(重要)递归(含代码执行过程解释)

(重要)递归(含代码执行过程解释)
(重要)递归(含代码执行过程解释)

递归算法详细分析-> C阅读(17418)

C通过运行时堆栈支持递归函数的实现。递归函数就是直接或间接调用自身的函数。

许多教科书都把计算机阶乘和菲波那契数列用来说明递归,非常不幸我们可爱的著名的老潭老师的《C语言程序设计》一书中就是从阶乘的计算开始的函数递归。导致读过这本经书的同学们,看到阶乘计算第一个想法就是递归。但是在阶乘的计算里,递归并没有提供任何优越之处。在菲波那契数列中,它的效率更是低的非常恐怖。

这里有一个简单的程序,可用于说明递归。程序的目的是把一个整数从二进制形式转换为可打印的字符形式。例如:给出一个值4267,我们需要依次产生字符‘4’,‘2’,‘6’,和‘7’。就如在printf函数中使用了%d格式码,它就会执行类似处理。

我们采用的策略是把这个值反复除以10,并打印各个余数。例如,4267

除10的余数是7,但是我们不能直接打印这个余数。我们需要打印的是机器字符集中表示数字‘7’的值。在ASCII码中,字符‘7’的值是55,所以我们需要在余数上加上48来获得正确的字符,但是,使用字符常量而不是整型常量可以提高程序的可移植性。‘0’的ASCII码是48,所以我们用余数加上‘0’,所以有下面的关系:

‘0’+ 0 =‘0’

‘0’+ 1 =‘1’

‘0’+ 2 =‘2’

...

从这些关系中,我们很容易看出在余数上加上‘0’就可以产生对应字符的代码。接着就打印出余数。下一步再取商的值,4267/10等于426。然后用这个值重复上述步骤。

这种处理方法存在的唯一问题是它产生的数字次序正好相反,它们是逆向打印的。所以在我们的程序中使用递归来修正这个问题。

我们这个程序中的函数是递归性质的,因为它包含了一个对自身的调用。乍一看,函数似乎永远不会终止。当函数调用时,它将调用自身,第2次调用还将调用自身,以此类推,似乎永远调用下去。这也是我们在刚接触递归时最想不明白的事情。但是,事实上并不会出现这种情况。

这个程序的递归实现了某种类型的螺旋状while循环。while循环在循环体每次执行时必须取得某种进展,逐步迫近循环终止条件。递归函数也是如此,它在每次递归调用后必须越来越接近某种限制条件。当递归函数符合这个限制条件时,它便不在调用自身。

在程序中,递归函数的限制条件就是变量quotient为零。在每次递归调用之前,我们都把quotient除以10,所以每递归调用一次,它的值就越来越接近零。当它最终变成零时,递归便告终止。

/*接受一个整型值(无符号0,把它转换为字符并打印它,前导零被删除*/

#include

int binary_to_ascii( unsigned int value)

{

unsigned int quotient;

quotient = value / 10;

if( quotient != 0)

binary_to_ascii( quotient);

putchar ( value % 10 + '0' );

}

递归是如何帮助我们以正确的顺序打印这些字符呢?下面是这个函数的工作流程。

1. 将参数值除以10

2. 如果quotient的值为非零,调用binary-to-ascii打印quotient

当前值的各位数字

3. 接着,打印步骤1中除法运算的余数

注意在第2个步骤中,我们需要打印的是quotient当前值的各位数字。我们所面临的问题和最初的问题完全相同,只是变量quotient的值变小了。我们用刚刚编写的函数(把整数转换为各个数字字符并打印出来)来解决这个问题。由于quotient的值越来越小,所以递归最终会终止。

一旦你理解了递归,阅读递归函数最容易的方法不是纠缠于它的执行过程,而是相信递归函数会顺利完成它的任务。如果你的每个步骤正确无误,你的限制条件设置正确,并且每次调用之后更接近限制条件,递归函数总是能正确的完成任务。

但是,为了理解递归的工作原理,你需要追踪递归调用的执行过程,所以让我们来进行这项工作。追踪一个递归函数的执行过程的关键是理解函数中所声明的变量是如何存储的。当函数被调用时,它的变量的空间是创建于运行时堆栈上的。以前调用的函数的变量扔保留在堆栈上,但他们被新函数的变量所掩盖,因此是不能被访问的。

当递归函数调用自身时,情况于是如此。每进行一次新的调用,都将创建一批变量,他们将掩盖递归函数前一次调用所创建的变量。当我追踪一个递归函数的执行过程时,必须把分数不同次调用的变量区分开来,以避免混淆。

程序中的函数有两个变量:参数value和局部变量quotient。下面的一些图显示了堆栈的状态,当前可以访问的变量位于栈顶。所有其他调用的变量饰以灰色的阴影,表示他们不能被当前正在执行的函数访问。

假定我们以4267这个值调用递归函数。当函数刚开始执行时,堆栈的内容如下图所示:

执行除法之后,堆栈的内容如下:

接着,if语句判断出quotient的值非零,所以对该函数执行递归调用。当这个函数第二次被调用之初,堆栈的内容如下:

堆栈上创建了一批新的变量,隐藏了前面的那批变量,除非当前这次递归调用返回,否则他们是不能被访问的。再次执行除法运算之后,堆栈的内容如下:

quotient的值现在为42,仍然非零,所以需要继续执行递归调用,并再创建一批变量。在执行完这次调用的出发运算之后,堆栈的内容如下:

此时,quotient的值还是非零,仍然需要执行递归调用。在执行除法运算之后,堆栈的内容如下:

