基于MCU和DSP的步进电机控制技术(精)

基于MCU和DSP的步进电机控制技术(精)
基于MCU和DSP的步进电机控制技术(精)

基于MCU和DSP的步进电机控制技术

步进电机已经渗透入我们生活的方方面面,本文介绍了一些重要的步进电机相关技术,为开发人员基本了解步进电机的工作原理提供了足够的信息,同时也介绍了用微控制器或数字信号处理器控制步进电机

的方法。

步进电机也叫步进器,它利用电磁学原理,将电能转换为机械能,人们早在20世纪20年代就开始使用这种电机。随着嵌入式系统(例如打印机、磁盘驱动器、玩具、雨刷、震动寻呼机、机械手臂和录像机等的日益流行,步进电机的使用也开始暴增。不论在工业、军事、医疗、汽车还是娱乐业中,只要需要把某件物体从一个位置移动到另一个位置,步进电机就一定能派上用场。步进电机有许多种形状和尺寸,但不论形状和尺寸如何,它们都可以归为两类:可变磁阻步进电机和永磁步进电机。本文重点讨论更为简单也更常用的永磁步进电机。

步进电机的构造

如图1所示,步进电机是由一组缠绕在电机固定部件--定子齿槽上的线圈驱动的。通常情况下,一根绕成圈状的金属丝叫做螺线管,而在电机中,绕在齿上的金属丝则叫做绕组、线圈、或相。如果线圈中电流的流向如图1所示,并且我们从电机顶部向下看齿槽的顶部,那么电流在绕两个齿槽按逆时针流向流动。根据安培定律和右手准则,这样的电流会产生一个北极向上的磁场。

现在假设我们构造一个定子上缠绕有两个绕组的电机,内置一个能够绕中心任意转动的永久磁铁,这个可旋转部分叫做转子。图2给出了一种简单的电机,叫做双相双极电机,因为其定子上有两个绕组,而且其转子有两个磁极。如果我们按图2a所示方向给绕组1输送电流,而绕组2中没有电流流过,那么电机转子的南极就会自然地按图中所示,指向定子磁场的北极。

再假设我们切断绕组1中的电流,而按图2b所示方向给绕组2输送电流,那么定子的磁场就会指向左侧,而转子也会随之旋转,与定子磁场方向保持一致。

接着,我们再将绕组2的电流切断,按照图2c的方向给绕组1输送电流,注意:这时绕组1中的电流流向与图2a所示方向相反。于是定子的磁场北极就会指向下,从而导致转子旋转,其南极也指向下方。

然后我们又切断绕组1中的电流,按照图2d所示方向给绕组2输送电流,于是定子磁场又会指向右侧,从而使得转子旋转,其南极也指向右侧。

最后,我们再一次切断绕组2中的电流,并给绕组1输送如图2a所示的电流,这样,转子又会回到原来的位置。

至此,我们对电机绕组完成了一个周期的电激励,电机转子旋转了一整圈。也就是说,电机的电频率等于它转动的机械频率。

如果我们用1秒钟顺序完成了图2所示的这4个步骤,那么电机的电频率就是1Hz。其转子旋转了一周,因而其机械频率也是1Hz。总之,一个双相步进电机的电频率和机械频率之间的关系可以用下式表示:fe=fm*P/2 (1

其中,fe代表电机的电频率,fm代表其机械频率,而P则代表电机转子的等距磁极数。

从图2中我们还可以看出,每一步操作都会使转子旋转90°,也就是说,一个双相步进电机每一步操作造成的旋转度数可由下式表示:

1 step= 180°/P (2

由等式(2可知,一个双极电机每动作一次可以旋转180°/2=90°,这与我们在图2中看到的情形正好相符。此外,该等式还表明,电机的磁极数越多,步进精度就越高。常见的是磁极数在12和200个之间的双相步进电机,这些电机的步进精度在15°和0.9°之间。

