高考数列题型归纳

高考数列题型归纳
高考数列题型归纳

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

在高考中数学表格题分类解析

在高考中数学表格题分类解析 近年来,涉及表格类的试题经常出现在全国各地的高考和模拟试题中,它们不仅情境新颖,而且与生活实际联系紧密,充分体现了表格的工具性和数学的适用性。这类问题主要考查学生能否根据所学知识在新情景中吸收、处理信息的能力和分析、解决问题的能力。本文结合实例对表格在高中数学试题中的应用作一些分析和归纳,期望对广大读者有所帮助。 一、在题设中直接以表格反映条件 例1 下表给出了x 与x 10的七组对应值: 假设上表数据中,有且仅有一组是错误的,它是第________组。 思路:由上表可知第六组一定正确,由此判断第一、三组都是正确的(因为它们不可 能全错)由第一组正确得到第五组也正确,剩下第二、四、七组必有一组错的,若第二组正确,推出第四、七组都是错的,因此第二组是错的。 评注:这是一题以指对数互化和对数的运算法则为背景的表格信息题,要求要能根据 表中信息找到突破口,进行推理和假设,作出正确判断。此类问题对考查学生的逻辑思维能力能起到很好的作用。 例2 二次函数x c bx ax y (2++=∈R )的部分对应值如下表: 则不等式ax 2+bx+c>0的解集是________________ 思路一:由表格可知,原函数图象过三点(-1,-4)、(0,-6)、(1,-6), 由()()4112-=+-+-c b a ①,6002 -=+?+?c b a ② 6112-=+?+?c b a ③,解得6,1,1-=-==c b a ,∴不等式ax 2+bx+c>0的解集是{x|x<-2或x>3} 思路二:由表格可知,方程02 =++c bx ax 的两根为3,2-,再由函数值的变化规律 可知二次函数图象开口向上,∴不等式ax 2+bx+c>0的解集是{x|x<-2或x>3}。 评注:上述两种解法都是合理选用了表格中的信息,分别从函数与方程,数形结合两 方面处理了问题。特别是思路二,不需要计算就能得到答案,如果信息选择不当,会导致运算相对繁琐。 例3 ) (t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

2005年高考全国试题分类解析(数列部分)

数列部分 选择题 1. (广东卷)已知数列满足,,….若,则(B) (A)(B)3(C)4(D)5 (福建卷)3.已知等差数列中,的值是( A ) A.15 B.30 C.31 D.64 3. (湖南卷)已知数列满足,则= (B ) A.0 B. C. D. 4. (湖南卷)已知数列{log2(a n-1)}(n∈N*)为等差数列,且a1= 3,a2=5,则 = (C) A.2 B. C.1 D. 5. (湖南卷)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′ (x),n∈N,则f2005(x)=(C) A.sinx B.-sinx C.cos x D.-cosx 6.(江苏卷)在各项都为正数的等比数列{a n}中,首项a1=3,前三项 和为21,则a3+ a4+ a5=(C ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )189 7. (全国卷II) 如果数列是等差数列,则(B ) (A) (B) (C) (D) 8. (全国卷II) 11如果为各项都大于零的等差数列,公差,则(B) (A) (B) (C) (D) 9.(山东卷)是首项=1,公差为=3的等差数列,如果=2005,则序号等 于(C ) (A)667 (B)668 (C)669 (D)670 10. (上海)16.用n个不同的实数a1,a2,┄a n可得n!个不同的排列,每个排 列为一行写成 1 2 3 一个n!行的数阵.对第i行a i1,a i2,┄a in,记b i=- a i1+2a i2-3 a i3+┄+(-1)n na in, 1 3 2 i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3 是12,所以,b1+b2+┄+b6=-12+212-312=-24.那么,在用1,2,3,4,5形成 2 3 1 的数阵中, b1+b2+┄+b120等于

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

数列全部题型归纳(非常全面-经典!)讲解学习

数列全部题型归纳(非常全面-经典!)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a +=-,*N n ∈.

求证:11n a ????-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2) 8n n a S +=则,数列n a 3)若数列{}n a 的前n 项和n S 满足,111 ,0,4n n n n a S S a a -=-≠=则,数列 n a 4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式. (4)若数列{}n a 的前n 项和n S 满足,211,2 n n S n a a ==则,数列n a (四)一次函数的递推形式 1. 若数列{}n a 满足1111,12 n n a a a -== +(2)n ≥,数列n a

