风电机组整机系统振动检测与故障诊断 _ yw 20180607

风电机组整机系统振动检测与故障诊断 _ yw 20180607
风电机组整机系统振动检测与故障诊断 _ yw 20180607

风电机组整机系统振动检测与故障诊断

目录

1 风电机组加阻减振控制策略 (1)

1.1塔筒前后振动控制 (1)

1.2塔筒侧向振动控制 (1)

1.3传动链扭转振动控制 (1)

2 塔筒 (2)

2.1塔筒前后弯曲振动(1) (2)

2.2塔筒前后弯曲振动(2) (5)

2.3塔筒前后弯曲振动(3) (9)

3 机舱 (14)

3.1机舱相对塔筒扭转振动(1) (14)

3.2机舱相对塔筒扭转振动(2) (19)

4 传动链 (25)

4.1传动链扭转振动(1) (25)

4.2传动链扭转振动(2) (31)

1 风电机组加阻减振控制策略

1.1 塔筒前后振动控制

对于大型风力发电机组,叶片桨距角的变化直接影响塔筒的振动幅度和载荷,且塔筒前后一阶模态为主要模态。塔筒前后振动的动态特性可以近似为简单的二阶谐波阻尼系统,如果变桨距动作引起的附加力与塔筒的前后振动速度成正比,可明显地增加有效阻尼,削减外力。由于测量加速度比测量速度更容易,机舱的加速度传感器可很容易得到塔筒的前后振动加速度,积分后即得到塔筒前后振动的速度,将振动速度通过一个带增益的二阶滤波器即可得到该阻尼信号,在原有桨距角需求的基础上加入该阻尼信号,从而有效抑制塔筒的振动。

1.2 塔筒侧向振动控制

塔筒侧向振动的动态特性与塔筒前后振动类似。塔筒顶部的侧向振动一般由传动链扭矩反作用引起,塔筒侧向结构阻尼本身很小,可通过在原有发电机给定转矩上添加附加转矩实现增大阻尼的效果。同样可借助机舱振动加速度传感器,将测量到的塔筒侧向加速度积分后再作用增益即可得到附加转矩,并将附加转矩范围限定在发电机允许最大转矩的10%以内。

1.3 传动链扭转振动控制

在变桨距阶段,变速风电机组只有很小的阻尼,因为转矩不再随着转速的变化而变化,在非常低的阻尼下会导致齿轮箱有较大的转矩振动。增加传动链的阻尼可以通过在原有转矩给定值的基础上增加一个很小的附加转矩波动。这个转矩波动要与传动链的扭转速度相反,才能增加等效阻尼。附加转矩可将发电机转速通过一个带通滤波器近似获得。值得注意的是,风轮平面内一阶模态、塔筒侧向二阶模态和风轮转速的多倍频,特别是3P、6P,都可以激发传动链的扭振。

摘自:《变速变桨风力发电机组的桨距控制及载荷优化》,重庆大学,何玉林

2 塔筒

2.1 塔筒前后弯曲振动(1)2.1.1 机组信息

设备健康诊断中心

观为监测技术无锡股份有限公司

Tel: +86 510 85388855 Fax: +86 510 85386398

https://www.360docs.net/doc/485538089.html, 2.2 塔筒前后弯曲振动(2)

2.2.1 机组信息

设备健康诊断中心

观为监测技术无锡股份有限公司

Tel: +86 510 85388855 Fax: +86 510 85386398

https://www.360docs.net/doc/485538089.html, 2.3 塔筒前后弯曲振动(3)

2.3.1 机组信息

注:风机图片源自国外一起倒塔事故,与案例无关

设备健康诊断中心

观为监测技术无锡股份有限公司

Tel: +86 510 85388855 Fax: +86 510 85386398

https://www.360docs.net/doc/485538089.html, 3 机舱

3.1 机舱相对塔筒扭转振动(1)

3.1.1 机组信息

风力发电机变桨系统

风力发电机变桨系统 1 综述 变桨系统的所有部件都安装在轮毂上。风机正常运行时所有部件都随轮毂以一定的速度旋转。 变桨系统通过控制叶片的角度来控制风轮的转速,进而控制风机的输出功率,并能够通过空气动力制动的方式使风机安全停机。 风机的叶片(根部)通过变桨轴承与轮毂相连,每个叶片都要有自己的相对独立的电控同步的变桨驱动系统。变桨驱动系统通过一个小齿轮与变桨轴承内齿啮合联动。 风机正常运行期间,当风速超过机组额定风速时(风速在12m/s到25m/s之间时),为了控制功率输出变桨角度限定在0度到30度之间(变桨角度根据风速的变化进行自动调整),通过控制叶片的角度使风轮的转速保持恒定。任何情况引起的停机都会使叶片顺桨到90度位置(执行紧急顺桨命令时叶片会顺桨到91度限位位置)。 变桨系统有时需要由备用电池供电进行变桨操作(比如变桨系统的主电源供电失效后),因此变桨系统必须配备备用电池以确保机组发生严重故障或重大事故的情况下可以安全停机(叶片顺桨到91度限位位置)。此外还需要一个冗余限位开关(用于95度限位),在主限位开关(用于91度限位)失效时确保变桨电机的安全制动。 由于机组故障或其他原因而导致备用电源长期没有使用时,风机主控就需要检查备用电池的状态和备用电池供电变桨操作功能的正常性。 每个变桨驱动系统都配有一个绝对值编码器安装在电机的非驱动端(电机尾部),还配有一个冗余的绝对值编码器安装在叶片根部变桨轴承内齿旁,它通过一个小齿轮与变桨轴承内齿啮合联动记录变桨角度。 风机主控接收所有编码器的信号,而变桨系统只应用电机尾部编码器的信号,只有当电机尾部编码器失效时风机主控才会控制变桨系统应用冗余编码器的信号。 2 变浆系统的作用 根据风速的大小自动进行调整叶片与风向之间的夹角实现风轮对风力发电机有一个恒定转速;利用空气动力学原理可以使桨叶顺浆90°与风向平行,使风机停机。 3 主要部件组成