不算递归调用语句本身,到目前为止所执行的语句只是除法运算以及对quotient的值进行测试。由于递归调用这些语句重复执行,所以它的效果类似

循环:当quotient的值非零时,把它的值作为初始值重新开始循环。但是,递归调用将会保存一些信息(这点与循环不同),也就好是保存在堆栈中的变量值。这些信息很快就会变得非常重要。

现在quotient的值变成了零,递归函数便不再调用自身,而是开始打印输出。然后函数返回,并开始销毁堆栈上的变量值。

每次调用putchar得到变量value的最后一个数字,方法是对value进行模10取余运算,其结果是一个0到9之间的整数。把它与字符常量‘0’相加,其结果便是对应于这个数字的ASCII字符,然后把这个字符打印出来。

输出4:

接着函数返回,它的变量从堆栈中销毁。接着,递归函数的前一次调用重新继续执行,她所使用的是自己的变量,他们现在位于堆栈的顶部。因为它的value 值是42,所以调用putchar后打印出来的数字是2。

输出42:

接着递归函数的这次调用也返回,它的变量也被销毁,此时位于堆栈顶部的是递

归函数再前一次调用的变量。递归调用从这个位置继续执行,这次打印的数字是6。在这次调用返回之前,堆栈的内容如下:

输出426:

现在我们已经展开了整个递归过程,并回到该函数最初的调用。这次调用打印出数字7,也就是它的value参数除10的余数。

输出4267:

然后,这个递归函数就彻底返回到其他函数调用它的地点。

如果你把打印出来的字符一个接一个排在一起,出现在打印机或屏幕上,你将看到正确的值:4267

汉诺塔问题递归算法分析:

一个庙里有三个柱子,第一个有64个盘子,从上往下盘子越来越大。要求庙里的老和尚把这64个盘子全部移动到第三个柱子上。移动的时候始终只能小盘子压着大盘子。而且每次只能移动一个。

1、此时老和尚(后面我们叫他第一个和尚)觉得很难,所以他想:要是有一个人能把前63个盘子先移动到第二个柱子上,我再把最后一个盘子直接移动到第三个柱子,再让那个人把刚才的前63个盘子从第二个柱子上移动到第三个柱子上,我的任务就完成了,简单。所以他找了比他年轻的和尚(后面我们叫他第二个和尚),命令:

① 你丫把前63个盘子移动到第二柱子上

② 然后我自己把第64个盘子移动到第三个柱子上后

③ 你把前63个盘子移动到第三柱子上

2、第二个和尚接了任务,也觉得很难,所以他也和第一个和尚一样想:要是有一个人能把前62个盘子先移动到第三个柱子上,我再把最后一个盘子直接移动到第二个柱子,再让那个人把刚才的前62个盘子从第三个柱子上移动到第三个柱子上,我的任务就完成了,简单。所以他也找了比他年轻的和尚(后面我们叫他第三和尚),命令:

① 你把前62个盘子移动到第三柱子上

② 然后我自己把第63个盘子移动到第二个柱子上后

③ 你把前62个盘子移动到第二柱子上

3、第三个和尚接了任务,又把移动前61个盘子的任务依葫芦话瓢的交给了第四个和尚,等等递推下去,直到把任务交给了第64个和尚为止(估计第64个和尚很郁闷,没机会也命令下别人,因为到他这里盘子已经只有一个了)。

4、到此任务下交完成,到各司其职完成的时候了。完成回推了:

第64个和尚移动第1个盘子,把它移开,然后第63个和尚移动他给自己分配的第2个盘子。

第64个和尚再把第1个盘子移动到第2个盘子上。到这里第64个和尚的任务完成,第63个和尚完成了第62个和尚交给他的任务的第一步。

从上面可以看出,只有第64个和尚的任务完成了,第63个和尚的任务才能完成,只有第2个和尚----第64个和尚的任务完成后,第1个和尚的任务才能完成。这是一个典型的递归问题。现在我们以有3个盘子来分析:

第1个和尚命令:

① 第2个和尚你先把第一柱子前2个盘子移动到第二柱子。(借助第三个柱子)

② 第1个和尚我自己把第一柱子最后的盘子移动到第三柱子。

③ 第2个和尚你把前2个盘子从第二柱子移动到第三柱子。

很显然,第二步很容易实现(哎,人总是自私地,把简单留给自己,困难的给别人)。

其中第一步,第2个和尚他有2个盘子,他就命令:

① 第3个和尚你把第一柱子第1个盘子移动到第三柱子。(借助第二柱子)

② 第2个和尚我自己把第一柱子第2个盘子移动到第二柱子上。

③ 第3个和尚你把第1个盘子从第三柱子移动到第二柱子。

同样,第二步很容易实现,但第3个和尚他只需要移动1个盘子,所以他也不用在下派任务了。(注意:这就是停止递归的条件,也叫边界值)

第三步可以分解为,第2个和尚还是有2个盘子,命令:

① 第3个和尚你把第二柱子上的第1个盘子移动到第一柱子。

② 第2个和尚我把第2个盘子从第二柱子移动到第三柱子。

③ 第3个和尚你把第一柱子上的盘子移动到第三柱子。

分析组合起来就是:1→3 1→2 3→2 借助第三个柱子移动到第二个柱子 |1→3 自私人留给自己的活| 2→1 2→3 1→3借助第一个柱子移动到第三个柱子|共需要七步。