图3给出的例子是一个双相、6极步进电机,其中包含3个永久磁铁,因而有6个磁极。第一步,如图3a所示,我们给绕组1施加电压,在定子中产生一个北极指向其顶部的磁场,于是,转子的南极(图3a中红色的“S”一端转向了该图的上方。接着,在图3b中,我们给绕组2施加电压,定子中产生一个北极指向其左侧的磁场。于是,转子的一个距离最近的南极转向了图的左方,即转子顺时针转动了30°。第三步,在图3c中,我们又向绕组1施加一个电压,在定子中产生一个北极指向图下方的磁场,从而又使转子顺时针旋转30°到达图3c所示的位置。而在图3d中,我们给绕组2施加电压,在定子中产生一个北极指向定子右侧的磁场,再一次使转子顺时针旋转30°,到达图3d所示的位置。最后,我们再向绕组1施加电压,产生一个如图3a所示的北极指向定子上方的磁场,使得转子顺时针旋转30°,结束一个电周期。如此可以看出,4步电激励造成了120°的机械旋转。也就是说,

该电机的电频率是机械频率的3倍,这一结果符合等式(1。此外,我们从图3和等式(2也能看出,该电机的转子每一步旋转30°。

如果同时向两个绕组输送电流,还能增大电机的扭矩,如图4所示。这时,电机定子的磁场是两个绕组各自产生的磁场的矢量和,虽然这一磁场每一次动作仍然只使电机旋转90°,就象图2和图3中一样,但因为我们同时激励两个电机绕组,所以此时的磁场比单独激励一个绕组时更强。由于该磁场是两个垂直场的矢量和,因此它等于单独每个场的2×1.414倍,从而电机对其负载施加的扭矩也成正比增大。

电机的激励顺序

既然我们知道了一系列激励会使步进电机旋转,接下来就要设计硬件来实现所需的步进序列。一块能让电机动起来的硬件(或结合了硬件和软件的一套设备就叫做电机驱动器。

从图4中可以看出我们怎样激励双相电机的绕组才能使电机转子旋转,图中,电机内的绕组抽头分别被标为1A、1B、2A和2B。其中,1A 和1B是绕组1的两个抽头,2A和2B则是绕组2的两个抽头。

首先,要给脚1B和2B施加一个正电压,并将1A和2A接地。然后,给脚1B和2A施加一个正电压,而将1A和2B接地,这一过程其实取决于导线绕齿槽缠绕的方向,假设导线缠绕的方向与上一节所述相

符。依次进行下去,我们就得到了表1中总结的激励顺序,其中,“1”表示正电压,“0”表示接地。

电流在电机绕组中有两种可能的流向,这样的电机就叫做双极电机和双极驱动序列。双极电机通常由一种叫做H桥的电路驱动,图5给出了连接H桥和步进电机两根抽头的电路。H桥通过一个电阻连接到一个电压固定的直流电源(其幅度可根据电机的要求选取,然后,该电路再经过4个开关(分别标为S1、S2、S3和S4连接到绕组的两根抽头。这一电路的分布看起来有点象一个大写字母H,因此叫做H桥。

从表1中可以看出,要激励该电机,第一步应将抽头2A设为逻辑0,2B设为逻辑1,于是,我们可以闭合开关S1和S4,并断开开关S2和S3。接着,需要将抽头2A设为逻辑1,2B设为逻辑0,于是,我们可以闭合S2、S3,并断开S1和S4。与此类似,第三步我们可以闭合S2、S3并断开S1和S4,第四步则可以闭合S1、S4并断开S2、S3。对绕组1的激励方法也不外乎如此,使用一对H桥就能产生需要的激励信号序列。表2所示就是激励过程中每一步开关所在的位置。

注意,如果R=0,而开关S1和S3又不小心同时闭合,那么流经开关的电流将达到无穷大。这时,不但开关会被烧坏,电源也可能损坏,因此电路中使用了一个非零阻值的电阻。尽管这个电阻会带来一定的功耗,也会降低电机驱动器的效率,但它可以提供短路保护。