风电机组状态监测与故障诊断相关技术研究

新能源与风力发电? EMCA2014,41(2 =============================================================================================== )风电机组状态监测与故障诊断相关技术研究 张文秀1, 武新芳2 (1.南京理工大学能源与动力工程学院,江苏南京 210094; 2.上海电力学院能源与机械工程学院,上海 200090) 摘 要:对风电机组进行状态监测和故障诊断,可有效降低机组的运行维护成本,保证机组的安全稳定运行三首先概述了状态监测与故障诊断研究的研究情况,然后介绍了风电机组的状态监测技术和状态监控系统的应用开发情况,接着针对机组中的主要故障组件及整个风电系统,介绍了国内外状态监测和故障诊断方法的研究现状与研究进展,最后探讨了风力发电系统状态监测的发展趋势以及未来的研究方向三关键词:风电机组;状态监测;故障诊断;研究现状;发展趋势 中图分类号:TM307+.1∶TM614 文献标志码:A 文章编号:1673?6540(2014)02?0050?07 Research on Condition Monitoring and Fault Diagnosis Technology of Wind Turbines ZHANG Wenxiu1, WU Xinfang2 (1.School of Energy and Power Engineering,Nanjing University of Science&Technology, Nanjing210094,China;2.School of Energy and Mechanical Engineering,ShangHai University of Electric Power,Shanghai200090,China) Abstract:The technologies of condition monitoring and fault diagnosis can effectively reduce the cost of operation and maintenance,as well as ensure the security and stability of wind turbine.The research of condition monitoring and fault diagnosis were overviewed,then the status of the wind tubine monitoring technology and application development conditions of monitoring system were introduced,and aiming at the main failure parts for wind turbine and the wind power system,the research status and progress of condition monitoring and fault diggnosis methods in domestic and abroad were introduced.Finally the development trend of wind power generation system status montoring and research direction in the future were discussed. Key words:wind turbines;condition monitoring;fault diagnosis;research status;development trend 0 引 言 近年来,风能作为一种绿色能源在世界能源结构中发挥着愈来愈重要的作用,风电装备也因此得到迅猛发展三根据世界风能协会(WWEA)的报告,截止2009年底,全球风力发电机组发电量占全球电力消耗量的2%,根据目前的增长趋势,预计到2020年底,全球装机容量至少为1.9×106MW,是2009年的10倍[1]三在 九五”期间,我国风力发电场的建设快速发展,过去十年中,我国的风力发电装机容量以年均55%的速度高速增长,2010年已达1000万kW三 随着大规模风电场的投入运行,出现了很多运行故障,因而需要高额的运行维护成本,大大影响了风电场的经济效益三风电场一般处于偏远地区,工作环境复杂恶劣,风力发电机组发生故障的几率比较大,如果机组的关键零部件发生故障,将会使设备损坏,甚至导致机组停机,造成巨大的经济损失[2]三对于工作寿命为20年的机组,运行维护成本一般占到整个风电场总投入的10%~ 15%,而对于海上风电场,整个比例高达20%~ 25%[3]三因此,为了降低风电机组运行的风险,维护机组安全经济运行,都应该发展风电机组状态监测和故障诊断技术三 状态监测和故障诊断可以有效监测出传动系统二发电机系统等的内部故障,优化维修策略二减 05

风电专业考试题库(带答案)

风电专业考试题库 以下试题的难易程度用“★”的来表示,其中“★”数量越多表示试题难度越大,共526题。 一、填空题 ★1、风力发电机开始发电时,轮毂高度处的最低风速叫。 (切入风速) ★2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是。(定期维护) ★3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。(两) ★4、是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) ★5、风能的大小与风速的成正比。(立方)E=1/2(ρtsυ3)式中:ρ!———空气密度(千克/米2);υ———风速(米/ 秒);t———时间(秒);S———截面面积(米2)。 ★6、风力发电机达到额定功率输出时规定的风速叫。(额定风速)★7、叶轮旋转时叶尖运动所生成圆的投影面积称为。 (扫掠面积) ★8、风力发电机的接地电阻应每年测试次。(一) ★9、风力发电机年度维护计划应维护一次。(每年) ★10、SL1500齿轮箱油滤芯的更换周期为个月。(6) ★11、G52机组的额定功率KW。(850) ★★12、凡采用保护接零的供电系统,其中性点接地电阻不得超

过。(4欧) ★★13、在风力发电机电源线上,并联电容器的目的是为了。(提高功率因素) ★★14、风轮的叶尖速比是风轮的和设计风速之比。(叶尖速度)★★15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于。(迎风状态) ★★16、风电场生产必须坚持的原则。 (安全第一,预防为主) ★★17、是风电场选址必须考虑的重要因素之一。(风况) ★★18、风力发电机的是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) ★★19、风力发电机组投运后,一般在后进行首次维护。 (三个月) ★★20、瞬时风速的最大值称为。(极大风速) ★★21、正常工作条件下,风力发电机组输出的最高净电功率称为。 (最大功率) ★★22、在国家标准中规定,使用“downwind”来表示。 (主风方向) ★★23、在国家标准中规定,使用“pitch angle”来表示。 (桨距角) ★★24、在国家标准中规定,使用“wind turbine”来表示。 (风力机) ★★25、风力发电机组在调试时首先应检查回路。(相序)

风电机组设备巡视检查管理制度详细版

文件编号:GD/FS-1420 (管理制度范本系列) 风电机组设备巡视检查管 理制度详细版 The Daily Operation Mode, It Includes All Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify The Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