如果是4个盘子,则第一个和尚的命令中第1步和第3步各有3个盘子,所以各需要7步,共14步,再加上第1个和尚的1步,所以4个盘子总共需要移动

7+1+7=15步,同样,5个盘子需要15+1+15=31步,6个盘子需要31+1+31=64步……由此可以知道,移动n个盘子需要(2的n次方)-1步。

从上面整体综合分析可知把n个盘子从1座(相当第一柱子)移到3座(相当第三柱子):

(1)把1座上(n-1)个盘子借助3座移到2座。

(2)把1座上第n个盘子移动3座。

(3)把2座上(n-1)个盘子借助1座移动3座。

下面用hanoi(n,a,b,c)表示把1座n个盘子借助2座移动到3座。

很明显: (1)步上是 hanoi(n-1,1,3,2)

(3)步上是 hanoi(n-1,2,1,3)

用C语言表示出来,就是:

#include

int method(int n,char a, char b)

{

printf("number..%d..form..%c..to..%c.."n",n,a,b);

return 0;

}

int hanoi(int n,char a,char b,char c)

{

if( n==1 ) move (1,a,c);

else

{

hanoi(n-1,a,c,b);

move(n,a,c);

hanoi(n-1,b,a,c);

};

return 0;

}

int main()

{

int num;

scanf("%d",&num);

hanoi(num,'A','B','C');

return 0;

}

分类: Unix&C

C语言程序设计 入门源代码代码集合

#include <> void print_star(void) { printf("*****************\n"); } void print_welcome(void) { printf("C language,welcome!\n"); } void main() { print_star(); print_welcome(); print_star(); getchar(); } 演示2 #include "" int sum(int i,int j) { return(i + j); } void main() { int n1,n2; printf("input 2 numbers:\n"); scanf("%d%d",&n1,&n2); printf("the sum = %d\n",sum(n1,n2)); getchar(); } 演示3 #include "" int maxnum(int,int,int); main() { int a,b,c; printf("Please enter 3 numbers:\n"); scanf("%d,%d,%d",&a,&b,&c); printf("Maxnum is %d\n",maxnum(a,b,c));

} int maxnum(int x,int y,int z) { int max=x; if(y>max) max = y; if(z>max) max = z; return max; } 演示4 #include <> int s1(int n) { int j,s; s=0; for(j=1;j<=n;j++) s=s+j; return s; } int sum(int n) { int i,s=0; for(i=1;i<=n;i++) s=s+s1(i); return s; } void main() { int n; printf("n:"); scanf("%d",&n); printf("s=%d\n",sum(n)); } 演示5

递归调用详解,分析递归调用的详细过程

递归调用详解,分析递归调用的详细过程 2009年05月23日星期六 22:52 一、栈 在说函数递归的时候,顺便说一下栈的概念。 栈是一个后进先出的压入(push)和弹出(pop)式数据结构。在程序运行时,系统每次向栈中压入一个对象,然后栈指针向下移动一个位置。当系统从栈中弹出一个对象时,最近进栈的对象将被弹出。然后栈指针向上移动一个位置。程序员经常利用栈这种数据结构来处理那些最适合用后进先出逻辑来描述的编程问题。这里讨论的程序中的栈在每个程序中都是存在的,它不需要程序员编写代码去维护,而是由运行是系统自动处理。所谓的系统自动维护,实际上就是编译器所产生的程序代码。尽管在源代码中看不到它们,但程序员应该对此有所了解。 再来看看程序中的栈是如何工作的。当一个函数(调用者)调用另一个函数(被调用者)时,运行时系统将把调用者的所有实参和返回地址压入到栈中,栈指针将移到合适的位置来容纳这些数据。最后进栈的是调用者的返回地址。当被调用者开始执行时,系统把被调用者的自变量压入到栈中,并把栈指针再向下移,以保证有足够的空间存储被调用者声明的所有自变量。当调用者把实参压入栈后,被调用者就在栈中以自变量的形式建立了形参。被调用者内部的其他自变量也是存放在栈中的。由于这些进栈操作,栈指针已经移动所有这些局部变量之下。但是被调用者记录了它刚开始执行时的初始栈指针,以他为参考,用正或负的偏移值来访问栈中的变量。当被调用者准备返回时,系统弹出栈中所有的自变量,这时栈指针移动了被调用者刚开始执行时的位置。接着被调用者返回,系统从栈中弹出返回地址,调用者就可以继续执行了。当调用者继续执行时,系统还将从栈中弹出调用者的实参,于是栈指针回到了调用发生前的位置。 可能刚开始学的人看不太懂上面的讲解,栈涉及到指针问题,具体可以看看一些数据结构的书。要想学好编程语言,数据结构是一定要学的。 二、递归 递归,是函数实现的一个很重要的环节,很多程序中都或多或少的使用了递归函数。递归的意思就是函数自己调用自己本身,或者在自己函数调用的下级

