即试图给予心理学的理论建立系统模型。该系统模仿的是大脑做什么,很少涉及大脑如何做。最初的人工智能问题就是在计算机上编程实现的,并经常用到像“if-then”这样的规则形式。

人工智能和人工神经网络之间一个重要区别就是自学习能力。人工神经网络的自学习能力很强,一般用于学习所收集的数据越多,学习的就越完全、越精确。另一个巨大的差别就是速度和实时处理能力。人工神经网络的并行结构对此有极大的优越性,它可以迅速作出判决响应,同时它具有较强的容错能力。而人工智能技术在解决某些问题时遇到了困难,如视觉问题、连接语音的识别与综合问题、机器人的学习问题、单处理器的运算速度限制问题等,有些任务的算法太复杂以致无法实现。

虽然人工智能的研究目标仍未改变,但人工神经网络却使某些陷入困境的人工智能项目得到了帮助。人工神经网络与人工智能的结合将具有巨大的潜力。

4.人工神经网络发展历史

1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts提出了第一个神经元数学模型—MP模型,从而开创了人工神经网络研究的时代。1948年,John V on Neumann研究比较过人脑结构和指令存储式计算机的联系与区别,提出以简单神经元构成自再生自动机网络。1949年,心理学家D.O.Hebb提出神经元群、突触和返响回路的概念。1958年,F.RoSenblatt提出具有学习能力的“感知机”模型,完成了从单个神经元到三层神经网络的过渡。1960年,Widrow和Hoff提出自适应线性元Adaline网络,人工神经网络的到了进一步发展。1961年,Caianiello发表了关于神经网络数学的理论著作,提出了神经元方程,用布尔代数模拟机能的动力过程,分析并研制细胞有限自动机的理论模型。1969年,美国人工智能学家M.Minsky和S.Papert出版了《Perceptron》(《感知机》)一书,证明了单层神经网络甚至不能解决像“异或”这种简单的运算问题,并且不能训练已发现的许多模式。1981年,Kohonen提出了具有竞争的自组织特征映射(SOM)网络。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,采用全互连型神经网络模型,应用能量函数的概念,成功地解决了数字电子计算机不善于解决的经典人工智能难题—旅行商最优路径(TSP)问题。1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究。1983年,Sejnowski和Hinton提出了“隐单元”概念,推出大规模并行处理的Boltzmann机,使用多层神经网络并行分布改变个单元连接权,克服了单层网络的局限性为神经网络进入非线性处理领域奠定了基础。1987年6月21日至24日,第一届神经网络会议在美国SanDiego市召开,标志着ANN研究已遍及全世界。20世纪90年代后,ANN再现热潮,产生的各类模型已达几十种,与之相伴的是

大量出现的边缘交叉学科。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。

5.人工神经网络的四个基本属性

(1)非线性非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

(2)非局限性一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

(3)非常定性人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

(4)非凸性一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

6.人工神经网络的特点及优越性

ANN具有如下主要特点:

(1)能较好地模拟人的形象思维、人脑神经系统结构和功能,对信息进行并行分布处理。

(2)具有大规模并行协同处理能力。。

(3)具有较强的容错能力和联想能力。

(4)具有较强的学习能力。

(5)适应性集成。

(6)硬件实现。

ANN具有如下明显的优点:

①信息处理是并行性的;

②知识的存储是分布的;

③具有联想、模糊处理、自适应或自学习的能力,可以通过训练自动总结规律;

④局部错误对整体不会带来严重的影响,能够处理不完善的问题;

⑤能够很好地完成多变量模式识别

⑥能从部分样本中学到的知识推广到全体样本;

⑦能通过直接的数值数据进行训练并能自动地确定因果关系

此外,ANN还存在着很多问题:如训练时间长,需大量训练数据,不能保证最佳结果和完全可靠,容易陷入局部极小,不具备增量学习能力,联想存储网络容量小,所存储的信息相互干扰和退化,不适合高精度计算,没有很完善的学习方法,经验参数太多等。在实际应用中也存在着难以设计通用的神经网络芯片,大量的、动态的神经元互联实现困难等问题。因此,还需对ANN进行更深更进一步的研究。

7.人工神经网络的分类与模型

7.1人工神经网络的分类

人工神经网络从不同的角度进行划分,有以下几种分类结果:

(1)按网络拓扑结构划分。ANN可分为单纯的阶层网络、具有反馈的阶层网络、层内互联的阶层网络、相互连接型网络。

(2)按网络的学习方法划分。ANN可分为有师学习网络、无师学习网络和强化学习网络。(3)按网络的性能划分。ANN可分为连续型与离散型网络,或分为确定型与随机型网络。(4)按连接突触的性质划分。可分为一阶线性关联网络与高阶非线性关联网络。