风电机组设备巡视检查管理制度详 细版 提示语:本管理制度文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1 目的 1.1 使风机巡检人员随时了解生产设备的运行状态,及时发现设备缺陷,迅速采取有效措施消除或防止缺陷扩大,将事故消灭在萌芽状态,保证设备及系统安全运行。 1.2 明确风机检修巡检人员执行巡视检查制度的标准和要求。 2 适用范围 本制度适用于XXXX风电场。 3 规定和程序 3.1 管理要求

3.1.1 遵守《电业安全工作规程》的规定,经考试合格,具备巡视设备资格的人员承担巡检工作。 3.1.2 巡检人员进行巡回检查按照巡检记录单的内容进行巡检,不减少检查项目,不随意改变巡检内容。 3.1.3 巡视设备时,检修人员应按照设备巡视单逐台仔细巡视,巡视发现设备缺陷、异常应汇报当值值班长,并将发现的设备缺陷、异常记入风机检查记录中,存入风机档案盒中。对危急安全运行的缺陷要按规定向上级汇报,并迅速设法处理。 3.1.4 每季度保证对全场所有风机进行至少一次巡检。任何一台风机的巡检间隔不得超过三个月。 3.1.5 在进行风机巡检工作中,必须由两人或两人以上进行,并在巡检中带好安全帽、安全带、防滑锁扣等必要的保护装备,并保证与主控室通讯畅通。

风电机组故障诊断与处理方法及系统与相关技术

图片简介: 本技术介绍了一种风电机组故障诊断与处理方法及系统,系统包括数据解析模块,所述数据解析模块的输入端与风电机组相连,数据解析模块的输出端经过资料库与终端相连。方法包括:根据历史故障发生情况和处理经验,建立排查指导库;根据风电机组故障代码的触发条件和I/O点数据之间的关系,建立逻辑诊断库;建立专家信息模块并与处理指导方案相关联;在诊断分析报告和处理指导方案内设置评价信息,由现场人员评价并调整方案。上述技术方案直接面向现场故障处理业务的全过程,从故障发生,故障分析,故障解决全过程进行指导和支持,在故障发生时,即时的推送排查指导方案,有目的地进行排查精确的定位故障并提供处理指导方案,有效地解决故障。 技术要求 1.一种风电机组故障诊断与处理系统,其特征在于,包括数据解析模块(1),所述数据解析模块(1)的输入端与风电机组相连,数据解析模块(1)的输出端经过资料库(2)与终端(4)相连。 2.根据权利要求1所述的一种风电机组故障诊断与处理系统,其特征在于,所述资料库包括排查指导库(2.1)、逻辑诊断库(2.2)、处理指导库(2.3)、文档资料库(2.4)和专家信息模块(2.5),所述排查指导库(2.1)、逻辑诊断库(2.2)与处理模块(3)相连。 3.根据权利要求2所述的一种风电机组故障诊断与处理系统,其特征在于,所述处理模块(3)包括评价信息模块(3.1)和诊断报告模块(3.2),所述评价信息模块(3.1)与排查指导库(2.1)相连,所述诊断报告模块(3.2)与逻辑诊断库(2.2)相连。

4.一种风电机组故障诊断与处理系统的工作方法,其特征在于,包括以下步骤: ①根据历史故障发生情况和处理经验,建立排查指导库,当机组停机时,根据接收到的机组停机信息,匹配出与之对应的排查指导方案; ②根据风电机组故障代码的触发条件和I/O点数据之间的关系,建立逻辑诊断库,当机组发生故障时,分析故障日志并生成该次故障的诊断分析报告和处理指导方案; ③建立专家信息模块并与处理指导方案相关联; ④在诊断分析报告和处理指导方案内设置评价信息,由现场人员评价; ⑤采用权重比例调整的方法调整排查指导方案内排查内容的优先级和故障点的发生概率。 5.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤1中的排查指导方案,包括故障代码名称、排查对象、排查对象出现故障的概率和排查方法。 6.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中的故障日志包括主控停机时刻记录的I/O点数据和停机代码信息。 7.根据权利要求6所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中通过分析故障日志提取关键数据点,所述关键数据点为故障发生时首先发生异变的信号或数值,用于确定故障点,所述故障点为与故障直接相关联的可更换的零部件或电气元件。 8.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中的诊断分析报告,包括机组停机信息、关键数据点、故障点和故障原因;处理指导方案,包括复位建议,所需工具,处理方案,所需备件和专家通讯方式。 9.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤4中的评价信息,包括故障点定位是否准确,实际故障点,排查指导方案是否有效。 10.根据权利要求4或9所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤5中的权重比例排序的方法,指的是通过对评价信息进行权重分析,按照故障点定位是否准确,实际故障点、排查指导方案是否有效等进行加权排序,用于调整排查指导方案内排查内容的优先级和故障点的发生概率。 技术说明书 一种风电机组故障诊断与处理方法及系统 技术领域

风力发电振动加速度传感器安装选项

风力发电机组的加速度振动传感器
再生能源 风力发电是一种成长中的干净的可再生能 源。无论是单个机组还是组合机组的风力发 电场,它们都是目前世界上发展很快的新能 源。 风力发电机组原理是将风力机械能转化成电 能。风力发电的规模可以从 500 千瓦到 6 兆 瓦。 最常用的风力发电机组是水平轴布置。 有些是三桨叶,上风向并且带有偏航控制, 有的则是二桨叶,下风向,自然随风旋转。 偶尔你也会看到垂直布置的风力发电机组, 它们也被称为 Darrieus (打蛋形)风力发电 机组,根据法国发明家而命名。但是这种打 蛋形的设计不是很流行,逐渐被性能较好得 水平布置的风力发电机组所代替。 风力发电机组和低速电机驱动的风扇,例如 冷却塔,有很多相同之处。风力发电机组基 本上是一个大型低速风扇,但是它不是电能 驱动,没有将机械能通过减速箱驱动大型低 速风扇,相反的,它提供机械能,通过加速 箱驱动发电机产生电能。这个反向的过程带 有很多会产生振动的旋转部件,长时间的损 耗可能会导致最终失效。 ? ? ? 维修费用非常高 不可能的工作高度 电能的损失很昂贵
轴向振动传感器 径向振动传感器
发电机
齿轮箱
主要轴承
带有加速度振动传感器的水平布置的 风力发电机组
低频加速度振动传感器 主要轴承和转轴的速度大约是 30-60 rpm。这 也是齿轮箱输入轴的旋转速度。旋转频率范 围是 30 – 60 cpm (0.5 – 1.0 赫兹)的情况应采 用低频加速度振动传感器。 测量的范围包括 主轴旋转频率,叶片通过频率,主轴承频 率,齿轮箱输入轴轴承频率和齿轮啮合频率 等等。这些低频加速度振动传感器通常可以 提供 500mV/g 以及 12-180000 cpm (0.2 – 3000 赫兹) 的频率范围。
1

