【风力发电技术】_海上风电培训5海上风机的载荷

关于进一步规范海上风电用海管理的意见

附件1 关于进一步规范海上风电用海管理的意见 (送审稿) 沿海省、自治区、直辖市和计划单列市海洋厅(局),局属有关单位: 海上风电是我国新兴的可再生能源产业,发展海上风电对于促进沿海地区能源结构调整优化和转变经济发展方式具有重要意义。同时,海上风电项目实际占用和影响的海域面积大,对海域空间资源具有立体化和破碎化的影响。为促进海上风电产业的持续健康发展和海域空间资源的科学合理利用,维护健康的海洋生态环境,根据海域管理有关规定和要求,现就进一步规范海上风电用海管理提出以下意见。 一、充分发挥海洋功能区划控制性作用,优化海上风电场选址 海上风电项目用海必须符合海洋功能区划,不得占用港口航运区、海洋保护区或保留区等功能区,优先选择在海洋功能区划中已明确兼容风电的功能区布置;海洋功能区划中没有明确兼容风电功能区的,应当严格科学论证与海洋功能区划的符合性,不得损害所在功能区的基本功能,避免对国防安全和海上交通安全等产生影响。 深入贯彻落实生态文明建设要求,在各种海洋自然保护

区、海洋特别保护区、重要渔业水域、典型海洋生态系统、河口、海湾、自然历史遗迹保护区、鸟类栖息地等重要敏感脆弱海域,以及划定的生态红线区内不得规划布局海上风电场,进一步加强公众参与和专家论证。鼓励海上风电深水远岸布局,在当前和未来开发强度低的海域选址建设,原则上应在离岸距离不少于10公里、滩涂宽度超过10公里时海域水深不得少于10米的海域布局。 在省级海上风电规划编制过程中,省级海洋行政主管部门应依据海洋功能区划提出用海审查意见和建议,统筹协调海上风电和其他用海活动,确保规划符合海洋功能区划及有关海域管理政策。 二、坚持集约节约用海,严格控制用海面积 海上风电的规划、开发和建设,应坚持集约节约的原则,提高海域资源利用效率。单个海上风电场外缘边线包络海域面积原则上应控制在每10万千瓦15平方公里以内,除因避让航道等情形以外,应当集中布置,不得随意分块。规划建设海上风电项目较多的地区,风电场应集中布局,统一规划海上送出工程输电电缆通道和登陆点,集约节约利用海域和海岸线资源。 鼓励实施海上风电项目与其他开发利用活动使用海域的分层立体开发,最大限度发挥海域资源效益。海上风电项目海底电缆穿越其他开发利用活动海域时,在符合《海底电

风力发电机组载荷计算

北京鉴衡认证中心 风力发电机组载荷计算 北京鉴衡认证中心 发言人:韩炜 2008-4-14 w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 内容概要 1. 风力发电机组载荷计算目的 2. 风力发电机组载荷特点 3. 风力发电机组载荷计算 w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 风力发电机组载荷计算目的 ? 对于设计:提供强度分析载荷依据,确保各部 件承载在设计极限内;优化运行载荷,提高机 组可靠性。 ? 对于认证:确保载荷计算应用了适当的方法, 工况假定全面且符合标准要求,结果真实可靠。w w w .s i m o s o l a r .c o m

北京鉴衡认证中心 风力发电机组载荷特点 ? 风 ? 空气动力学 ? 叶片动力学 ? 控制 ? 传动系统动力学 ? 电力系统 ? 塔架动力学 ? 基础 w w w .s i m o s o l a r .c o m

风力发电机组载荷计算标准 ? 陆上风机:GB18451.1(2001);IEC61400-1(1999, 2005);GL Guideline2003;… ? 海上风机:IEC61400-3;GL Guideline (Offshore) 2005? DNV- OS-J101 … 风力发电机组载荷计算 w w w. s i m o s o l a r.c o m 北京鉴衡认证中心

北京鉴衡认证中心 风力发电机组设计等级 (IEC61400-1:1999) 级别 Ⅰ Ⅱ Ⅲ Ⅳ S V ref [m/s] 50 42.5 37.5 30 V ave [m/s] 10 8.5 7.5 6 A I 15 [-] 0.18 0.18 0.18 0.18 a [-] 2 2 2 2 B I 15 [-] 0.16 0.16 0.16 0.16 a [-] 3 3 3 3 由设计 者规定 各参数 注: V ref :轮毂处参考风速 V ave :轮毂处平均风速 I 15:风速15m/s时的湍流强度 a: 斜度参数 风力发电机组载荷计算 w w w .s i m o s o l a r .c o m