7.2人工神经网络模型

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。下面是它们之中比较有代表性的一些模型。

(1)BP网络:BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层、隐层和输出层。

(2)感知器(perceptron):由美国心理学家罗森布拉特于1957年提出,是一个具有单层神经元的神经网络,它是最简单的前向网络主要用于模式分类,以及基于模式分类的学习控制和多模态控制中。单层感知器有它的局限性。但是,它在神经网络研究中有着重要的意义和地位。它不但引起了众多学者对神经网络研究的兴趣,推动了神经网络研究的发展,而且后来的许多神经网络模型都是在这种指导思想下建立的,或者是这种模型的改进和推广。

(3)Hopfield网络:由霍普菲尔德于1982年提出,它是一种带有反馈连接的循环神经网络,是一类不具有学习能力的单层自联想网络。Hopfield网模型由一组可使某个能量函数最小的微分方程组成。其不足在于计算代价较高,而且需要对称连接。

(4)自适应谐振理论(ART):此理论由格罗斯伯格提出,是一类重要的竞争型神经网络学习模型,其记忆模式与生物记忆形式类似,记忆容量可以随学习模式的增加而增加,不仅可以进行实时在线学习,还可以在动态环境下学习,具有较好的性能。它是一个根据可选参数对输入数据进行粗略分类的网络。

(5)认知机(neocogntion):由福岛提出,是迄今为止结构最为复杂的多层网络。通过无师学习,认知机具有选择能力,对样品的平移和旋转不敏感。不过,认知机所用的节点及其互连较多,参数也多且难选取。

(6)Madaline算法:他是Adaline算法的一种发展,是一组具有一组最小均方差的线性网络的组合,能够调整权值,使得期望信号与输出间的误差最小。此算法是自适应信号处理和自适应控制的得力工具,具有较强的学习能力,但是输入和输出之间必须满足线性关系。

(7)双向联想存储器(BAM):由科斯克提出,是一种单状态互联网络,具有学习能力。BAM的缺点为存储密度较低,比较容易振荡。

(8)博尔茨曼机(BM):由欣顿等人提出,建立在Hopfield网络基础上,具有学习能力,能够通过一个模拟退火过程寻求解答。不过,其训练时间要比BP网络长。

(9)对流传播网络(CPN):由赫克特?尼尔森提出,是一个通常由5层组成的连接网。CPN可用于联想存储,其缺点是要求较多的处理单元。

(10)自组织映射网(SOM):由科霍恩提出,以神经元自行组织以校正各种具体模式的概念为基础。SOM能够形成簇与簇之间的连续映射,起到矢量量化器的作用。

8.神经网络的应用

神经网络以其独特的结构和处理信息的方法,在许多实际领域中有着非常广泛的应用,取得了显著的成效,主要应用如下:

(1)自动控制领域。神经网络方法已经覆盖了控制理论中的绝大多数问题,主要有系统建模与辨识、PID参数整定、极点配置、内模控制、优化设计、预测控制、最优控制、自适应控制、滤波与预测容错控制、模糊控制和学习控制等。

(2)经济领域。用人工神经网络技术可以增强经济模型的分析、控制和预测功能。从人工神经网络的精确性、适应性、鲁棒性、有效性和解决经济问题的效率看,将人工神经网络用于经济领域中的识别、分类和预测是颇具前景且有实际价值的,尤其

是对股市的短期预测和商业银行的信用风险分析具有重要的现实意义。

(3)医学领域。由于人体与疾病的复杂性,不可预测性,在生物信号与信息的表现形式、变化规律(自身变化与医学干预后变化),对其检测与信号表达,获取的数据及信息的分析、决策等诸多方面均存在大量复杂的非线性关系,非常适合人工神经网络的应用。目前的研究几乎涉及从基础医学到临床医学的所有方面,主要应用于生物信号的检测与自动分析,医学专家系统等。

(4)模式识别领域。人工神经网络在模式识别领域应用手写字符,汽车牌照,指纹和声音识别,还可用于目标的自动识别,目标跟踪,机器人传感器图像识别及地震信号的鉴别。

(5)机器人控制领域。人工神经网络在机器人控制领域主要应用于对机器人轨道控制,操作机器人眼手系统,用于机械手的故障诊断及排除,智能自适应移动机器人的导航,视觉系统。

(6)图像处理领域。人工神经网络在图像处理中的图像分类、图像复原与重建、图像边缘检测、图像盲水印技术以及图像信息压缩等方面有广泛的应用。

(7)大气科学领域。目前,在国内外大气学科中有关神经网络方法的应用研究内容涵盖了气象学科的很多方面,其中包括:中短期天气预报,短期气候预测,气候模式,数值预报产品释用预报,农业气象,土壤水分预报,强对流天气,卫星资料处理,雷达资料的预报应用,云图识别,能见度预报,大气温度廓线反演,水面蒸发计算,厄尔尼诺预报,台风预报,温度时间序列预报,空气污染预报,以及观测资料优化处理等。