风电机组状态检修的研究

风电机组状态检修的研究 摘要:本文介绍风电机组的组成和典型故障,阐述风电机组状态检修方法的内容、构成等,重点分析其数据收集系统和运行状态评估方法。 关键词:风电机组;状态检修;状态评估 1引言 随着世界经济的快速发展,能源紧缺和环境污染问题日益突显,我国在改革 开发初期就提出了可持续发展战略,其中一项最重要的措施就是要大力开发和利 用可再生能源,风能是一种清洁型的可再生能源,其分布范围广,可利用数量多,是目前应用技术最成熟的新能源种类。我国也出台了一系列政策鼓励风力发电的 开发和建设,目前的装机总量已超过百兆千瓦,并仍处于一个快速增长的阶段。 与此同时,风力发电站的安全稳定运行以及风能的有效利用成为目前关注的焦点,也是风能利用的挑战。近年来,随着我国风电站的建设发展,风电机组的各种故 障也层出不穷,其造成的停机时间严重降低了风电机组的效率,增加维护成本, 如果不能够进行有效的检修和控制,可能会造成严重的安全事故,危及从业人员 的生命安全。状态检修技术是目前应用比较广泛的先进的检修技术,能够明显降 低风电机组的故障概率,减少停机时间,降低维护成本。 2风电机组简介 2.1风电机组的组成 风电机组是将风能转化为机械能,再将机械能转化为电能的系统,其主要结 构有叶轮、传动系统、发电机、控制系统、偏航系统、塔架等,其中传送系统的 主要部件有主轴、齿轮箱、轴承、联轴器等,主要用于传递机械能,是风电机组 的主要机械部件,也是容易发生机械故障的部位;控制系统主要由传感器和控制 柜组成,对风电机组起到监测保护和运行控制的作用。 2.2风电机组的典型故障 风电机组的故障主要分为机械故障、电气故障和液压故障三种,而机械故障 中齿轮箱故障是比较常见的故障,电气故障中发电机和变频器等的故障也是风电 机组比较多发的故障种类。齿轮箱故障主要是由油温变化和气流变化引起的齿轮 点蚀、齿轮胶合、齿轮疲劳磨损、轮齿折断等;发电机故障主要有发电机振动过大、噪声过大、温度过高、轴承过热等,主要由定子绕组短路、转子绕组故障和 偏心振动等原因引起的,而轴承故障为主要故障原因;变频器故障主要有短路、 过电流、过载、过电压、过温、接地等故障。 3风电机组的状态检修 3.1风电机组状态检修的内容 风电机组的状态检修首先需要通过控制系统收集风电机组各组成部分的数据 参数,如风电机组的当前运行功率和风速、传送系统中齿轮箱的油温和轴承的温度、以及风电机组目前的运行状态等,以此掌握风电机组的各种参数,为状态检 修的决策提供原始依据。 其次由远程实时监测系统对经常发生故障的部位进行在线监测,了解风电机 组的常见故障种类,并进行分类统计汇总,分析常见故障的机理然后采用科学的 诊断方法对故障进行诊断分析。此外,风电机组的故障预测是实时状态检修的关 键技术,根据实时监测获取的各项数据参数,建立对应的预测模型,通过专业的 软件对比分析数据与实测数据,实现对故障的预测。 最后通过对风电机组的各种参数进行监测、收集、整理、分析、诊断、预测