C语言入门-基本运算源代码

一、一到一百求和 #include main() { inti,sum; for(i=1,sum=0;i<=100;sum+=i++); printf("1+2+……+100=%d",sum); } 如果求偶数和,则变成:for(i=2,sum=0;I<=100;sum=sum+i,i+=2); 已知循环次数有for循环比较方便,循环次数未知用do while或while比较方便。 二、计算三角形面积 #include #include main() { float a,b,c,s,area; printf("请输入三角形的三边:\n"); scanf("%f%f%f",&a,&b,&c); while(c>a+b||a>c+b||b>a+c) { printf("所输入数据组不成三角形\n"); printf("请再次输入三角形的三边:\n"); scanf("%f%f%f",&a,&b,&c); } { s=(a+b+c)/2.; area=sqrt(s*(s-a)*(s-b)*(s-c)); printf("a=%5.2f,b=%5.2f,c=%5.2f,s=%7.2f \n",a,b,c,s); printf("area=%7.2f\n",area); } } 三、解一元二次方程 #include #include main() { float a,b,c,dt,p,q,x1,x2; printf("请以此输入一元二次方程系数a,b,c\n"); scanf("%f%f%f",&a,&b,&c); dt=b*b-4*a*c; if(dt>=0) { p=-b/(2*a); q=sqrt(dt)/(2*a); x1=p+q; x2=p-q; printf("\nx1=%5.2f\nx2=%5.2f\n",x1,x2); } else printf("方程无解"); } 四一箭穿心图案 main() { printf("\n"); printf(" * * * *\n"); printf(" * * * *\n"); printf(" * * *\n"); printf(" >>>------I LOVE YOU !------->\n"); printf(" * *\n"); printf(" * *\n"); printf(" * *\n"); printf(" * *\n"); printf(" *\n"); } 五、得出字符ASCII码 #include main() {char c; printf("请输入一个字符:\n"); scanf("%c",&c); printf("字符是:%c,它的ASCII码是:%d\n",c,c); 六、破解密码 #include #define PASSWORD 154533 main() { inti; for (i=1;i<=999999;i++) {

递归算法详解

递 归 冯文科 一、递归的基本概念。 一个函数、概念或数学结构,如果在其定义或说明内部直接或间接地出现对其本身的引 用,或者是为了描述问题的某一状态,必须要用至它的上一状态,而描述上一状态,又必须用到它的上一状态……这种用自己来定义自己的方法,称之为递归或递归定义。在程序设计中,函数直接或间接调用自己,就被称为递归调用。 二、递归的最简单应用:通过各项关系及初值求数列的某一项。 在数学中,有这样一种数列,很难求出它的通项公式,但数列中各项间关系却很简单,于是人们想出另一种办法来描述这种数列:通过初值及n a 与前面临近几项之间的关系。 要使用这样的描述方式,至少要提供两个信息:一是最前面几项的数值,一是数列间各项的关系。 比如阶乘数列 1、2、6、24、120、720…… 如果用上面的方式来描述它,应该是: ???>==-1 ,1,11n na n a n n 如果需要写一个函数来求n a 的值,那么可以很容易地写成这样:

这就是递归函数的最简单形式,从中可以明显看出递归函数都有的一个特点:先处理一 些特殊情况——这也是递归函数的第一个出口,再处理递归关系——这形成递归函数的第二个出口。 递归函数的执行过程总是先通过递归关系不断地缩小问题的规模,直到简单到可以作为 特殊情况处理而得出直接的结果,再通过递归关系逐层返回到原来的数据规模,最终得出问题的解。 以上面求阶乘数列的函数)(n f 为例。如在求)3(f 时,由于3不是特殊值,因此需要计 算)2(*3f ,但)2(f 是对它自己的调用,于是再计算)2(f ,2也不是特殊值,需要计算 )1(*2f ,需要知道)1(f 的值,再计算)1(f ,1是特殊值,于是直接得出1)1(=f ,返回上 一步,得2)1(*2)2(==f f ,再返回上一步,得62*3)2(*3)3(===f f ,从而得最终解。 用图解来说明,就是 下面再看一个稍复杂点的例子。 【例1】数列}{n a 的前几项为

c实例源代码

【实例1-1】 using System; using System、Collections、Generic; using System、Text; namespace _ { class Program { static void Main(string[] args) { System、Console、Wriine("恭喜您,学会了C#编程!"); System、Console、ReadLine(); } } } 【实例1-2】 private void Form1_Load(object sender, EventArgs e) { this、Text="这就是一窗口!"; Label lbShow = new Label(); lbShow、Location = new Point(40,50); lbShow、AutoSize = true; lbShow、Text = "恭喜您学会编程了!"; this、Controls、Add(lbShow); int[] x, y; x = new int[5] { 1,2,3,4,5}; y = new int[5]; y = x; foreach (int a in y) { lbShow、Text += a、ToString(); } this、Controls、Add(lbShow); } 【实例2-1】 using System; using System、Windows、Forms; namespace TestEnum { public partial class TestEnum : Form { //Visual Studio 、Net自动生成得构造函数,后文示例将全部省略 public TestEnum() { Initializeponent(); } enum MyEnum { a = 101, b, c, d = 201, e, f }; //声明枚举型 private void TestEnum_Load(object sender, EventArgs e) { MyEnum x = MyEnum、f; //使用枚举型 MyEnum y = (MyEnum)202; string result ="枚举数x得值为"; result += (int)x; //将x转换为整数 result += "\n枚举数y代表枚举元素" + y; lblShow、Text = result; } }

完整word版整理C语言入门经典案例及源代码

精品文档 循环控制输出图案 【程序1】 题目:输出9*9口诀。 1.程序分析:分行与列考虑,共9行9列,i控制行,j控制列。 2.程序源代码: #include stdio.h main() { int i,j,result; printf(\ ); for (i=1;i<10;i++) { for(j=1;j<10;j++) { result=i*j; printf(%d*%d=%-3d,i,j,result);/*-3d表示左对齐,占3位*/ } printf(\ );/*每一行后换行*/ } } 【程序2】 题目:要求输出国际象棋棋盘。 1.程序分析:用i控制行,j来控制列,根据i+j的和的变化来控制输出黑方格,还是白方格。 2.程序源代码: #include stdio.h main() { int i,j; for(i=0;i<8;i++) { for(j=0;j<8;j++) if((i+j)%2==0) printf(%c%c,219,219); else printf( ); printf(\ ); } } ============================================================== 【程序3】