(8)环境科学领域。人工神经网络在环境科学领域主要应用于环境质量评价、环境系统因素预测、环境因素定量关系模拟和污染防治系统建模等方面

(9)处理组合优化问题。最典型的例子是成功地解决了TSP问题,即旅行推销员问题,另外还有最大匹配问题、装箱问题和作业调度等。

(10)传感器信号处理。传感器输出非线性特性的矫正、传感器故障检测、滤波与除噪、环境影响因素的补偿、多传感器信息融合。

(11)化工领域。能对制药、生物化学和化学工程等进行分析。如:进行蛋白质结构分析、谱分析和化学反应分析等。

(12)地理领域。在遥感图像分类中有广泛的应用,在GIS方面应用人工神经网络理论,提高系统对数据进行复杂的综合分析的功能。

(13)军事领域。包括无人驾驶飞机、车辆,航天姿态控制、导弹的智能引导、卫星图

片的识别、脸谱和指纹识别等。

(14)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面,从定性与定量、静态与动态、微观与宏观等各种观察角度,研究神经细胞、神经系统的生物原型的微观和宏观结构及功能机理,探明脑中物理平面认知平面映射的原理。

9.人工神经网络的发展前景

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

人工神经网络虽然已在许多领域应用中取得了广泛的成功,但人工神经网络的发展正处于起步阶段,有许多方面还十分不成熟,在有些领域还存在着非常广阔的发展空间,还有一些问题需尚待进一步的研究。

(1)神经计算技术与其他技术尤其是进化计算技术的结合以及由此而来的混合方法和混合系统,正成为一大研究热点。

(2)除了传统的多层感知机、径向基函数网络、自组织特征映射网络、自适应谐振理论网络、模糊神经网络、循环神经网络之外,一些新的模型和结构很值得关注,例如最新兴起的脉冲神经网络和支持向量机。

(3)神经网络用于控制时还有许多问题值得研究:现行的学习算法收敛速度低,存在局部最优问题;分布式并行处理方式的网络内部机理并不清楚,选择网络层数、每层神经元个数,还得凭经验;泛化能力不足,制约了控制系统的鲁棒性;需要创造更适合于控制的专用神经网络;网络建立模算法和控制系统的收敛性与稳定性需进一步研究。

(4)由于神经网络具有非线性的基本属性,因此非线性问题的研究是神经网络理论发展的一个最大动力。特别是人们发现,脑中存在着混沌现象以来,用混沌动力学启发神经网络的研究或用神经网络产生混沌成为摆在人们面前的一个新课题,因为从生理本质角度出发是研究神经网络的根本手段。

(5)神经计算机的未来发展潜力巨大。由于人工神经网络可以用集成电路芯片组成神经计算机,甚至还可以用光学的、生物芯片的方式实现,因此研制纯软件模拟,虚拟模拟和全硬件实现的电子神经网络计算机潜力巨大。随着大量神经计算机和神经元芯片应用

于高科技领域,给神经网络理论和方法赋予新的内容,同时也会提出一些新的理论课题,这是神经网络迅速发展的一个动力。如何使神经网络计算机与传统的计算机和人工智能技术相结合也是前沿课题;如何使神经网络计算机的功能向智能化发展,许多新型的高级神经计算机的研制,如电子人工神经网络计算机、光学人工神经网络计算机、生物分子人工神经网络计算机等的发展前景将十分巨大; 同时将研制更具人类神经网络特征的光电人工神经网络计算机、光电生物分子人工神经网络计算机将更具吸引力。

(6)神经网络与专家系统的结合。ANN的发展为专家系统的研究奠定了良好的基础,也使人们看到了解决专家系统“瓶颈”的希望。把神经网络与传统的专家系统有机地结合起来,协同工作,能达到取长补短的目的。

结语:经过近半个世纪的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功,但其理论分析方法和设计方法还有待于进一步发展。相信随着神经网络的进一步发展,神经网络的应用领域将不断扩大,相信在未来的几年中有望在一些领域取得更大的成功,特别是多媒体技术、医疗、金融、电力系统等领域;并在智能化传感器、随机模式识别、实时知识处理、控制应用、最优化问题等方面克服现时的理论和技术障碍, 从实验室中走入实际生活和生产应用中去。放眼未来的环球必将是一个充满人工智能的世界。

参考文献

[1] 马锐.人工神经网络原理机械工业出版社 2010.9

[2] 高隽.人工神经网络原理及其仿真实例机械工业出版社 2007.2

[3] 喻宗泉喻唅.神经网络控制西安电子科技大学出版社 2009.1

[4] 熬志刚.人工智能及专家系统机械工业出版社 2010.9

[5]《环球科学》2007年第1期

[6]《重庆环境科学》第25 卷第9 期

[7] https://www.360docs.net/doc/483078119.html,

[8] https://www.360docs.net/doc/483078119.html,

[9] https://www.360docs.net/doc/483078119.html,

[10] https://www.360docs.net/doc/483078119.html,

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

人工神经网络概论

人工神经网络概论 梁飞 (中国矿业大学计算机科学与技术学院信科09-1班,江苏,徐州,221116) 摘要:进入21世纪以来,神经网络近来越来越受到人们的关注,因为神经网络可以很容易的解决具有上百个参数的问题,它为大复杂度问题提供了解决一种相对来说比较有效的简单方法。人工神经网络是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。本文简要介绍了人工神经网络的工作原理、属性、特点和优缺点、网络模型、发展历史及它的应用和发展前景等。 关键词:人工神经网络;人工智能;神经网络;神经系统 1.人工神经网络的简介 人工神经网络(Artificial Neural Networks,简写为 ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。 2.人工神经网络的工作原理 人脑的处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高,但它通过超并行处理使得整个系统实现处理的高速性和表现的多样性。 因此,从处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能处理方法,一直是人工智能追求的目标。 人脑神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