风机的风载荷的计算

第6章 结构荷载 本项目分析内容包括结构的强度和屈曲分析、单工况动力分析和动力耦合分析。因此,结构分析荷载分为静荷载和动荷载。静荷载包括风机运转荷载、风、浪、流和冰荷载;动荷载包括风机运转荷载、风、浪、流、冰和地震荷载。 6.1 强度与屈曲分析荷载 6.1.1 风机运行荷载 风力发电机组运行时,其叶片上的风荷载和风机偏航引起的荷载通过结构和传动机构作用在塔架顶端,因此,DnV 规范规定,海上风电机组基础结构设计应考虑风电机组的荷载。这部分荷载包括:风轮上的静风压引起的荷载、湍流和尾流引起的荷载、风力发电机偏航引起的荷载和风力发电机组的重力荷载等。中华人民共和国机械工业部标准(JB/T10300-2001)对风力发电机组的荷载计算做出了具体的规定: 6.1.1.1 正常运行荷载 1、风轮上的气动荷载 (1) 作用在风轮上的平均压力 作用在风轮扫掠面积A 上的平均压力H p 由下式计算: 2H FB 1 2 r p C V ρ= (6.1.1) 式中:C FB =8/9; ρ——空气密度; V r ——额定风速。 代入系数值并经量纲转换后得: 2 H 1800 r V p =(kN/m 2) (6.1.2)

式中:V r 的量纲为m/s 。 (2) 作用在塔架顶部的力为: XH H F p A = (6.1.3) (3) 湍流、风斜流和塔尾流的影响 利用气动力距风轮中心的偏心距e w 来考虑湍流以及风斜流和塔尾流的影响: 2 2w r wR e V = (6.1.4) 式中:R ——风轮半径; w ——任一方向风的极端风梯度,取w =0.25 m s m 或风速梯度的1.5 倍(二值中取较小值)。由于此偏心距而产生最大附加力矩为: YH H w M p Ae = (6.1.5) 或 ZH H w M p Ae = (6.1.6) (4) 扭矩XH M 由最大输出功率P e1 确定: e1 XH P M ωη = (6.1.7) 式中:ω——风轮转动角速度; η——发电机和增速器的总效率系数。 若无输出功率或总效率系数实际值时,则可假定单位风轮扫掠面积的输出功率为500W/m 2及总效率系数η=0.7。 将η=0.7 及P e1(kW )代入得: e1 XH 14 P M n = (6.1.8) 式中:n ——风轮转速,r/min 。 6.1.1.2 风机偏航载荷 风机偏航运动时,由于陀螺效应,偏航运转将引起作用在塔架顶部的陀螺力,这就是偏航荷载,对于偏航运动的不同阶段,该荷载分为启动荷载和匀速转动荷载。

风机参数计算(精)

风机常识-风机知识 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。风机分类及用途: 透平式风机--通过旋转叶片压缩输送气体的风机。 容积式风机—用改变气体容积的方法压缩及输送气体机械。 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。 轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。 横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。 (以绝对压力计 通风机—排气压力低于112700Pa ; 鼓风机—排气压力在112700Pa~343000Pa之间;压缩机—排气压力高于343000Pa 以上; (在标准状

低压离心通风机:全压P ≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P ≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法 型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力), 即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差), 其单位常用Pa 、KPa 、mH2O 、 mmH2O 等。 流量:单位时间内流过风机的气体容积, 又称风量。常用Q 来表示, 常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量, 这个时候需要考虑风机进口的气体密度, 与气体成份, 当地大气压, 气体温度, 进口压力有密切影响, 需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n 来表示、其单位用r/min(r表示转速,min 表示分钟。

海上风电运维,健康和安全

Offshore Project O&M, Health and Safety 海上风电运维,健康和安全
DNV / Royal Norwegian Consulate: Technical Workshop on Offshore Wind DNV / 挪威领事馆:海上风电技术研讨会
Dayton Griffin 20 June 2011

Outline 概述
Operation and Maintenance 运行和维护 Health and Safety 健康和安全 Case Study: Project Risk Analysis 案例研究:项目风险分析
Thursday, 23 September 2010 ? Det Norske Veritas AS. All rights reserved. 2

Considerations for Location of O&M Facility 基于运维设施地点的考虑
Proximity to wind farm 接近风场
- Onshore facility 陆上设施 - Offshore accommodations 海上住宿
24/7 Quayside access 24/7 码头进入 Speed limitations 速度限制 Conflicting traffic 交通冲突 Tidal constraints 潮汐限制 Flexibility of port owner (over 20-year project) 港口拥有者的灵活性(超过20年的项目) Local, skilled workforce 当地有经验的劳动力 Turbine manufacturer requirements 风机生产商的要求 Provision of helicopter service 提供直升机服务 Proximity to airport 接近机场
Thursday, 23 September 2010 ? Det Norske Veritas AS. All rights reserved. 3

海上风力发电机组基础设计

摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) ?与场址条件密切相关的特定设计;?约占整个工程成本的20%-30%; ?对整机安全至关重要。支撑结构