题目:打印楼梯,同时在楼梯上方打印两个笑脸。 1.程序分析:用i控制行,j来控制列,j根据i的变化来控制输出黑方格的个数。 2.程序源代码: #include stdio.h 精品文档. 精品文档 main() { int i,j; printf(\\1\n);/*输出两个笑脸*/ for(i=1;i<11;i++) { for(j=1;j<=i;j++) printf(%c%c,219,219); printf(\ ); } } 【程序4】 题目:打印出如下图案(菱形) * *** ****** ******** ****** *** * 1.程序分析:先把图形分成两部分来看待,前四行一个规律,后三行一个规律,利用双重 for循环,第一层控制行,第二层控制列。 2.程序源代码: main() { int i,j,k; for(i=0;i<=3;i++) { for(j=0;j<=2-i;j++) printf( ); for(k=0;k<=2*i;k++) printf(*); printf(\ ); } for(i=0;i<=2;i++) {

函数的递归调用与分治策略

函数的递归调用与分治策 略 This manuscript was revised on November 28, 2020

函数的递归调用与分治策略 递归方法是算法和程序设计中的一种重要技术。递归方法即通过函数或过程调用自身将问题转化为本质相同但规模较小的子问题。递归方法具有易于描述和理解、证明简单等优点,在动态规划、贪心算法、回溯法等诸多算法中都有着极为广泛的应用,是许多复杂算法的基础。递归方法中所使用的“分而治之”的策略也称分治策略。 递归方法的构造 构造递归方法的关键在于建立递归关系。这里的递归关系可以是递归描述的,也可以是递推描述的。下面由一个求n的阶乘的程序为例,总结出构造递归方法的一般步骤。 [例1]从键盘输入正整数N(0<=N<=20),输出N!。 [分析]N!的计算是一个典型的递归问题。使用递归方法来描述程序,十分简单且易于理解。 [步骤1]描述递归关系递归关系是这样的一种关系。设{U1,U2,U3,…,Un…}是一个序列,如果从某一项k开始,Un和它之前的若干项之间存在一种只与n有关的关系,这便称为递归关系。 注意到,当N>=1时,N!=N*(N-1)!(N=1时,0!=1),这就是一种递归关系。对于特定的K!,它只与K与(K-1)!有关。 [步骤2]确定递归边界在步骤1的递归关系中,对大于k的Un的求解将最终归结为对Uk的求解。这里的Uk称为递归边界(或递归出口)。在本例中,递归边界为k=0,即0!=1。对于任意给定的N!,程序将最终求解到0!。 确定递归边界十分重要,如果没有确定递归边界,将导致程序无限递归而引起死

循环。例如以下程序: #include <> int f(int x){ return(f(x-1)); } main(){ cout<=1时 n!= 1 当N=0时 再将这种关系翻译为代码,即一个函数: long f(int n){ if (n==0) return(1); else return(n*f(n-1)); } [步骤4]完善程序主要的递归函数已经完成,将程序依题意补充完整即可。

递归算法详解

递归算法详解 C通过运行时堆栈支持递归函数的实现。递归函数就是直接或间接调用自身的函数。 许多教科书都把计算机阶乘和菲波那契数列用来说明递归,非常不幸我们可爱的著名的老潭老师的《C语言程序设计》一书中就是从阶乘的计算开始的函数递归。导致读过这本经书的同学们,看到阶乘计算第一个想法就是递归。但是在阶乘的计算里,递归并没有提供任何优越之处。在菲波那契数列中,它的效率更是低的非常恐怖。 这里有一个简单的程序,可用于说明递归。程序的目的是把一个整数从二进制形式转换为可打印的字符形式。例如:给出一个值4267,我们需要依次产生字符‘4’,‘2’,‘6’,和‘7’。就如在printf函数中使用了%d格式码,它就会执行类似处理。 我们采用的策略是把这个值反复除以10,并打印各个余数。例如,4267除10的余数是7,但是我们不能直接打印这个余数。我们需要打印的是机器字符集中表示数字‘7’的值。在ASCII码中,字符‘7’的值是55,所以我们需要在余数上加上48来获得正确的字符,但是,使用字符常量而不是整型常量可以提高程序的可移植性。‘0’的ASCII码是48,所以我们用余数加上‘0’,所以有下面的关系: ‘0’+ 0 =‘0’ ‘0’+ 1 =‘1’ ‘0’+ 2 =‘2’ ... 从这些关系中,我们很容易看出在余数上加上‘0’就可以产生对应字符的代码。接着就打印出余数。下一步再取商的值,4267/10等于426。然后用这个值重复上述步骤。 这种处理方法存在的唯一问题是它产生的数字次序正好相反,它们是逆向打印的。所以在我们的程序中使用递归来修正这个问题。 我们这个程序中的函数是递归性质的,因为它包含了一个对自身的调用。乍一看,函数似乎永远不会终止。当函数调用时,它将调用自身,第2次调用还将调用自身,以此类推,似乎永远调用下去。这也是我们在刚接触递归时最想不明白的事情。但是,事实上并不会出现这种情况。 这个程序的递归实现了某种类型的螺旋状while循环。while循环在循环体每次执行时必须取得某种进展,逐步迫近循环终止条件。递归函数也是如此,它在每次递归调用后必须越来越接近某种限制条件。当递归函数符合这个限制条件时,它便不在调用自身。 在程序中,递归函数的限制条件就是变量quotient为零。在每次递归调用之前,我们都把quotient除以10,所以每递归调用一次,它的值就越来越接近零。当它最终变成零时,递归便告终止。 /*接受一个整型值(无符号0,把它转换为字符并打印它,前导零被删除*/