人工神经网络综述

人工神经网络综述 摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。 关键词:神经网络、分类、应用 0引言 多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。 1人工神经网络概述 1.1人工神经网络的发展 人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。 1.1.1人工神经网络发展初期 1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,这是人类最早对于人脑功能的模仿。他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。1960年Bernard Widrow等提出自适应线形元件ADACINE网络模型,用于信号处理中的自适应滤波、预测和模型识别。 1.1.2人工神经网络低谷时期

人工神经网络发展历史与训练算法概述-2019年文档

人工神经网络发展历史与训练算法概述 以一己之力战胜两位世界级围棋高手李世石及柯洁的Alpha Go 的横空出世,不仅仅吸引了相应人才从事此方面的研究,更显示了其的巨大潜力。而Alpha Go 能战胜这两位围棋中顶级选手,与其采用了人工神经网络不无关联。而人工神经网络是一门结合了众多学科的内容而发展起来的一门新的信息处理学科。 1 人工神经网络的发展历史 1) 起源。人工神经网络最初是由科研工作者根据生物神经网络的特点而创造出来的一种可以进行简单信息处理的模型。生物神经网络( Biological Neural Networks )以神经元为骨架,通过神经元彼此之间的连结形成了一个完整的能对所给刺激产生反应的系统。人工神经网络就是类比生物神经网络的这个可以进行信息处理的原理而制造出来的。用节点替代神经元,且每个节点代表一种固定的函数,节点之间彼此联接形成一个庞大的网状系统,可处理一些信息。综合人工神经网络的起源、特点及定义,它可以用这样一句话概括:人工神经网络是一种信息处理系统,目的在于模仿人类大脑的相应结构及其相关功能[ 1 ] 。 2) 摸索阶段。历史上第一个提出人工神经网络设想并藉此制造出了第一个模型的是心理学家W.S.McCulloch 和数理逻辑学家。他们提出的模型就是MP模型,而MP模型的建立不仅证明了单个

神经元执行逻辑功能的可行性,还带来对人工神经网络研究的热潮。因此W.S.McCulloch 和被后来者尊称为人工神经网络研究的先驱。但是当时的人工神经网络只是一个胚胎,甚至只能说是一个大胆的猜想,缺乏相应的理论支持。 50年代末,F?罗森布拉特提出并设计了感知机。60年代初,Windrow 提出了一种自适应线性元件网络,这两项工作第一次将人工神经网络的研究成果应用到实践中[7] 。而他们的成功也激励了其他众多科学家,提高了他们对人工神经网络的研究兴趣。但是当时有学者指出感知机本身存在问题,且该问题的不可解决性,再加上当时正值计算机高速发展、各种研究成果竞相发表的时期,众多科学研究者纷纷转向计算机的研究,因此人工神经网络的研究被搁置。人工神经网络的发展也停滞不前。 3)高速发展阶段。1982年及1984 年,美国加州工学院物理学家J.J.Hopfield 先后提出了Hopfield 神经网格模型与连续时间Hopfield 神经网络模型,这两项研究解决了感知机所存在的不能解决高阶谓词的问题,为人工神经网络的研究提供了一个新思路。随后,一些学者提出了玻尔兹曼模型。这三项研究不仅为人工神经网络的发展做了开拓性的研究,更是使人工神经网络这个备受冷落的研究项目重新回到科研人员的视野中。也正是有这些科学工作人员的一个又一个的研究成果,才能令人工神经网络从原本不被重视的状态扭转为当时备受人们追捧的状态。 1991年,Aihara 等基于之前的推导和实验,提出了一个混沌

人工神经网络文献综述.