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: ?单桩基础; ?重力式基础; ?吸力式基础; ?多桩基础; ?漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图

超大型自航自升式海上风电安装船关键设计与建造技术-东南大学

2018年国家科技进步奖提名项目公示 一、项目名称:超大型自航自升式海上风电安装船关键设计与建造技术 二、提名者及提名意见 提名者:交通运输部 提名意见: 该提名从我国海洋开发、新能源开发的国家发展战略出发,针对我国海上风电场建设安装的专用重大装备的先进设计与制造技术缺乏现状,开展产、学、研联合科技攻关。创新性的设计出了世界上第一台超大型自航自升式海上风电安装船,集海上风电机组的装载运输、重型起重、动态定位等功能于一身,是船舶与海工平台的综合体,是一种全新的超大型海洋工程技术装备。 项目针对海上风电安装特点,结合风电安装船应用海况条件,通过总体和结构性能研究,掌握了风电安装船设计成套技术,研发并建造了八边形桩腿和圆形桩腿两种新式超大型海上风电安装船。突破了超大型风电安装船总体、结构等设计关键技术,完成了45m水深范围内作业的超大型自航自升式海上风电安装船船型设计和两型4艘船舶的建造;首次实现了超大型海上风电安装船平地高效建造,攻克了海上风电专用装备整体建造关键技术,比同类国际产品建造周期缩短了3个月;针对100mm的E690超厚超强板焊接工艺及变形控制技术难题,首次采用了桩腿建造高精度控制技术,实现了桩腿一体化成型及100%无余量免加工建造;突破了自升式风电安装船提升控制技术,液压升降系统为桩腿提供最大6×7500吨及4×9000吨预压载力,可提升船体重量20000吨以上。 提名项目对实现国家海上新能源开发的发展战略,突破我国风电安装船设计建造核心关键技术,形成具有自主品牌的系列海上作业平台产品,促进海工装备业可持续发展、打造中国沿海海上风电产业基地和加快推进我国海上风电场建设具有重要意义。产品填补国内空白,其整体技术居于国际先进水平,具有自主知识产权。 申报材料内容真实,材料完整,附件齐全,完成人员排序合理。 提名该项目为国家科学技术进步奖二等奖。 三、项目简介 本成果属于交通运输行业中的船舶、舰船工程和机械制造工艺与设备交叉学科领域。 我国经济运行成本较高,GDP能耗是世界上最高的国家之一,加上日益突出的生态环境问题,风力发电等清洁能源开发刻不容缓,国家已将“绿色GDP”和海洋开发、新能源开发提升至国家发展战略高度。但由于海上风电场建设的专用装备还基本处于空白,导致我国风电资源开发仍主要集中在陆地及沿海滩涂,10-45米水深区域风电开发能力尚未获得有效突破,其根本原因是:没有掌握海上风电安装重大装备的先进设计与制造技术。 本成果的完成单位从2007年开始,依托国家重点新产品计划、江苏省重大科技成果转化项目基金、江苏省科技支撑计划项目基金和企业自筹研发等项目,深入系统地研究了超大型自航自升式海上风电安装船研制的成套关键技术。 主要技术创新如下: 创新点1:突破陆上风机安装和海上浮吊起重传统设计思路,结合应用海况条件,通过海上风电安装船总体和结构性能研究,研发了八边形6根桩腿和圆形4根桩腿两种新船型,该船型集装载运输、自航自升、重型起重、动态定位、海上作业等多种功能于一身,是世界上最先进的海上风电安装和运输作业的高效专业装备,可以适应任何海域的近海风电场建设。 创新点2:采用了大型模块化建造、液压传动控制、提升自锁限位等全功能制造综合集成技术,首次实现了超大型海上风电安装船平地高效建造,攻克了海上风电专用装备整体建造关键技术,比同类国际产品建造周期缩短了3个月。 创新点3:首创桩腿变形控制和总成建造技术,发明了一整套超高超厚强度钢焊接工艺,解决了100mm厚的E690超厚超强板焊接工艺及变形控制,创造性的设计了自转式吊柱、超大吨位吊梁、自锁限位装置等工装,实现桩腿一次性切割无修正工艺、一次成型并安装到位,完成了桩腿总成建造。桩腿直线度公差控制在±5mm范围内,桩腿对角导轨板平行度控制在±2mm范围内,整条桩腿制作精度完全达到设计和使用要求。 创新点4:突破了自升式风电安装船提升控制核心技术,独立研发的液压桩腿升降系统为每根方型壳式桩腿提供世界最强的7500KN(千牛)预压载力,可提升船体重量20000吨。提升控制系统通过直观的操作界面,可实现整船的提升控制。整船插桩试验方法、桩靴设计及冲桩系统研究,验证了桩腿及其系统设计及建造的创新。