纯C语言写的一个小型游戏源代码

/* A simple game*/ /*CopyRight: Guanlin*/ #include #include #include #include #include #include struct object_fix { char name[20]; char id[5]; char desc[500]; char action[30]; char im[5]; }; struct object_move { char name[20]; char id[5]; char desc[500]; int loc; int pwr; int strg; char im[5]; }; struct rover {

char name[20]; char id[5]; char desc[500]; int pwr; int strg; int location[2]; char im[5]; }; struct map /* this is the map structure*/ { char data[20]; char add_data[20]; int amount; int x; /* this were the successor keeps it's x & y values*/ int y; }; struct location /*this structure is for the successor lister*/ { float height; char obj; }; void stats_update(int selected, struct rover *p_rover) { switch (selected) { case 1: if(p_rover->pwr < 7) printf("\n\nYou do not have enough power to perform this action!\n\n"); else

递归算法实例C源码

玩转算法与数据结构之递归算法 —HIT2000鲁天伟 递归算法在数据结构的树,图程序中都有应用。那么什么是递归算法呢。其实就是函数的自我调用。循环的在作一件事,把一个问题分成了可以重复的子问题去处理。递归这个词有两层含义,即递去和归来。递去,就是函数一层一层的在调用自己,我们在这里定义调用自己的函数为父函数,被调用的是子函数。父与子是个相对概念(参照二叉树中父结点与子结点来理解)。递去,何时结束呢,是要设定一个结束条件。那么这种结束条件的设置,第一种是设全局变量,全局变量随着每次自我调用在变化,当全局变量达到指定值或是全局变量参与的计算达到某个指定的值时结束。第二种是形参变量在被调用时达到指定值或形参参与的计算达到某个值时结束。第三种是当不满足自我调用条件时结束。这三种结束条件结合程序的需要可以组合使用。归来是指调用到某一次时,子程序执行结束了,子函数一层一层的把程序的执行权返还给自己的父函数,父函数执行所调用子函数的下一条命令。简单的递归,是一个函数体中调用自己一次,复杂的是在函数体中调用自己多次。 举一个字符串逆序输出的简单递归调用的例子如下图。 图表 1 递归函数调用

1、字符串逆序输出问题:将一个长为4的字符串逆序输出。代码如下: #include #define MAXSIZE 4 char data[MAXSIZE]; Rverse(int n){ if(n=3,F(1)=1,F(2)=1 代码如下: #include int Fib(int N){ if(N<=1) return N; else return Fib(N-1)+Fib(N-2); }

c编程实例100例

【程序1】题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?1.程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去掉不满足条件的排列。 2.程序源代码:main(){int i,j,k;printf("\n"... 经典c程序100例2010-03-20 15:47 | (分类:默认分类) 【程序1】 题目:有1、2、3、4个数字,能组成多少个互不相同且无重复数字的三位数?都是多少? 1.程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满足条件的排列。 2.程序源代码: main() { int i,j,k; printf("\n"); for(i=1;i<5;i++)/*以下为三重循环*/ for(j=1;j<5;j++) for (k=1;k<5;k++) { if (i!=k&&i!=j&&j!=k) /*确保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k); } } ============================================================== 【程序2】 题目:企业发放的奖金根据利润提成。利润(I)低于或等于10万元时,奖金可提10%;利润高 于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提 成%;20万到40万之间时,高于20万元的部分,可提成5%;40万到60万之间时高于 40万元的部分,可提成3%;60万到100万之间时,高于60万元的部分,可提成%,高于 100万元时,超过100万元的部分按1%提成,从键盘输入当月利润I,求应发放奖金总数? 1.程序分析:请利用数轴来分界,定位。注意定义时需把奖金定义成长整型。 2.程序源代码: main() { long int i; int bonus1,bonus2,bonus4,bonus6,bonus10,bonus; scanf("%ld",&i); bonus1=100000*;bonus2=bonus1+100000*; bonus4=bonus2+200000*; bonus6=bonus4+200000*; bonus10=bonus6+400000*;

递归算法与递归程序

一、教学目标 1、知识与技能 (1).认识递归现象。 (2).使用递归算法解决问题往往能使算法的描述乘法而易于表达 (3).理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4).认识递归算法往往不是高效的算法。 (5).了解递归现象的规律。 (6).能够设计递归程序解决适用于递归解决的问题。 (7).能够根据算法写出递归程序。 (8).了解生活中的递归现象,领悟递归现象的既有重复,又有变化的 特点,并 且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1)了解递归现象和递归算法的特点。

(2)能够根据问题设计出恰当的递归程序。 2、教学难点 (1)递归过程思路的建立。 (2)判断问题是否适于递归解法。 (3)正确写出递归程序。 三、教学环境 1、教材处理 教材选自《广东省普通高中信息技术选修一:算法与程序设计》第四章第五节,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2)和练习(3)这两道题目的形式相差很远,但方法和答案却都是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 教学方法采用讲解、探究、任务驱动和学生自主学习相结合 2、预备知识 学生已掌握了用计算机解决问题的过程,掌握了程序设计基础,掌握了解析法、穷举法、查找法、排序法设计程序的技巧。 3、硬件要求 建议本节课在多媒体电脑教室中完成,最好有广播教学系统或投影仪,为拓展学习,学生机应允许上互联网。 4、所需软件 学生机要安装VB6.0或以上版本。 5、所需课时 2课时(90分钟)