WIND 一、人工神经网络理论概述 (一人工神经网络基本原理 神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。 人工神经元模型的基本结构如图 1所示。图中X=(x 1, x 2, … x n T ∈ R n 表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示 神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。其表达式为 y i =f( n j =i Σw ij x j +θi 式中, f (

·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。 图 1 (二人工神经网络的发展 人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。在这 50多年的历史中,它的发展大体上可分为以下几个阶段。 60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。 80年代中期人工神经网络得到了飞速的发展。这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。 90年代以后,人工神经网络系统理论进入了稳健发展时期。现在人工神经网络系统理论的应用研究主要是在模式识别、经济管理、优化控制等方面:与数学、统计中的多个学科分支发生联系。 (三人工神经网络分类 人工神经网络模型发展到今天已有百余种模型,建造的方法也是多种多样,有出自热力学的、数学方法的、模糊以及混沌方法的。其中 BP 网络(BackPropagationNN 是当前应用最为广泛的一种人工神经网络。在人工神经网络的实际应用中, 80%~90%的人工神经网络模型是采用 BP 网络或它的变化形式,它也

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

人工神经网络与其发展和应用的介绍

人工神经网络与其发展和应用的介绍 发表时间:2018-05-02T11:39:29.337Z 来源:《科技中国》2017年11期作者:卓一凡 [导读] 摘要:人工神经网络是人工智能的重要分支,自其创始伊始便成为了人工智能领域的研究热点。本文从人工神经网络的发展历史开始,介绍了其在医学,信息,控制等方面的应用及其现状,对其中的优缺点进行了简要的分析。并对人工神经网络未来的发展作简要的展望。 摘要:人工神经网络是人工智能的重要分支,自其创始伊始便成为了人工智能领域的研究热点。本文从人工神经网络的发展历史开始,介绍了其在医学,信息,控制等方面的应用及其现状,对其中的优缺点进行了简要的分析。并对人工神经网络未来的发展作简要的展望。关键词:人工神经网络,应用,优缺点,发展 1:人工神经网络的发展 纵观整个人工神经网络发展,大体经历了四个时期:启蒙,低潮,振兴,发展。 1.1:启蒙时期 人工神经网络和数学模型于1943年由W.S.McCulloch和W.Pitts建立,称为MP模型,证明了单个神经元能执行逻辑功能,人工神经网络的研究由此开始。1951年,心理学家 Donala O. Hebb提出了Hebb 法则:在神经网络中,信息在连接权中进行储存,突触之间的联系强度是可以变化的,而这种变化建立起了神经元间的连接。Hebb法则成为了构造具有学习功能的神经网络模型的基础。1954 年,生物学家Eccles提出了真实突触的分流模型,为神经网络模拟突触的功能提供了原理和生理学的依据。1956 年,Uttley 发明了一种由处理单元组成的推理机,用于模拟行为及条件反射。1958年,Rosenblatt将学习机制增加到了原有的MP模型上,首次把神经网络理论付诸实现。正是由于他的成功,引起了学者们对人工神经网络的研究兴趣。 1.2:低潮时期 当许多学者抱着极大的热忱去研究人工神经网络的时候,Minsky 和Papert 从数学角度对以感知器为代表的网络系统功能及其局限性进行了深入的研究,并在1969年出版《Percep2trons》一书。该书提出当前的网络只能对简单的线性问题进行解决,而对复杂的多层神经网络无能为力。这一结论使得许多国家的此类项目被暂停资助,自此开始了神经网络的低潮期。但不久后,转机出现。就在1972年,欧洲和美洲的两位学者:芬兰的Kohonen教授,美国的Anderson分别提出了自组织映射SOM(Self2Organizingfeature map)理论和一个名叫“交互存储器 ”的理论。而两者之间竟有着许多相似之处,不由得让人惊讶。但Kohonen的研究是目前所使用神经网络的主要依据。正是由于这些研究,引导了以后人工神经网络的振兴。 1.3:振兴时期 1982年,美国物理学家Hopfield博士发表了Hopfield模型理论,对人工神经网络的研究产生了深远的影响。如下图 Hopfield模型理论证明:神经网络并非不能达到稳定的状态,只是需要一定条件。而他的研究也让许多学者对人工神经网络的研究重新产生了兴趣。1986年,由美国的 Rumelhart 和 McCkekkand主编并撰写的《Parallel Distributed Processing : Ex2ploration in the Microstructures of Cognition》一书出版,提出了 PDP(Parallel Distributed Processing)网络思想,再一次推动了神经网络的发展。20世纪 90 年代, Edelman提出Darwinism 模型。1995 年,Jenkins等人进行了光学神经网络(PNN)的研究 .神经网络的研究重回人们的视野。 1.4:发展时期 20世纪80年代,人工神经网络在世界范围内全面复苏,这也引起了国家对神经网络的重视。“中国神经网络首届学术会议”于1990年2月由国内8个顶尖学会联合在北京召开。 1992年举办了中国第二届神经网络学术大会,中国神经网络学会便由此诞生。我国的“863”计划,“攀登”计划中,都有关于人工神经网络研究的内容。国际上,1987 年,在美国加洲举行了首届国际神经网络学会. 此后每年召开两次.至此,人工神经网络的研究得到了长足的发展。 2.人工神经网络的基本原理 自生物学发展伊始,大脑便是无数科学家研究的重点,人们想要弄清楚大脑是如何运作的?其机理是什么?人工神经网络便应运而生,它的目的是想要对人类神经网络进行开发与测试 2.1:人工神经网络的生物学基础 人工神经网络是人类神经网络的仿生学模拟。我们如果想要了解人工神经网络,就要先了解生物的神经元,如下图:

人工神经网络研究综述

人工神经网络研究综述 一、引言 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络[1]。大量的人工神经元以一定的规则连接成神经网络,神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息,具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果,网络具有并行运算能力,实时性非常强。神经网络对信息的处理具有自组织、自学习的特点,便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域[2]。 二、人工神经网络概述 (一)定义: 关于它的定义有很多种,而Hecht-Nielsen给出的神经网络定义最具有代表意义:神经网络是一种并行的分布式信息处理结构,它通过称为连接的单向信号通路将一些处理单元互连而成。每一个处理单元都有一个单输出到所期望的连接。每一个处理单元传送相同的信号即处理单元输出信号。处理单元的输出信号可以是任一种所要求的数学类型。在每一个处理单元中执行的信息处理在它必须完全是局部的限制下可以被任意定义,即它必须只依赖于处理单元所接受的输入激励信号的当前值和处理单元本身所存储记忆的值[3-5]。 (二)基本原理: 1、人工神经元模型 神经元是人工神经网络的基本处理单元,是生物神经元的抽象、简化和模拟。抽象是从数学角度而言,模拟是以神经元的结构和功能而言。 2、神经网络结构 神经网络结构和工作机理基本上是以人脑的组织结构和活动规律为背景的,它反映了脑的某些基本特征,但并不是要对人脑部分的真正实现,可以说它是某种抽象、简化或模仿。如果将大量功能简单的形式神经元通过一定的拓扑结构组织起来,构成群体并行分布式处理的计算结构,那么这种结构就是人工神经网络,在不引起混淆的情况下,统称为神经网络。 (三)人工神经网络的基本属性 1、非线性:人脑的思维是非线性的,故人工神经网络模拟人的思维也应是非线性的。 2、非局域性:非局域性是人的神经系统的一个特性,人的整体行为是非局域性的最明显体现。神经网络以大量的神经元连接模拟人脑的非局域性,它的分布存储是非局域性的一种表现。 3、非定常性:神经网络是模拟人脑思维运动的动力学系统,它应按不同时刻的外界刺激对自己的功能进行修改,故而它是一个时变的系统。 4、非凸性:神经网络的非凸性即是指它有多个极值,也即系统具有不只一个的较稳定的平衡状态,这种属性会使系统的演化多样化。 三、人工神经网络模型模型 (一)人工神经网络模型的分类 1、按照网络的结构区分,则有前向网络和反馈网络。 2、按照学习方式区分,则有教师学习和无教师学习网络。

人工神经网络概述及其在分类中的应用举例

人工神经网络概述及其在分类中的应用举例 人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。 神经网络在2个方面与人脑相似: (1) 人工神经网络获取的知识是从外界环境中学习得来的。 (2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。神经网络理论是巨量信息并行处理和大规模并行计算的基础。 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一

种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 6、软件硬件的实现:人工神经网络不仅能够通过硬件而且可借助软件实现并行处理。近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。 二人工神经网络的基本数学模型

人工神经网络学习总结笔记

人工神经网络学习总结笔记 主要侧重点: 1.概念清晰 2.进行必要的查询时能从书本上找到答案 第一章:绪论 1.1人工神经网络的概述 “认识脑”和“仿脑”:人工智能科学家在了解人脑的工作机理和思维的本质的基础上,探索具有人类智慧的人工智能系统,以模拟延伸和扩展脑功能。我认为这是人工神经网络研究的前身。 形象思维:不易被模拟 人脑思维抽象推理 逻辑思维:过程:信息概念最终结果 特点:按串行模式 人脑与计算机信息处理能力的不同点: 方面类型人脑计算机 记忆与联想能力可存储大量信息,对信息有 筛选、回忆、巩固的联想记 忆能力无回忆与联想能力,只可存取信息 学习与认知能力具备该能力无该能力 信息加工能力具有信息加工能力可认识 事物的本质与规律仅限于二值逻辑,有形式逻辑能力,缺乏辩证逻辑能力 信息综合能力可以对知识进行归纳类比 和概括,是一种对信息进行 逻辑加工和非逻辑加工相 结合的过程 缺乏该能力 信息处理速度数值处理等只需串行算法就能解决的应用问题方便,计算 机比人脑快,但计算机在处理文字图像、声音等类信息的 能力远不如人脑 1.1.2人脑与计算机信息处理机制的比较 人脑与计算机处理能力的差异最根本的原因就是信息处理机制的不同,主要有四个方面 方面类型人脑计算机 系统结构有数百亿神经元组成的神经 网络由二值逻辑门电路构成的按串行方式工作的逻辑机器 信号形式模拟量(特点:具有模糊性。离散的二进制数和二值逻辑容易被机器模拟的思维方式