高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版 类型1 ) (1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 变式1.1:(2004,全国I ,个理22.本小题满分14分) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式. 解:Θk k k a a )1(122-+=-,k k k a a 3212+=+ ∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+ ∴)1(313-+=-a a ,2235)1(3-+=-a a …… ……k k k k a a )1(31212-+=--+ 将以上k 个式子相加,得 ]1)1[(2 1 )13(23])1()1()1[()333(22112--+-=-+???+-+-++???++=-+k k k k k a a 将11=a 代入,得1)1(21321112--+?=++k k k a , 1)1(2 1 321)1(122--+?=-+=-k k k k k a a 。 经检验11=a 也适合,∴???????--?+?--?+?=-+)(1)1(2132 1)(1)1(21321222 1 21为偶数为奇数n n a n n n n n 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例3:已知31=a ,n n a n n a 2 31 31+-= + )1(≥n ,求n a 。 解:12 31 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437526331348531n n n n n --= ????=---L 。 变式2.1:(2004,全国I,理15)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2), 则{a n }的通项1 ___ n a ?=? ? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32,用此式减去已知式,得

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

2017年高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性 题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、二次不等式的关系 题型2-12 二次方程的实根分布及条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指数不等式题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所在区间 题型2-25 利用函数的零点确定参数的取值范 围 题型2-26 方程根的个数与函数零点的存在性 问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关系判断图像 题型3-4 利用导数求函数的单调性和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或不单调,求 参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的交点和函数 零点个数问题 题型3-9 不等式恒成立与存在性问题 题型3-10 利用导数证明不等式 题型3-11 导数在实际问题中的应用 第三节定积分和微积分基本定理 题型3-12 定积分的计算 题型3-13 求曲边梯形的面积 第四章三角函数 第一节三角函数概念、同角三角函数关系式和 诱导公式 题型4-1 终边相同角的集合的表示与识别 题型4-2 α 2 是第几象限角 题型4-3 弧长与扇形面积公式的计算 题型4-4 三角函数定义 题型4-5 三角函数线及其应用 题型4-6 象限符号与坐标轴角的三角函数值 题型4-7 同角求值——条件中出现的角和结论 中出现的角是相同的 题型4-8 诱导求值与变形 第二节三角函数的图象与性质 题型4-9 已知解析式确定函数性质 题型4-10 根据条件确定解析式 题型4-11 三角函数图象变换 第三节三角恒等变换 题型4-12 两角和与差公式的证明 题型4-13 化简求值 第四节解三角形 题型4-14 正弦定理的应用 题型4-15 余弦定理的应用 题型4-16 判断三角形的形状 题型4-17 正余弦定理与向量的综合 题型4-18 解三角形的实际应用 第五章平面向量 第一节向量的线性运算 题型5-1 平面向量的基本概念 题型5-2 共线向量基本定理及应用 题型5-3 平面向量的线性运算 题型5-4 平面向量基本定理及应用 题型5-5 向量与三角形的四心 题型5-6 利用向量法解平面几何问题 第二节向量的坐标运算与数量积 题型5-7 向量的坐标运算 题型5-8 向量平行(共线)、垂直充要条件的坐 标表示 题型5-9 平面向量的数量积 题型5-10 平面向量的应用 第六章数列 第一节等差数列与等比数列 题型6-1 等差、等比数列的通项及基本量的求 解 题型6-2 等差、等比数列的求和 题型6-3 等差、等比数列的性质应用 题型6-4 判断和证明数列是等差、等比数列 题型6-5 等差数列与等比数列的综合 第二节数列的通项公式与求和 题型6-6 数列的通项公式的求解 题型6-7 数列的求和 第三节数列的综合 题型6-8 数列与函数的综合 题型6-9 数列与不等式综合 第七章不等式 第一节不等式的概念和性质 题型7-1 不等式的性质 题型7-2 比较数(式)的大小与比较法证明不 等式 第二节均值不等式和不等式的应用 题型7-3 均值不等式及其应用 题型7-4 利用均值不等式求函数最值 题型7-5 利用均值不等式证明不等式 题型7-6 不等式的证明 第三节不等式的解法 题型7-7 有理不等式的解法 题型7-8 绝对值不等式的解法 第四节二元一次不等式(组)与简单的线性规 划问题 题型7-9 二元一次不等式组表示的平面区域 题型7-10 平面区域的面积 题型7-11 求解目标函数中参数的取值范围 题型7-12 简单线性规划问题的实际运用 第五节不等式综合 题型7-13 不等式恒成立问题中求参数的取值 范围

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x 为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x +- =2 2 ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数21 1log (2),1,()2,1, x x x f x x -+-

高考数学题型全归纳

题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系 题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件 题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质

题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像 题型43、利用导数求函数的单调区间 题型44、含参函数的单调性(区间) 题型45、已知含参函数在区间上单调或不单调或存在单调区间,求参数范围题型46、函数的极值与最值的求解 题型47、方程解(函数零点)的个数问题 题型48、不等式恒成立与存在性问题

(经典)高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2) n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116 a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念:

相关文档
最新文档