c++编程实例100例

输入一个整数将各位征税反转后输出 #include using namespace std; int main() { int n,right_digit,newnum=0; cout<<"Enter the number:"; cin>>n; cout<<"the number in revers srder is:"; do{ right_digit=n%10; cout< using namespace std; int main() { int i=1,sum=0; while (i<=10) { sum+=i; i++; } cout<<"sunm="< using namespace std; int main() { int i=1,sum=0; do { sum+=i; i++; } while (i<=10);

cout<<"sum="< using namespace std; int main() { long int i; int bouns1,bouns2,bouns4,bouns6,bouns10,bouns; scanf("%d",&i);//%ld表示这个数据的类型是long int 长整形 //&i 表示i的地址,及输出的是i的值bouns1=100000*0.1; bouns2=bouns1+10000090.75; bouns4=bouns2+200000*0.5; bouns6=bouns4+200000*0.3; bouns10=bouns6+400000*0.15; if(i<=100000) bouns=i*0.1; else if(i<=200000) bouns=bouns1+(i-100000)*0.075; else if(i<=400000) bouns=bouns2+(i-200000)*0.05; else if(i<=600000) bouns=bouns4+(i-400000)*0.03; else if(i<=10000000) bouns=bouns6+(i-600000)*0.15; else bouns=bouns10+(i-1000000)*0.01; printf("bouns=%d",bouns);//输出一个数据a为整形数据。 } 星期 int day; cout<<"输入数:"; cin>>day; switch (day) { case 0: cout<<"sunday"<

递归算法工作栈的变化详解

通常,一个函数在调用另一个函数之前,要作如下的事情:a)将实在参数,返回地址等信息传递给被调用函数保存; b)为被调用函数的局部变量分配存储区;c)将控制转移到被调函数的入口. 从被调用函数返回调用函数之前,也要做三件事情:a)保存被调函数的计算结果;b)释放被调函数的数据区;c)依照被调函数保存的返回地址将控制转移到调用函数.所有的这些,不论是变量还是地址,本质上来说都是"数据",都是保存在系统所分配的栈中的. ok,到这里已经解决了第一个问题:递归调用时数据都是保存在栈中的,有多少个数据需要保存就要设置多少个栈,而且最重要的一点是:控制所有这些栈的栈顶指针都是相同的,否则无法实现同步. 下面来解决第二个问题:在非递归中,程序如何知道到底要转移到哪个部分继续执行?回到上面说的树的三种遍历方式,抽象出来只有三种操作:访问当前结点,访问左子树,访问右子树.这三种操作的顺序不同,遍历方式也不同.如果我们再抽象一点,对这三种操作再进行一个概括,可以得到:a)访问当前结点:对目前的数据进行一些处理;b)访问左子树:变换当前的数据以进行下一次处理;c)访问右子树:再次变换当前的数据以进行下一次处理(与访问左子树所不同的方式). 下面以先序遍历来说明: void preorder_recursive(Bitree T) /* 先序遍历二叉树的递归算法*/ { if (T) { visit(T); /* 访问当前结点*/ preorder_recursive(T->lchild); /* 访问左子树*/ preorder_recursive(T->rchild); /* 访问右子树*/ } } visit(T)这个操作就是对当前数据进行的处理, preorder_recursive(T->lchild)就是把当前数据变换为它的左子树,访问右子树的操作可以同样理解了. 现在回到我们提出的第二个问题:如何确定转移到哪里继续执行?关键在于一下三个地方:a)确定对当前数据的访问顺序,简单一点说就是确定这个递归程序可以转换为哪种方式遍历的树结构;b)确定这个递归函数转换为递归调用树时的分支是如何划分的,即确定什么是这个递归调用树的"左子树"和"右子树"c)确定这个递归调用树何时返回,即确定什么结点是这个递归调用树的"叶子结点".

【习题】函数调用Word版

函数调用 【实验目的】: 1. 掌握函数的定义和调用方法。 2. 练习重载函数的使用。 3. 练习有默认参数值的函数的使用。 4. 练习使用系统函数。 5. 熟悉多文件工程结构。 【实验内容】: 1.编写函数int add(int x, int y),实现两个整型数据x,y的求和功能。 ·要求:使用Visual C++的Debug调试功能,记录在函数调用时实参和形参的值 的变化。 2.编写一个求x的n次方的程序int pow(int m, int n),计算m的n次方的结果。 3.利用上题中设计两个函数,设计一个求两个整数的平方和的程序。要求如下: a)主函数中调用求和函数: int add(int x, int y);

求和函数add中调用上题设计的int pow(int m, int n)函数来计算其平方。 4.多文件程序结构:一个文件可以包含多个函数定义,但是一个函数的定义必须完 整的存在于一个文件中。要求: a)将add函数的声明部分放在头文件(add.h)中,实现部分放在源文件(add.cpp) 中。 b)将pow函数的声明部分放在头文件(pow.h)中,实现部分放在源文件(pow.cpp) 中。 c)在main函数中调用add函数,计算从屏幕终端输入的两个数据之和。(main 函数的实现在main.cpp中) 5.将第2题设计的pow函数修改成为递归函数。

6.设计一个函数int fac(int n),利用函数的递归调用,来计算n!(n的阶乘)。 ·要求:单步调试程序,记录递归函数的调用过程。 7.使用系统函数pow(x,y)计算x y的值,注意包含头文件cmath。 8.从键盘输入两个数字,分别赋值给变量a、b,设计一个子函数swap,实现这两个数字交换次序。(注:根据需要自己设计函数的参数及返回值) ·要求:使用Visual C++的Debug调试功能,记录在函数调用时实参和形参的值的变化。 9.设计一个函数,求圆的面积。 要求:在主函数中调用子函数calArea计算圆的面积。并将calArea函数设计为内联函数。