海上风电施工控制重点

海上风电施工控制重点 (一)自然条件是影响海上风电施工的重要因素 1、分析 海上风电场都是离岸施工,工作场地远离陆地,受海洋环境影响较大,可施工作业时间偏短,因此施工承包商要根据工程区域海洋环境特点,选择施工设备、确定施工窗口期、制定施工工艺和对策,才能更好地完成本工程。 2、控制措施 (1)要求施工承包商必须充分收集现场自然条件资料,包括风、浪、流、潮汐、气温、降雨、雾等的历年统计资料和实测资料; (2)根据统计和实测资料,分析影响施工的自然条件因素; (3)分析统计影响施工作业的时间和可施工的窗口期; (4)根据统计资料和现场施工计划,有针对性的布置现场自然条件观测仪器,以便对自然条件的现场变化进行预测和指导施工安排。 (5)施工承包商必须根据自然条件的可能变化,做出有针对的现场施工应变措施。 (二)质量方面 1、海上测量定位是本工程的重点、难点 (1)分析 在茫茫大海是进行工程建设,测量定位是决定项目成败的关键。海上风电对质量要求很高,例如风机基础施工中单桩结构对桩的垂直度要求很高;导管架结构对桩台位置、桩的垂直度与间距要求很高,不是一般的测量与控制措施能够实现。另外,导管架安装定位精度高,如何通过测量定位手段指导安装导管架难度大,因此海上测量定位是本工程的重点、难点。 (2)控制措施 ①要求施工承包商制定测量施工专项方案;使用高精度测量仪器设备在投入工程使用前,必须进行精测试比对; ②借鉴其他海上风电场的成功施工经验,特制专用的打桩的定位及限制垂直度的定位及限定垂直度的辅助“定位架”,保证桩的垂直度及间距高精度要求; ③施工承包商必须有专用的打桩船,减少风浪对打桩的影响;

风机选型常用计算 (1)

风机选型常用计算 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 风管截面积的计算: 截面积=机器总风量÷3600÷风速 风机分类及用途: 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。容积式风机—用改变气体容积的方法压缩及输送气体机械。 按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。

按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间; 压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法 型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。

流量:单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切影响,需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。 功率:驱动风机所需要的功率。常以N来表示、其单位用Kw。 传动方式及机械效率: A型直联传动D型联轴器联接转动F型联轴器联接转动B型皮带传动

《海上风电开发建设管理暂行办法》——风场建设政策

《海上风电开发建设管理暂行办法》——风场建设政策(1) 北极星风力发电网讯:第一章总则 第一条为规范海上风电项目开发建设管理,促进海上风电有序开发、规范建设和持续发展,根据《中华人民共和国行政许可法》、《中华人民共和国海域使用管理法》和《企业投资项目核准暂行办法》,特制定本办法。 第二条本办法所称海上风电项目是指沿海多年平均大潮高潮线以下海域的风电项目,包括在相应开发海域内无居民海岛上的风电项目。 第三条海上风电项目开发建设管理包括海上风电发展规划、项目授予、项目核准、海域使用和海洋环境保护、施工竣工验收、运行信息管理等环节的行政组织管理和技术质量管理。 第四条国家能源主管部门负责全国海上风电开发建设管理。沿海各省(区、市)能源主管部门在国家能源主管部门指导下,负责本地区海上风电开发建设管理。海上风电技术委托全国风电建设技术归口管理单位负责管理。 第五条国家海洋行政主管部门负责海上风电开发建设海域使用和环境保护的管理和 监督。 第二章规划 第六条海上风电规划包括全国海上风电发展规划和沿海各省(区、市)海上风电发展规划。全国海上风电发展规划和沿海各省(区、市)海上风电发展规划应当与全国可再生能源发展规划、全国和沿海各省(区、市)海洋功能区划、海洋经济发展规划相协调。沿海各省(区、市)海上风电发展规划应符合全国海上风电发展规划。 第七条国家能源主管部门统一组织全国海上风电发展规划编制和管理,并会同国家海洋行政主管部门审定沿海各省(区、市)海上风电发展规划。沿海各省(区、市)能源主管部门按国家能源主管部门统一部署,负责组织本行政区域海上风电发展规划的编制和管理。 第八条沿海各省(区、市)能源主管部门组织具有国家甲级设计资质的单位,按照规范要求编制本省(区、市)管理海域内的海上风电发展规划;同级海洋行政主管部门对规划提出用海初审意见和环境影响评价初步意见;技术归口管理单位负责对沿海各省(区、市)海上风电发展规划进行技术审查。 第九条国家能源主管部门组织海上风电技术管理部门,在沿海各省(区、市)海上风电发展规划的基础上,编制全国海上风电发展规划;组织沿海各省(区、市)能源主管部门、电网企业组织编制海上风电工程配套电网工程规划,落实电网接入方案和市场消纳方案。