风电机组变桨控制系统故障识别

风电机组变桨控制系统故障识别 发表时间:2019-04-25T11:30:40.890Z 来源:《基层建设》2019年第3期作者:袁才波 [导读] 摘要:国家在"十一五""十二五"期间,大力发展可再生能源,风力发电行业得到蓬勃发展,中国的风电机组制造商也创造了新的奇迹。 湖北能源集团麻城风电有限公司湖北黄冈 438300 摘要:国家在"十一五""十二五"期间,大力发展可再生能源,风力发电行业得到蓬勃发展,中国的风电机组制造商也创造了新的奇迹。变桨控制系统是风电机组系统中控制算法比较复杂、设备故障发生频繁的子系统。本文对风电机组变桨控制系统故障识别进行探讨。 关键词:非线性状态估计;故障识别;变桨控制系统;风电机组 一、非线性状态估计的概念及建模原理 非线性状态估计的英文释义为NSET,是一种非参数、非线性建模方法,通常适用于电子产品的寿命预测、设备状态监测以及故障监测等领域。非线性状态估计建模方法是以实时数据为依托,可以为工厂的风电机组变桨控制系统提供迅速可靠的故障识别方法。在工厂的工业生产过程运行的设备中,有n个相关联的向量,以每次观测到的测点为观测向量,那么观测n次就有n个观测向量。也就是: X(i)=[X1X2X3…Xn] 非线性状态估计建模的第一步就是构造过程记忆矩阵,用字母D代替,在工业生产过程运行的设备中,在不同的工作情况下采集的历史数据,若有m个历史观测向量,构造过程记忆矩阵就为: 过程记忆矩阵中的每一列观测向量都反映了工业生产过程中设备的某个节点的工作状态,经过对历史观测向量数据的选择,组成一个个空间,反映了整个动态过程。所以构造过程记忆矩阵的作用主要是展现工厂工业生产过程中的设备正常运行的动态过程。 非线性状态估计输入值,用Xobs作为某一时刻设备的观测向量,对应的输出值为输入值的预测向量Xest,每一个Xobs都能通过非线性状态估计生成一个m维的权值向量,W=[w1w2…wm],最后算出Xest=D·W,非线性状态估计整个的输出值就是过程记忆矩阵中m个观测向量的线性组合。工厂工业生产过程中运行设备正常时,非线性状态估计的输入观测向量就会处在正常的过程记忆矩阵空间内,与过程记忆矩阵中的过去观测向量内容比较相似,离得距离也较近,但是如果工业生产过程中运行设备出现故障时,输入观测向量就会偏离正常工作空间,以此来显示故障的发生。 二、变桨控制系统故障分析及其影响 风电机组变桨控制系统的故障按发展的时间可以分为2种:一种是突发性故障,另一种是渐进性故障。突发性故障指的是在工业生产或制造的过程中设备整体或者部分功能突然发生故障,而引起风电机组变桨控制系统发生损坏的情况,这类故障发生时间短而且难预测。渐进性故障是由于设备在运行过程中某些具体零部件出现老化、磨损等性能逐渐下降的情况,最后导致故障发生。风电机组变桨控制系统的故障主要集中在风电机组变桨控制器通信发生故障、变桨控制器轴发生故障、变桨控制器发生集合故障、风电机组变桨电机发生温度警告等方面。 风电机组的变桨控制系统发生故障会导致叶片不能正常使用,进而导致发电系统出现错误,如果发电系统出错,电力就不能够及时地进行输送。 三、非线性状态估计模型识别风电机组变桨控制系统故障 依据非线性状态估计的建模,我们能够有效识别风电机组变桨控制系统发生的故障类型并寻找解决方法。变桨电机温度高时,可以通过风电机组变桨控制系统及时发现故障问题,工作人员在处理变桨电机温度高的问题时,可以从外部原因和内部原因2个方面入手,从外部原因来看,我们要先查看变桨控制系统中的齿轮箱是否卡住、变桨控制系统中的齿轮是否夹杂着异物;从内部原因来看,变桨电机的电气刹车是否正常打开,电气刹车电路是否断线等。我们要先排除好外部原因再排除内部原因。当风电机组变浆控制系统通信出现故障问题时,我们可以检查次控制器与主控制器之间是否发生通信中断,如果次控制器没有不良反应,那么通信中断的主要原因便可以归结于信号线的问题,检查机舱柜等一系列电路是否有干扰、断线、短路等的问题。 对于该故障,我们解决的方法是用进线端电压230V,出线端电压24V的万用表测量中控器,如果一切正常,则证明中控器没有发生故障情况,继续进行排查,将有关的通信线拔下来,将红白线接地,轮毂侧万用表一支表笔接地,如果感觉到电阻的存在,说明电路没有断路;如果发生断路情况,我们可以使用备用电线。如果故障依然存在,继续检查变桨控制系统中的滑环,有的风电机组的变桨通信故障是由滑环引起的。风电机组中的变桨控制系统中的齿轮箱如果发生漏油,很容易造成滑环内进油,油黏在滑环与插针中间,形成油膜,油膜阻隔了电路,变桨控制系统的通信信号就会时有时无。在冬季变桨通信故障比较多。对于发现的变桨错误故障问题,分析它可能是变桨控制器内部发生了故障,使得变桨控制器的信号出现中断;另一种可能是变桨控制器的外部出现问题。对于该类变桨故障问题,非线性状态估计下的处理方法是当中控器无法控制变桨时,信号为0,可进入轮毂检查中控器是否损坏,一般中控器如果有故障,可能会出现无法手动变桨的情况,如果手动变桨成功,检查信号输出的线路是否有虚接、断线等情况,前面提到的滑环问题也可能引起该故障,解决滑环问题也是处理该故障的方法之一。 结束语 通过上文我们了解了非线性状态估计建模方法,还有构造过程记忆矩阵的有效方法,非线性状态估计方法算法简单、意义明确,在该方法的基础上建立风电机组变桨控制系统模型,这样可以识别出风电机组变桨控制系统的运行状态,当风电机组变桨控制系统发生故障停机时,可以通过观测向量与正常状态下风电机组变桨模型的偏差,发现风电机组变桨控制系统的故障,风电机组故障的识别为定位故障制定检修方案提供技术指导,同时也为后续开展风机状态检测及性能评价提供参考。 参考文献: [1]尹诗,余忠源,孟凯峰,等.基于非线性状态估计的风电机组变桨控制系统故障识别[J].中国电机工程学报,2014,34(S1):160-