难以被机器模拟)和脉冲两种 形式 形式 信息储存人脑中的信息分布存储于整个系统,所存储的信息是联想式 的 有限集中的串行处理机制信息处理机制高度并行的非线性信息处理系统 (体现在结构上、信息存储上、信 息处理的运行过程中) 1.1.3 人工神经网络的概念:在对人脑神经网络的基本认识的基础上,用数理方法从信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,称之为人工神经网络,是对人脑的简化、抽象以及模拟,是一种旨在模仿人脑结构及其功能的信息处理系统。 其他定义:由非常多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,外部输入信息之后,系统产生动态响应从而处理信息。 它是由许多简单的并行工作的处理单元组成的系统,其功能会因网络结构、连接强度以及各单元的处理方式的不同而不同 1.3神经网络的基本特点与功能 基本特点:1、结构特点:信息处理的并行性、信息存储的分布性、信息处理单元的互联性、结构的可塑性。神经网络内在的并行性与分布性表现在其信息的存储于处理都是空间上分布、时间上并行的。 2、性能特点:高度的非线性、良好的容错性和计算的非精确性。 3、能力特征:自学习、自组织(重构)与自适应性。 神经网络的基本功能:1、联想记忆:自联想记忆与异联想记忆 2、非线性映射 3、分类与识别 4、优化计算 5、知识处理 第二章人工神经网络建模基础 2.1~2.2 讲述了生物神经系统以及生物神经网络的建模基础 神经元所产生的信息是具有电脉冲形式的神经冲动,脉冲的宽度和幅度相同,但是间隔是随机变化的。 人脑中,外界的刺激不同可以改变神经元之间的突触关系,即突触厚膜电位的方向以及大小,从突触信息传递的角度来看,表现为放大倍数和极性的变化。 空间整合的概念(BP29)信息整合这一段中 阀值特性:我认为阀值特性即静息电位必须上升到一定数值范围即超过阀值电位之后,神经元才会产生兴奋,信息才能以脉冲的形式得到传递。 所谓的时间整合,如果由一个脉冲所引起的突触膜后电位很小,只有在持续时间内当另一脉冲到达的时候,总的突触膜后电位增大。 2.3 人工神经元模型 人工神经网络是在现代神经生物学研究基础上提出的模拟生物的过程,反映人脑某些特性的一种计算结构,是人脑神经系统的一种抽象、简化和模拟而不是对它的真实描写。神经网络的基本器件是神经元和突触。人工神经网络当中的神经元是处理单元,也称之为节点。人工神经元是对生物神经元的信息处理过程的抽象模拟,通过数学语言对其进行描述,对其结构和功能进行模拟,用模型图予以表达。 2.3.1 神经元的建模