风机常用计算公式

风机常用计算公式 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 风机分类及用途: 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。 容积式风机—用改变气体容积的方法压缩及输送气体机械。 按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。 轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。 横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。 按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间; 压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法

型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。 流量:单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切 影响,需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。功率:驱动风机所需要的功率。常以N来表示、其单位用Kw。 常用风机用途代号

浅谈海上风电运维工作安全管理

浅谈海上风电运维工作安全管理 发表时间:2019-07-18T09:28:45.947Z 来源:《科技尚品》2019年第2期作者:刘振宇 [导读] 随着海上风电高速发展,开展海上风电风险管理研究,提出针对性的安全管理措施,基于现有安全管理模式,不断优化完善安全管理工作以适应海上风电运维安全需求,实现海上风电安全管理可控在控。 国家电投集团江苏海上风力发电有限公司 前言 2009年国家正式启动了江苏沿海千万千瓦级风电基地的规划工作,十年来,江苏沿海已陆续建设完成了多个海上风电常随着海上风电建设高速发展,海上运维工作已成为海上风电行业关注的焦点。国内海上风电运维工作尚处于起步阶段,各类安全风险逐渐暴露,加强海上风电运维期间的安全管理显得尤为重要。 一、江苏沿海海上风电特点 近几年海上风电,逐渐向远海发展,呈现明显的离岸化、深水化、规模化,运维难度也阶梯式的加大,远远超出常规陆上风电。因交通运维船舶发展滞后,海上航行往返航程越来越场,海洋环境的复杂,作业时间及其有限;此外因专业人员缺乏,人才培养滞后于行业发展,危险系数也越来越高。如何开展海上风电运维安全管理,确保企业安全长效稳定发展,成为海上风电行业面临的新课题。 二、海上风电运维的主要风险因素 (一)气象多变且海洋环境复杂 江苏属于温带向亚热带的过度性气候,气象灾害较多,影响范围较广,暴雨、强对流、雷电、大雾等恶劣天气频发,这些恶劣天气,还存在着一定的突发性,给海上风电运维带来了极大的不确定因素。 此外,台风为我国东南沿海所特有的风险因子,虽然目前尚未有海上风电场受到台风正面袭击的案例,但近年来,台风造成沿海风电场安全事故的案例并不少见,行业对于台风的研究还处于初级阶段。2018年密集登陆的台风,对海上风电场形成了不小威胁,台风"玛莉亚"直接导致沿海两起风电倒塔,给所有海上风电建设者敲响警钟。 此外还有风浪的影响,船只出航、登靠风机等都对风速、浪高以及可视条件等有原则要求,增加了海上运维的难度。 (二)运维船舶专业化水平较低 运维交通船是海上风电运维的主要装备。国外,专业运维船作为最重要的可达性装备被普遍应用到各海上风电场,有单体船、双体船以及三体船等船型。国内海上风电刚刚起步,运维船也处于起步阶段,虽然各个风场陆续有专业运维船投入使用,但目前仍然以普通交通船,作为主要运输工具,存在耐波性差,靠泊能力差等缺点,运送能力底,难以满足抗风浪、防撞击、海上施救等安全航行要求,安全风险大。 (三)人员落水和挤压风险高 人员落水和挤压风险主要存在于船舶海上航行和靠离风机塔基两个重要环节。目前,一般采用顶靠方式供维护人员登离风机基础,即船首端顶靠船桩。期间,受风、浪、流等因素影响,运维船的顶靠和人员的登乘的安全难以得到充分的保障,存在人员挤压、落水风险。 (四)海上应急救援能力发展慢 海上风电场多数为无人操作和值守,发生突发意外情况,救援人员很难及时赶到现常多数运维船舶船速仅有12节左右,个别船舶速度更慢,极大影响了救援的黄金时间。海上突发火灾也由于风机的安装高度和及其构造特性,均缺乏有效的灭火措施,常备的船舶消防设施,射程根本达不到风机高度。风电火灾主要立足于自救,但部分风机未配置主动灭火装置,一旦发生火灾事故,依靠手持式灭火器等无法自行施救。 (五)人员专业化技能水平不足 海上风电涉及海洋工程、船舶、电力等多个行业,专业水平要求高,员工必须有较高的专业知识、技术业务水平。目前,海上风电正处于高速发展阶段,还未形成一套行之有效的与其自身风险特征相适应的安全管理模式。同时,海上风电安全技术、法规与标准还不够完善,安全监督管理缺少相应的依据和手段。此外,运维人员大多以前从事陆上风电或者整机制造风电设备厂家,缺乏海上作业经验,行业也缺少相应的准入要求,给安全管理增加了难度。 三、海上风电安全管理措施建议 基于上述风险,提出具体的安全管理措施尤为必要,下面介绍一些针对海上风电运维的安全管理措施和工作规划。 (一)强化安全生产责任制,优化生产运维安全管控 首先要贯彻落实安全生产保证、监督、支持三个体系的责任,建立的覆盖全员的岗位安全生产责任制,逐级签订安全生产责任书,明确安全工作目标、指标,全面落实安全责任。一方面不断加大安全生产保证体系的主体责任,自主开展安全管理工作的良好氛围。另一方面发挥安全生产支持体系的作用,以服务保证体系安全管理为核心,开展日常工作,保障人员、机械、材料、制度等及时到位,实现基层组织、基础工作、基本技能稳步提升。第三方面,足额配备高素质的安全监管人员,通过开展检查、旁站、指导、考核等工作,以高压态势对生产运维工作进行管控,约束运维工作中的不安全行为或状态,保障生产运维工作可控在控。 (二)自建船舶,委托专业船机服务公司规范管理 为保障出海安全,大力推动专业的海上风电运维船投入,如:"电投01""风电运维5"、"广核1号"等。该类船目前设计时速最快已达到25节,大大缩短了风场的往返航行时间。同时,为船舶配备的英国MAXCCESS抱桩舷梯,采用的是抱桩登塔方式,或者配备其他辅助装置,确保船梯和塔梯相连,使上下风塔的安全系数大幅提高。让专业的人干专业的是,委托专业的船机服务公司,对船舶进行专业化管理,加强与海上航行单位的交流、检查、管理,有力保障海上交通安全,防控重大风险。 (三)丰富安全培训教育,提升员工安全技能水平 除了常规的三级安全教育和年度复训、各类取证培训、专项安全培训外,开展海上专业的应急救援培训,以及海上作业安全专项培训,海上应急救援综合能力培训,游泳技能培训,并邀请CCS等海上经验丰富的人员开展专题讲座,全面提高作业人员的安全技能和安全意识。此外,积极加强与国外海上风电公司、中海油等有着丰富经验与实践的单位的交流活动,学习借鉴先进,提升安全管理水平。