04.递归算法讲解

1.用递归法计算n! 【讲解】 递归是算法设计中的一种基本而重要的算法。递归方法即通过函数或过程调用自身将问题转化为本质相同但规模较小的子问题,是分治策略的具体体现。 递归方法具有易于描述、证明简单等优点,在动态规划、贪心算法、回溯法等诸多算法中都有着极为广泛的应用,是许多复杂算法的基础。 递归概述 一个函数在它的函数体内调用它自身称为递归(recursion)调用。是一个过程或函数在其定义或说明中直接或间接调用自身的一种方法,通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。用递归思想写出的程序往往十分简洁易懂。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。 使用递归要注意以下几点: (1)递归就是在过程或函数里调用自身; (2)在使用递增归策略时,必须有一个明确的递归结束条件,称为递归出口。 例如有函数r如下: int r(int a) { b=r(a?1); return b; } 这个函数是一个递归函数,但是运行该函数将无休止地调用其自身,这显然是不正确的。为了防止递归调用无终止地进行,必须在函数内有终止递归调用的手段。常用的办法是加条件判断,满足某种条件后就不再作递归调用,然后逐层返回。 构造递归方法的关键在于建立递归关系。这里的递归关系可以是递归描述的,也可以是递推描述的。 例4-1 用递归法计算n!。 n!的计算是一个典型的递归问题。使用递归方法来描述程序,十分简单且易于理解。 (1)描述递归关系 递归关系是这样的一种关系。设{U 1,U 2 ,U 3 ,…,U n ,…}是一个序列,如果从某一项k开始, U n 和它之前的若干项之间存在一种只与n有关的关系,这便称为递归关系。 注意到,当n≥1时,n!=n*(n?1)!(n=0时,0!=1),这就是一种递归关系。对于特定的k!,它只与k与(k?1)!有关。 (2)确定递归边界 在步骤1的递归关系中,对大于k的U n 的求解将最终归结为对U k 的求解。这里的U k 称 为递归边界(或递归出口)。在本例中,递归边界为k=0,即0!=1。对于任意给定的N!,程序将最终求解到0!。 确定递归边界十分重要,如果没有确定递归边界,将导致程序无限递归而引起死循环。例如以下程序: #include int f(int x) { return(f(x?1));}

最新(整理)c语言入门经典案例及源代码.word版本

循环控制输出图案 【程序1】 题目:输出9*9口诀。 1.程序分析:分行与列考虑,共9行9列,i控制行,j控制列。 2.程序源代码: #include "stdio.h" main() { int i,j,result; printf("\n"); for (i=1;i<10;i++) { for(j=1;j<10;j++) { result=i*j; printf("%d*%d=%-3d",i,j,result);/*-3d表示左对齐,占3位*/ } printf("\n");/*每一行后换行*/ } } 【程序2】 题目:要求输出国际象棋棋盘。 1.程序分析:用i控制行,j来控制列,根据i+j的和的变化来控制输出黑方格,还是白方格。 2.程序源代码: #include "stdio.h"

{ int i,j; for(i=0;i<8;i++) { for(j=0;j<8;j++) if((i+j)%2==0) printf("%c%c",219,219); else printf(" "); printf("\n"); } } ============================================================== 【程序3】 题目:打印楼梯,同时在楼梯上方打印两个笑脸。 1.程序分析:用i控制行,j来控制列,j根据i的变化来控制输出黑方格的个数。 2.程序源代码: #include "stdio.h" main() { int i,j; printf("\1\1\n");/*输出两个笑脸*/ for(i=1;i<11;i++)

递归算法详解完整版

递归算法详解标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

递归 冯文科一、递归的基本概念。 一个函数、概念或数学结构,如果在其定义或说明内部直接或间接地出现对其本身的引用,或者是为了描述问题的某一状态,必须要用至它的上一状态,而描述上一状态,又必须用到它的上一状态……这种用自己来定义自己的方法,称之为递归或递归定义。在程序设计中,函数直接或间接调用自己,就被称为递归调用。 二、递归的最简单应用:通过各项关系及初值求数列的某一项。 在数学中,有这样一种数列,很难求出它的通项公式,但数列中各项间关系却很简 a与前面临近几项之间的关单,于是人们想出另一种办法来描述这种数列:通过初值及 n 系。 要使用这样的描述方式,至少要提供两个信息:一是最前面几项的数值,一是数列间各项的关系。 比如阶乘数列 1、2、6、24、120、720…… 如果用上面的方式来描述它,应该是: a的值,那么可以很容易地写成这样: 如果需要写一个函数来求 n

这就是递归函数的最简单形式,从中可以明显看出递归函数都有的一个特点:先处理一些特殊情况——这也是递归函数的第一个出口,再处理递归关系——这形成递归函数的第二个出口。 递归函数的执行过程总是先通过递归关系不断地缩小问题的规模,直到简单到可以作为特殊情况处理而得出直接的结果,再通过递归关系逐层返回到原来的数据规模,最终得出问题的解。 以上面求阶乘数列的函数) f为例。如在求)3(f时,由于3不是特殊值,因此需 (n 要计算)2( 3f,但)2(f是对它自己的调用,于是再计算)2(f,2也不是特殊值,需要计 * 算)1( f,返回 )1(= 2f,需要知道)1(f的值,再计算)1(f,1是特殊值,于是直接得出1 * 上一步,得2 3 * )2( )3(= = f,从而得最终 =f )1( 3 2 * * )2(= =f 2 f,再返回上一步,得6 解。 用图解来说明,就是

相关文档
最新文档