大型风力发电机组故障诊断综述

大型风力发电机组故障诊断综述 发表时间:2018-05-22T10:02:18.487Z 来源:《基层建设》2018年第5期作者:李育波[导读] 摘要:近年来随着经济的不断发展,大型风力发电机组故障诊断的要求越来越高。国投白银风电有限公司甘肃兰州 730070 摘要:近年来随着经济的不断发展,大型风力发电机组故障诊断的要求越来越高。本文通过分析大型风力发电机组故障诊断方法,探讨及分析了风电机组故障诊断未来的发展方向。关键词:大型风力发电机组故障诊断引言:近年来,作为绿色、可再生能源的风能已成为解决能源污染问题必不可少的重要力量,截至2015年底,全球风电总装机容量已达427.4GW,其中陆上风电装机市场,中国仍居榜首。风力发电迅速发展带来巨大市场机遇的同时,也带来了巨大挑战。一方面,风电机组的工作条件十分恶劣,长期暴露在风速突变、沙尘、降雨、积雪等环境下,造成了风电机组故障频发。 1风电机组定性故障诊断方法和内容基于定性经验的风电机组故障诊断是一种利用不完备先验知识描述系统功能结构,并建立定性模型实现故障诊断过程的方法。大型风力发电机组故障诊断主要包括了2个方面,一个是风电机组定性故障诊断方法,另一种是风电机组定量诊断方法,这两种方法相辅相成。基于定性经验的风电机组故障诊断是一种利用不完备先验知识描述系统功能结构,并建立定性模型实现故障诊断过程的方法。基于ES风电机组故障诊断方法的基本思想是:运用专家在风力发电领域内积累的有效经验和专门知识建立知识库,并通过计算机模拟专家思维过程,对信息知识进行推理和决策以得到诊断结果。 1.1故障树分析法 FTA 是以故障树逻辑图为基础的一种演绎分析方法,20世纪60年代由美国贝尔实验室提出,既可以用作定性分析又可以用于定量分析。该方法以图形化为表达方式,从故障状态出发,逐级对故障模式和故障部件进行分析推理以确定故障原因和故障发生概率。其中,风电机组故障诊断大多是将其作为定性诊断方法进行分析。为获得清晰、形象地故障原因和宝贵的专家经验,并提供专家级的解决方案,文献结合FTA技术与专家系统应用于风电机组齿轮箱故障诊断中,结果表明该方法对专家库的依赖程度过大。提出了基于FTA的风电机组传动链故障诊断方法,采用框架结构的混合知识表达方式,建立了基于故障树的智能诊断系统。 1.2符号有向图(SDG)方法符号有向图SDG是基于定性经验或基本定律的一种故障诊断技术。可实现正、反向推理,在缺乏知识的详细过程背景下,能够捕捉有效信息并结合相关搜寻策略准确、快速地检测和定位故障。风电机组故障部件的检修顺序对降低风场运营成本起着举足轻重的作用,根据风电机组各部件的相互作用机理,建立了SDG故障诊断模型,并采用关联算法安排检修顺序,但文中仅仅针对控制回路较少的情况展开研究。结合SDG和模糊逻辑方法应用于风电机组故障诊断中,并采用了层次分析法设计故障诊断系统,有效地抑制了分辨率低等问题。基于SDG的风电机组故障诊断不要求完备的定量描述,能充分利用系统结构和正常运行条件下的不完全信息,但系统复杂程度的增加将导致SDG支路数和节点数之间复杂关系的增加,造成故障诊断的实时性和精准度较差。因此,该方法较少应用在风电机组故障诊断中。 2风电机组定量故障诊断方法 2.1基于解析模型的方法基于解析模型的故障诊断适用于观测对象传感器数量充足且具备精确数学模型的系统,通过与已知模型进行分析对比从而达到故障识别的目的,主要包括参数估计法、状态估计法等。文献建立了三叶片水平轴风电机组基准模型,采用 5种不同的故障监测与隔离方案评估了7种不同的测试系列,取得了较为满意的结果,但是基准模型的简单化不能体现风电机组的复杂功能。文献在考虑未知执行器增益和延迟两种情况下,提出了基于离散时间卡尔曼滤波器和交互多模型估计器的风电机组转换器故障诊断方法。以三叶片水平轴风电机组为研究对象,利用改进未知输入观测器方法进行故障识别,实现了干扰解耦和噪声降低的效果,提高了诊断精度,但该方法的自适应能力不强。 2.2基于数据驱动的方法基于数据驱动的诊断方法包含2种方式1分析处理监测信号以提取故障特征;2直接利用大量相关数据进行推理分析并得到诊断结果,主要包括信号处理法、人工智能定量法与统计分析法,是目前风电机组故障诊断所采用的主流方法。 3风力发电故障诊断系统为提高风场经济效益,改善运维现状,越来越多的机构致力于研发风电机组在线故障诊断系统,已经取得了许多卓有成效的成就,主要针对风电机组的关键部件,包括机舱、基础、塔架、叶片、齿轮箱等。数据采集与监控系统是目前较为成熟的商业软件之一,除了通过分析收集到的数据预测轴承和其他机械等最基本的故障以外,该系统还具有控制发电应用数据的作用。为提高风电机组故障预测精度,产生了许多结合SCADA数据进行状态监测的系统。其中通用电气的风电状态监测系统采用傅里叶频域和加速度包络分析机组运行信息,并对主轴承、发电机、机舱、齿轮箱等关键部件进行故障诊断,达到了每年每台风电机组节省 3000 美元的效果。Mita-Teknik的状态监测系统使用傅里叶振幅谱、傅里叶包络谱、峭度值分析等方法分析振动信号以判定主轴承、发电机、齿轮箱等部件的故障,大大地提高了机组的运行效率。为配合管理人员、操作人员和维修工程师的工作任务,斯凯孚的 3.0状态监测系统采用傅里叶频域分析、时域分析和包络分析等方法确定风电机组的故障类型,但该系统对风电机组主传动链的监测不太全面。相对国外而言,国内风力发电监测技术比较落后且故障自诊断技术较为不成熟,导致目前该系统以状态监测为主,并辅以专家远程人工分析,实现机组的故障诊断及其定位。主要有东北大学、华中科技大学的“风力发电在线监测和故障诊断系统”,以及金风科技公司的“风电机组在线监测系统”和唐智科技的风电机组在线故障诊断系统”等。 4结束语:随着大功率风电机组的快速发展和并网运行,对其运行可靠性与系统稳定性提出了更高的要求,必将促进风电机组状态监测、故障诊断和智能维护技术的进一步发展。任何一种单独技术或绝对方法都无法解决风电机组所有故障诊断问题,因此,采取多种技术方法相结合,取长补短实现风电机组的故障诊断将逐步成为未来的研究热点。参考文献:

风电场风机变桨系统故障分析及具体措施

风电场风机变桨系统故障分析及具体措施 摘要:风力发电作为现阶段电力能源供应系统的重要构成,发电机组通常需要 在复杂的环境下运行,风向、风速、风力与温度环境等容易受不确定因素影响, 具有随机性、多变性与间歇性等方面的特点,风机系统在交变负载的影响下,容 易出现故障问题。变桨系统是风力发电的重要技术,分为液压变桨与电动变桨等 形式,液压变桨系统的常见问题包括超限故障、不同步故障等;电动变桨运行系 统主要的故障问题为电气回路、变桨电滑环以及后备电源等出现损坏,技术与管 理人员应结合具体故障原因,采取针对性的处理手段。 关键词:超限故障;运行不同步;电气回路 现阶段,我国能源消耗量逐步提高,风电场的电力生产与供应需求不断提升,风机系统的运行压力大幅度增加,为保证电力运行系统的安全、稳定运行,风电 场应在加强变桨系统状态监测的基础上,做好故障排查与处理工作。由于变桨系 统处于封闭的环境中,因此在运行监测时,故障表现不明显,需要通过总控制系 统对系统运行异常数据进行报错,检测与维修技术难度相对较大。基于此,本文 从现阶段液压与电动变桨系统的常见故障表现与原因方面出发,对不同故障问题 处理对策进行系统分析。 一、液压电机变桨系统中的主要故障及处理对策 1、变桨系统超限故障情况的分析与处理 液压变桨在运行过程中容易出现超限故障,最常见故障点为桨叶位置传感器损坏,造成测量电压超出允许值范围,从而造成叶片位置检测错误。一旦桨叶位置 的传感器出现损坏情况,传感器会发出超过正常标准的电压信号,信号传输到伺 服系统中,反馈到主控制平台,平台根据故障信息报出超限情况。桨叶的位置传 感装置是控制变桨系统的重要装置,如果装置出现故障,不仅会增加实际变桨角 度与理论角度的误差值,还会在一定程度上降低风机运行质效,降低系统发电的 稳定性。在进行故障检测与处理的过程中,应先利用程序控制功能对位置传感器 进行状态检测,将桨叶的角度数据转换为可测量的电压信号。若不在正常范围内,通过桨叶位置传感器配套调整工具,将桨叶角度正负极限值调至规定电压范围。 如果故障位置无法处理,或经由技术处理后,电压值仍旧存在跳变问题,可以通 过更换传感器,对桨叶位置情况进行检测,确保故障的有效消除。 2变桨不同步故障分析 变桨系统通过位置传感装置的布设,对桨距角电压信号进行监测,当变桨叶 片的角度最大差值超过4°时,传感装置会将异常信息反馈到PLC系统中。控制平 台接受异常信号,经由分析后,报出具体的故障信息。变桨发生不同步系统运行 故障,常见原因为变桨比例阀运行系统出现损坏现象,从而导致液压回路流量控 制失效,使三叶片中最大变桨角度与最小变桨角度差值大于程序设定值,三桨叶 运转位置、速度出现误差,导致运行不同步。比例阀运行系统对电机进行控制的 过程中,需要通过逻辑运算,同时对比例阀电位移转情况与伺服电情况进行反馈,通过控制装置放大传输信号,对转换器进行控制,转换器根据输入信号产生等比 的系统驱动力,对液压阀进行有效驱动,对液压阀的压力与液压油流量进行动态 控制。比例阀通过控制液压油的流量来进行桨叶位置和变桨速度控制的,根据变 桨液压回路。因此,系统中所有电磁阀带电,电磁阀得电选择导通或关闭油路, 比例阀的底部线圈也处于带电状态,阀位出现变化,液压油将会从P端出发,流

风电机组故障诊断综述

风电机组故障诊断综述 对风电机组故障诊断技术进行综述,按照基于定性诊断、定量诊断的分类方式,针对现有风电机组故障诊断方法并结合故障诊断系统进行分析。对每一类故障诊断方法归类,指出这些方法的基本思想、适用条件和应用范围以及优缺点,并探讨了风电机组故障诊断技术未来可能的主要发展方向。 关键字:风力发电;风电机组;传动系统;维护检测 一、风机传动系统主要结构及部件 风机传动系统就安装的结构而言,一般分为两种情况:一种是水平轴风机传动,叶片是安装在水平面的轴承上;另一种是垂直轴风机传动,风轮与叶片是垂直摆放的,风使叶片转动,再带动与之垂直的轴承,发动机被带动以后就可以发电了。但目前大多都是水平轴风机,叶轮与轮毂通过轴承相连接,虽然结构较复杂,但能获得较好的性能,而且叶轮承受的载荷较小、重量轻。传动链主要由主轴、主轴承、偏航轴承、齿轮箱、联轴器、发电机和机座等组成。这些构成了风机中最重要的一个部分,同时因为风机传动系统带动的风叶,所以压力、温度过高都容易导致故障。维护时要特别注意受力铰链和传动机构的润滑、磨损及腐蚀情况,及时进行处理,以免影响机组的正常运行。 二、风电机组传动系统的日常维护 (一)主轴轴承的日常维护及保养(以大唐华创风能CCWE—3000/122.HD 风力发电机组为例) 轴承在工作的时候,会受到外界的影响,当受到一定量频率的震荡或者载荷重量增高,即使低速运行,都会影响到风电机组的安全运行。温度过高、过低,润滑不均匀、缺少润滑脂或者其他物质入侵轴承,就会导致主轴轴承的失效而无法继续运行,一般情况下,主轴承轴被磨损锈蚀都会导致轴承运转的不流畅,使运转的阻力增大直至卡死造成严重的后果。就目前的形式来看,滚动式的轴承仍旧是风力发电场最主要的选择,因为其具有很大的优势,节约成本而且效率很高,但与此同时因结构构造较为简单也容易受到损伤,轴承中出现故障的原因有很多,故进行维护人员要特别重视这项内容,大部分故障最后都导致主轴轴承卡死。如果出现主轴轴承卡死情况,首先考虑的就是轴承的质量问题,或者是安装的过程中出现了装配上的错误,大部分都是滚轴在润滑的中受天气的影响导致了污染。所以在日常维护和保养中,要全方位、多角度分析和考虑。第一就是外观检查有无油脂溢出,清理主轴轴承处溢出油脂和集收盘中的油脂,如果发现润滑油脂变质,油脂碳化或者凝固等都要及时疏通或更换,妥当处理,不能造成风机附近环境污染。正常运行的主轴轴承在没有堵塞的情况下,润滑油脂可以作为介质正常的在轴承内起到润滑的作用。还要检查轴承内的卫生情况,不能有其他杂物,保持轴承之间的接触面的整洁,日常维护过程中要借助工具对轴承进行清理,一旦杂物在里面堆积,就不能使轴承正常运转工作。第二则是检查轴承是否存在松