海上风电机组的概念设计

海上风电机组的概念设计 目前,海上风力发电机组的主流机型是2.3~5MW双馈或半直驱机型,已交付或已有订单的机型主要如下表所示: 公司名称机组型号已交付使用正在安装已有订单丹麦vestas V90 /3MW 257台260台(含V112)西门子公司SWT-2.3 311台90台 西门子公司SWT-3.6 151台593台 德国REpower 5M 8台351台 德国Multibrid M5000 27台245台德国Enercon E-126/6MW 8台 GE公司GE 3.6sl 7台130台 华锐公司3MW 34台 德国BARD VM5MW 5台80台 德国Nordex 2MW 8台 德国Nordex 2.5MW 11台 芬兰WinWind 3MW 10台 由上表可见丹麦vestas的V90 /3MW,西门子公司的SWT-3.6,德国REpower的5M,德国Multibrid 的M5000,GE公司的GE 3.6sl和德国BARD公司的VM5MW机组被市场认可,由此可见3MW以上风电机组是最近几 年海上风力发电机 组的主力机型。 V90 /3MW机 组是vestas在2002 年5月开始试制 的,右图为V90 /3MW的示意图。 V90 /3MW机 组是首台采用紧凑

型结构的风力发电机组,可以认为是取消了低速轴。2009年9月vestas又研制出了V112-3.0MW离岸型风力发电机组,这是V90-3.0MW的改进型,其安全等级为IECS,适于在平均风速9.5m/s的海上使用,这种机组采用三级增速齿轮箱,永磁同步发电机,短低速轴。该机型应该是维斯塔斯准备大批量生产的产品,下图为V112-3.0MW的外形图。 V112-3.0MW机组计划安装在英国沃尔尼第二海上风力发电场,2011年年底交付使用。V112-3.0MW技术参数如下表所示: 序号部件单位数值 1 机组数据 1.1 制造厂家/型号V112-3.0MW 1.2 额定功率kW 3000 1.3 轮毂高度(推荐方案)m 84.94/119 1.4 切入风速m/s 3 1.5 额定风速m/s 12 1.6 切出风速(10分钟平均值)m/s 25 1.7 极端(生存)风速(3秒最大值)m/s 59.5(IECIIA)5 2.5(IECIIIA) 1.8 预期寿命y 20 2 风轮