人工神经网络研究与发展综述

本栏目责任编辑:唐一东人工智能及识别技术Computer Knowledge And Technology 电脑知识 与技术2008年第4卷第3期(总第30期)人工神经网络研究与发展综述 王辉 (新疆石油学院,新疆乌鲁木齐830000) 摘要:本文综述了神经网络理论发展的历史和现状,讨论了人工神经网络的两个主要研究方向:神经网络的VC 维计算和神经网络的数据挖掘,也介绍了神经网络计算理论、方法、应用等不同层面的一些重要研究领域。 关键词:神经网络;VC 维;数据挖掘 中图分类号:TP183文献标识码:A 文章编号:1009-3044(2008)30-0710-02 A Review of the Research and Development of the Artificial Neural Nets WANG Hui (Xinjiang Petroleum Institute,Urumqi 830000,China)Abstract:This paper reviews the history and the current situation of the theory of neural nets.It discusses two aspects:the Vapnik-Cher -vonenkis dimension calculation and the data mining in neural nets.It also touches upon such research areas as calculation theory,methods and application of neural nets. Key words:neural nets;Vapnik-Chervonenkis dimension;Data Mining 1引言 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年McCulloch 和Pitts 结合了神经生理学和数理逻辑的研究描述了一个神经网络的逻辑演算。他们的神经元模型假定遵循一种所谓“有或无”(all-or-none)规则。如果如此简单的神经元数目足够多和适当设置突触连接并且同步操作,McCulloch 和Pitts 证明这样构成的网络原则上可以计算任何可计算的函数,这标志着神经网络学科的诞生。 2发展历史及现状 2.1人工神经网络理论的形成 早在40年代初,神经解剖学、神经生理学、心理学以及人脑神经元的电生理的研究等都富有成果。其中,神经生物学家McCulloch 提倡数字化具有特别意义。他与青年数学家Pitts 合作[1],从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP 模型,他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。50年代初,神经网络理论具备了初步模拟实验的条件。Rochester ,Holland 与IBM 公司的研究人员合作,他们通过网络吸取经验来调节强度,以这种方式模拟Hebb 的学习规则,在IBM701计算机上运行,取得了成功,几乎有大脑的处理风格。但最大规模的模拟神经网络也只有1000个神经元,而每个神经元又只有16个结合点。再往下做试验,便受到计算机的限制。人工智能的另一个主要创始人Minsky 于1954年对神经系统如何能够学习进行了研究,并把这种想法写入他的博士论文中,后来他对Rosenblatt 建立的感知器(Perceptron)的学习模型作了深入分析。 2.2第一阶段的研究与发展 1958年计算机科学家Rosenblatt 基于MP 模型,增加了学习机制,推广了MP 模型。他证明了两层感知器能够将输入分为两类,假如这两种类型是线性并可分,也就是一个超平面能将输入空间分割,其感知器收敛定理:输入和输出层之间的权重的调节正比于计算输出值与期望输出之差。他提出的感知器模型,首次把神经网络理论付诸工程实现。1960年Widrow 和Hoff 提出了自适应线性元件ADACINE 网络模型,是一种连续取值的线性网络,主要用于自适应系统。他们研究了一定条件下输入为线性可分问题,期望响应与计算响应的误差可能搜索到全局最小值,网络经过训练抵消通信中的回波和噪声,它还可应用在天气预报方面。这是第一个对实际问题起作用的神经网络。可以说,他们对分段线性网络的训练有一定作用,是自适应控制的理论基础。Widrow 等人在70年代,以此为基础扩充了ADALINE 的学习能力,80年代他们得到了一种多层学习算法。 Holland 于1960年在基因遗传算法及选择问题的数学方法分析和基本理论的研究中,建立了遗传算法理论。遗传算法是一种借鉴生物界自然选择和自然遗传机制的高度并行、随机、自适应搜索算法,从而开拓了神经网络理论的一个新的研究方向。1976年Grossberg 提出自适应共振理论(ART),这是感知器较完善的模型,即superrised 学习方式。本质上说,仍是一种unsuperrised 学习方式。随后,他与Carpenter 一起研究ART 网络,它有两种结构ART1和ART2,能够识别或分类任意多个复杂的二元输入图像,其学习过程有自组织和自稳定的特征,一般认为它是一种先进的学习模型。另外还有Werbos 提出的BP 理论以及提出的反向传播原理;收稿日期:2008-08-01 作者简介:王辉,男,新疆石油学院计算机科学与技术系资深讲师,1998年于西安石油大学计算机系获得工学士,现于北京石油大学 计算机系攻读硕士,一直致力于软件技术开发的研究,主要研究方向:人工智能,神经网络,软件设计模式与构架。 ISSN 1009-3044Computer Knowledge And Technology 电脑知识与技术Vol.4,No.3,October 2008,pp.710-711E-mail:eduf@https://www.360docs.net/doc/483078119.html, https://www.360docs.net/doc/483078119.html, Tel:+86-551-56909635690964710

《人工神经网络的发展及其应用》

人工神经网络及其应用 摘要:神经网络是新技术领域中的一个时尚词汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍关于人工神经网络的基本包括它的背景,发展,发展前景。 关键词:神经网络,发展,背景。 1 人工神经网络产生的背景 自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。在这些理论基础之上,科学家们认为,可以从仿制人脑神经系统的结构和功能出发,研究人类智能活动和认识现象。另一方面,19世纪之前,无论是以欧氏几何和微积分为代表的经典数学,还是以牛顿力学为代表的经典物理学,从总体上说,这些经典科学都是线性科学。然而,客观世界是如此的纷繁复杂,非线性情况随处可见,人脑神经系统更是如此。复杂性和非线性是连接在一起的,因此,对非线性科学的研究也是我们认识复杂系统的关键。为了更好地认识客观世界,我们必须对非线性科学进行研究。人工神经网络作为一种非线性的、与大脑智能相似的网络模型,就这样应运而生了。所以,人工神经网络的创立不是偶然的,而是20世纪初科学技术充分发展的产物。 2 人工神经网络的发展 人工神经网络的研究始于40年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的远为曲折的道路。 1943年,心理学家W.S.Mcculloch和数理逻辑学家W.Pitts 提出了M—P模型,这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949年,心理学家D.O.Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络,第一次把神经网络研究付诸工程实现。由于可应用于模式识别,联想记忆等方面,当时有上百家实验室投入此项研究,美国军方甚至认为神经网络工程应当比“原子弹工程”更重要而给予巨额资助,并在声纳信号识别等领域取得一定成绩。1960年,B.Windrow和E.Hoff提出了自适应线性单元,它可用于自适应滤波、预测和模式识别。至此,人工神经网络的研究工作进入了第一个高潮。 1969年,美国著名人工智能学者M.Minsky和S.Papert编写了影响很大的Perceptron一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知机能力也不过如此,他们的分析恰似一瓢冷水,很多学者感到前途渺茫而纷纷改行,原先参与研究的实验室纷纷退出,在这之后近10年,神经网络研究进入了一个缓慢发展的萧条期。这期间,芬兰学者T.Kohonen 提出了自组织映射理论,反映了大脑神经细胞的自组织特性、记忆方式以及神经细胞兴奋刺激的规律;美国学者S.A.Grossberg的自适应共振理论(ART );日本学者K.Fukushima提出了认知机模型;ShunIchimari则致力于神经网络

相关文档
最新文档