浅谈金风风力发电机组的振动

浅谈金风风力发电机组的振动 姓名:张玉博 入职时间:2013年5月 部门:哈密总装厂

目录 摘要: (2) 一、引言 (3) 二、状态监测与故障诊断 (4) (一)、振动监测方式 (4) (二)、国内外发展现状 (4) (三)、振动故障诊断 (4) 三、金风风力发电机组振动故障案例 (6) (一)、石碑山A0701机组 (6) (二)、石碑山B1004机组 (7) 四、金风风力发电机组减振措施与保护 (8) (一)、对中概念 (8) (二)、造成不对中的原因 (8) (三)、不对中对风机的影响 (9) (四)、金风风力发电机组的减振措施 (9) (五)、独立于系统的硬件保护 (11) 五、小结 (11) 参考文献 (12)

浅谈金风风力发电机组的振动 摘要: 振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。 风力发电机组中减少振动很重要的一个举措就是对中。金风风力发电机组为了减少振动带来的消极影响,做了许多积极措施。从S43/600Kw机组的机械对中到S48/750Kw的激光对中等都有了质的飞跃。 关键词: 振动;振动分析;对中

风电机组检测与控制课程设计报告

风电机组检测与控制课程设计指导书 河北工业大学 风能与动力工程系

一、设计目的 风电机组齿轮箱是双馈型风力发电机组的重要组成部分,是机组中的能量传递机构。齿轮箱的可靠性直接影响了风力发电机组的正常运行。随着国内政策对清洁能源大力支持,特别是对风能发电应用技术的开发,风电机组的单机容量越来越大,因此齿轮箱的稳定性、故障分析和可靠性研究成为了风力发电领域的一个重要环节。而在风电机组运行过程中,对齿轮箱进行在线监测和定期维护至关重要。 根据所学知识,通过文献检索,针对齿轮箱进行在线状态监测和维护相关内容进行设计。 二、设计内容 1、齿轮箱常见故障及原因分析; 2、齿轮箱在线状态监测; 3、齿轮箱维护。 三、时间安排 2015年1月19日交纸质版 四、要求 1、字数要求:5000字左右; 2、报告格式参考“课程设计格式要求”; 3、2-3名同学一组。

风电机组检测与控制 课程设计报告 设计题目:关于风电机组齿轮箱的研究姓名: 时间:2015年1月10日

目录 1系统概论 (1) 2 齿轮箱常见故障及原因分析 (4) 2.1 断齿 (4) 2.2 点蚀 (4) 2.3 齿面胶合 (4) 2.4.齿根疲劳裂纹 (5) 2.5 齿面接触疲劳 (5) 2.6 轴承损坏 (5) 2.7 断轴 (6) 3、齿轮箱在线状态监测 (7) 4 风力发电机组齿轮箱的维护 (9) 4 结束语 (11)

1 系统概述 1.1 齿轮箱的发展概况 面对当前不可再生能源短缺的境况,许多国家都致力于发展清洁能源,主要有风能、太阳能等,但规模最大的是风力发电。随着风力发电技术的日趋成熟,市场的逐步扩大,风力发电已成为增长最快的可再生能源之一,并具备了与常规能源竞争的能力。而风电产业的飞速发展促成了风电装备制造业的繁荣,风电齿轮箱作为风电机组中最重要的部件,倍受国内外风电相关行业和研究机构的关注。风机增速齿轮箱作为风力发电机组的配套产品,是风力发电机组中一个重要的机械传动部件,它的功能是将风轮在风力作用下所产生的动力传递给发电机,使其得到相应的转速进行发电,它的研究和开发是风电技术的核心,并正向高效、高可靠性及大功率方向发展。在风力发电机组出现的故障中齿轮箱的损坏率在机组部件中最高的由于风力发电机的组装在风电场,齿轮箱受变载荷、强阵风的冲击,环境温度变化较大,齿轮箱故障所占比重较大。随着风力机组的不断升级,风力发电机容量的增大,齿轮箱故障所带来的损失越来越大发生故障是不可避免的若出现故障,对发电机组带来的影响很大,维修也非常困难。所以齿轮箱故障诊断的研究是非常必要的。目前,主要有三种风力发电机,一种依靠齿轮箱增速的双馈异步风力发电机,一种是永磁直驱风力发电机组,第三种是半直驱风力发电机,第一种的生产技术较为成熟,而 1且在风电场中是主流机型,使用较多的机型。双馈感应发电机所加装的电力电子变流器的功率占风力机组的 30,虽然没有了齿轮箱,风力机的故障发生率以及维护成本都大幅下降,但为了将直驱风力发电机组联接电网,要给它加装一个全功率的电力电子变流器,而变流器的价格非常高,增加了发电成本。鉴于以上两个原因风电机组齿轮箱故障研究有重要现实意义。 1.2风力发电机组齿轮箱的介绍 1.2.1风力发电机组齿轮箱的结构及作用 齿轮箱风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节连接的结构。为了增加机组的制动能力,常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动如图 2-1 为齿轮箱剖面结构,图 2-2 为风机齿轮箱的内部结构. 图2-3为齿轮箱外部结构。

相关文档
最新文档