我国海上风电行业政策背景分析

我国海上风电行业政策背景分析 2014 年6 月,发改委出台海上风电上网价格政策,对2017 年前投运的近海风电项目制定上网电价0.8 元/kwh,潮间带风电项目上网电价为0.75 元/kwh。同年,上海市出台上海市可再生能源和新能源发展专项资金扶持办法,对海上风电给予0.2 元/kwh 的电价补贴,期限5 年时间,单个项目年度最高补贴额度不超过5000 万元。2015 年9 月国家能源局在海上风电对外通报中鼓励省级能源主管部门向省政府建议并积极协调财政、价格等部门,基础上研究出台本地区的配套补贴政策,中投顾问发布的《2016-2020 年中国海上风力发电行业投资分析及前景预测报告》指出,随着十三五能源规划的出台,后续沿海省份海上风电补贴政策有望落地。 2015 年3 月13 日,中共中央国务院下发关于深化体制机制改革加快实施创新驱动发展战略的若干意见,对新能源汽车、风电、光伏等领域实行有针对性的准入政策。 2015 年3 月20 日,国家发改委、国家能源局于20 日发布了关于改善电力运行、调节促进清洁能源多发满发的指导意见。 意见显示:在编制年度发电计划时,优先预留水电、风电、光伏发电等清洁能源机组发电空间;鼓励清洁能源发电参与市场,对于已通过直接交易等市场化方式确定的电量,可从发电计划中扣除。对于同一地区同类清洁能源的不同生产主体,在预留空间上应公平公正。风电、光伏发电、生物质发电按照本地区资源条件全额安排发电;水电兼顾资源条件和历史均值确定发电量;核电在保证安全的情况下兼顾调峰需要安排发电;气电根据供热、调峰及平衡需要确定发电量。煤电机组进一步加大差别电量计划力度,确保

风机离心风机的常识与选型(各种压效率概念计算等)

风机离心风机的常识与选型(各种压效率概念计算等) 风机类型 离心风机分类与结构离心风机(后简称风机)是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。离心风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;风洞风源和气垫船的充气和推进等。 离心风机分类 主要结构部件 一些常识1、压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有全压、动压、静压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、kPa、mH2O、mmH2O等。2、流量:单位时间内流过风机的气体容积的量,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h。3、转速:风机转子旋转速度。常以n来表示,其单位用r/min。4、功率:驱动风机所需要的功率。常以N来表示,其单位用KW。关于全压、动压、静压1、气流在某一点或某一截面上的总压等于该点截面上的静压与动压之和。而风机的全压,则定义为风机出口截面上的全压

与进口截面上的全压之差,即: Pt =(Pst2 +ρ2 V2 2/ 2)-( Pst1 +ρ1 V12/2) Pst2 为风机出口静压,ρ2为风机出口密度,V2为风机出口速度 Pst1 为风机进口静压,ρ1为风机进口密度,V1为风机进口速度2、气体的动能所表征的压力称为动压,即:Pd=ρV2/23、气体的压力能所表征的压力称为静压,静压定义为全压与动压之差,即:Pst = Pt–Pd注:我们常说的机外余压指的是机组出风口处的静压和动压之和。如下图所表示管道内全压、静压和动压: 静压(Pj)由于流体分子不规则运动而撞击于器壁,垂直作用在器壁上的压力叫静压,用Pj表示,单位用毫米水柱。计算时,以绝对真空为计算零点的静压称为绝对静压。以大气压力为零点的静压称为相对静压。空调中的空气静压均指相对静压。大于周围大气压的静压为正值,小于周围大气压时静压为负值。例如:风道上的静压力测点是从烟风道壁面上引出的,因此,仪表盘上的风压压力计指示的仅是静压。动压(Pd)流体在管道内或风道内流动时,由于速度所产生的压力称为动压或速度压头。动压值总是正的,用Pd表示,单位用毫米水柱。全压(Pq)是指某点上静压力和动压力的代数和,即:Pq=Pd+Pj;单位也是毫米水柱。全压=静压+动压

海上风电安全管理协议

船舶租赁安全管理协议 承租单位:浙江华东建设工程有限公司(以下简称甲方) 出租单位:(以下简称乙方) 甲方为了实施台州市灵江排挡潮扩排工程,承租乙方的船舶用以配合甲方的生产任务。为贯彻《安全生产法》和“安全第一,预防为主,综合治理”的方针,明确双方的安全生产责任,确保甲、乙双方的船舶、设备、人员的安全,根据国家和行业的相关规定,双方在签订船舶租赁合同(协议)的同时,签订本安全管理协议。 一、项目概况 1.项目名称:台州市灵江排挡潮扩排工程 2.项目地址:台州临海 3.项目范围: 4.项目内容:江上水上钻探 二、项目工期 自年月日起至年月日止,根据实际情况双方协商调整。 三、协议内容 1、甲乙双方必须认真贯彻国家、地方和行业、安全生产主管部门颁发的有关安全生产的方针、政策,严格执行有关劳动保护法规、条例、规定。 2、甲乙双方都应有安全管理组织体系,包括分管安全生产的领导,各级专职和兼职的安全人员,应有各工种的安全操作规程、特种作业人员的审证考核制度及各级安全生产岗位责任制、定期安全检查制度和安全教育制度等。 3、甲乙双方在签订合同(协议)前要认真勘察作业现场、航行水域,确定船舶租赁的范围,同时乙方应做到: (1) 乙方应提供给甲方租赁船舶、设备的有效证书,其内容:船舶登记证书及其船舶营运执照、船舶检验证书、船舶航行登记簿、船舶安全检查记录簿、船舶排污记录簿、设备租赁经营确认证书、设备检验合格证(技监局核发)等;进场前提供租赁船舶的有效保险单材料;

(2)乙方应在进场前,须向甲方提供船舶驾驶人员、设备操作人员的花名册和身份证、上岗证、特种作业操作证等证件,无证人员一律严禁使用;根据花名册提供所有人员的人身保险单材料。 4、甲乙双方的有关领导,必须认真对本单位职工进行安全生产制度及安全技术知识教育,增强法制观念,提高职工的安全生产思想意思和自我保护的能力,督促职工自觉遵守安全生产纪律、制度和法规。 5、船舶使用前,甲乙应对乙方的管理、作业人员进行安全生产进场教育,介绍有关安全生产管理制度、规定和要求,乙方应组织召开管理、作业人员安全生产教育会议,并通知甲方委托有关人员出席会议,介绍有关安全生产规章制度及要求;乙方必须检查、督促作业人员严格遵守、认真执行。 根据项目内容与特点,甲乙双方应做好安全技术交底,并有交底的书面材料,交底材料一式二份,由甲乙双方各执一份。 6、施工期间,乙方指派_ _同志负责工程项目的有关安全生产工作;甲方指派__同志负责联系、检查、督促乙方执行有关安全生产规定。甲乙双方应经常联系,相互协助检查和处理项目有关的安全、防火工作,共同预防事故发生。 7、乙方在作业期间必须严格执行和遵守甲方的安全生产的各项规定,接受甲方的督促、检查和指导。甲方有协助乙方搞好安全生产以及督促检查的义务,对于查出的隐患,乙方必须限期整改。对甲方违反安全生产规定,制度等情况,乙方有要求甲方整改的权利,甲方应该认真整改。 8、在生产操作过程中的个人防护用品,由各方自理,甲、乙双方都应督促作业人员自觉穿戴好防护用品。 9、乙方应对所在施工区域、作业环境、操作设施设备、工具用具等必须认真检查,发现隐患,立即停止施工,并落实整改后方准作业。一经作业,就表示乙方确认施工场所、作业环境、设施设备、工具用具等符合安全要求和处于安全状态、乙方对作业过程中由于上述不良因素而导致的事故后果负责,甲方不再承担任何责任。 10、甲乙双方的人员,对各类安全防护设施、安全标准和警告牌,不得擅自拆除、更动。如确实需要拆除更动的,必须经甲乙负责人和甲乙方指派的安全管理人员的同意,并采取必要、可靠的安全措施后方能拆除。任何一方人员,擅自

海上风力发电机组基础设计

近海风力发电(作业) 摘要 这篇文章介绍了海上风电场建设概况、海上风力发电机组的组成、海上风电机组基础的形式、海上风电机组基础的设计。 关键词电力系统;海上风电场;海上风电机组基础;设计 1

Abstract This article describes the overview of offshore wind farm construction, the composition ofthe offshore wind turbine, offshore wind turbines based on the form-based design ofoffshore wind turbines. Key Words electric power system;Offshore wind farm; Offshore wind turbine foundation; design -2-

1前言 1.1全球海上风电场建设概况 截止到2012年2月7日,全球海上风电场累计装机容量达到238,000MW,比上年增加了21%。 1.2 中国 截至2010年底,中国的风电累计装机容量达到44.7GW,首次居世界首位,亚洲的另外一个发展中大国印度也首次跻身风电累计装机容量世界前五位。 1.3海上风力发电机组通常分为以下三个主要部分: (1)塔头(风轮与机舱) (2)塔架 (3)基础(水下结构与地基) 与场址条件密切相关的特定设计; 约占整个工程成本的20%-30%; 对整机安全至关重要。支撑结构 -3-

2 海上风电机组基础的形式 2.1海上风电机组基础的形式 目前经常被讨论的基础形式主要涵盖参考海洋平台的固定式基础,和处于概念阶段的漂浮式基础,具体包括: 单桩基础; 重力式基础; 吸力式基础; 多桩基础; 漂浮式基础 2.1.1单桩基础:(如图1所示) 采用直径3~5m 的大直径钢管桩,在沉好桩后,桩顶固定好过渡段,将塔架安装其上。单桩基础一般安装至海床下10-20m,深度取决于海床基类型。此种方式受海底地质条件和水深约束较大,需要防止海流对海床的冲刷,不适合于25m 以上的海域。 2.1.2重力式基础:(如图2所示) 图1 单桩基础示意图 -4-

相关文档
最新文档