单极电机及其驱动器

前面我们已经讨论了双极步进电机和驱动器。单极电机与双极电机类似,不同的是在单极电机中外部能够接触到的只有每个绕组的中心抽

头,如图6所示。我们将从绕组顶部抽出的抽头标为抽头B,底部抽出的标为抽头A,中间的为抽头C。

有时我们会遇到一些抽头没有标注的电机,如果我们清楚步进电机的构造,就很容易通过测量抽头之间的阻值,识别出哪些抽头属于哪根绕组。不同绕组的抽头之间阻抗通常为无穷大。如果经测量,抽头A 和C之间的阻抗为100欧姆,那么抽头B和C之间的阻抗也应是100欧姆,而A和B之间的阻抗为200欧姆。200欧姆这一阻抗值就叫做绕组阻抗。

图7给出一个单极电机的单相驱动电路。从中可以看出,当S1闭合而S2断开时,电流将由右至左流经电机绕组;而当S1断开,S2闭合时,电流流向变为由左至右。因此,我们仅用两个开关就能改变电流的流向(而在双极电机中需要4个开关才能做到。表3所示为单极电机驱动电路中,每一步激励时开关所处的位置。

虽然单极电机的驱动器控制起来相对简单,但由于在电机中使用了中心抽头,因此它比双极电机更复杂,而且其价格通常比双极电机贵。此外,由于电流只流经一半的电机绕组,所以单极电机只能产生一半的磁场。

在知道了单极电机和双极电机的构造原理之后,当我们遇到一个没有标示抽头也没有数据手册的电机时,我们就能自己推导出抽头和绕组的关系。带4个抽头的电机就是一个双相双极电机,我们可以通过测量导线之间的阻抗来分辨哪两个抽头属于同一个绕组。带6个抽头的电机可能是一个双相单极电机,也可能是一个三相双极电机,具体情况可以通过测量导线之间的阻抗来确定。

电机控制

本文前面讨论的电机控制理论可以采用全硬件方案实现,也可以用微控制器或DSP实现。图8说明了如何用晶体管作为开关来控制双相单极电机。每个晶体管的基极都要通过一个电阻连接到微控制器的一个数字输出上,阻值可以从1到10M欧姆,用于限制流入晶体管基极的电流。每个晶体管的发射极均接地,集电极连到电机绕组的4个抽头。电机的中心抽头均连接到电源电压的正端。

每个晶体管的集电极均通过一个二极管连接到电压源,以保护晶体管不被旋转时电机绕组上的感应电流烧坏。转子旋转时,电机绕组上会出现一个感应电压,如果晶体管集电极没有通过二极管连接到电压源,感应电压造成的电流就会涌入晶体管的集电极。

举个例子,假设数字输出do1为高而do2为低,于是do1会使晶体管T1导通,电流从+V流经中心抽头和T1的基极,然后由T1的发射极输出。但此时do2处于断开状态,因此电流无法流经T2。这样推理下

去,我们就能将表3改为驱动电机所需的微控制器数字输出的改变顺序。

一旦清楚了驱动电机所需的硬件和数字输出的顺序,我们就可以对最顺手的微控制器或DSP编写软件,实现这些序列。

固件控制

我本人在一块Microchip PIC16F877上,利用1N4003二极管和2SD1276A达灵顿晶体管实现了以上谈到的电机控制器。PIC的PortA 第0位到第3位用来做数字输出。电机采用在Jameco购买的5V双相单极电机(Airpax [Thomson]生产,型号为M82101-P1,并且用同一个5V电源为PIC和电机供电。但在真正应用时,为避免给微控制器的电源信号引入噪声,建议大家还是分别用不同的电源为电机和微控制器供电。

列表1给出了控制程序的汇编源代码,该程序每50毫秒旋转电机一次。首先,程序会将微控制器的数字输出初始化为表4中第一步的

值,然后每隔50毫秒(此时间常数由程序中的常量waitTime定义按照正确的顺序循环输出数字信号。若需使电机反向旋转,只需按与表4所示相反的顺序输出数字信号即可。

本人所用的电机为24极电机,即每一步输出可以控制电机旋转180°/24=7.5°。电机每50毫秒旋转7.5°,也就是每 2.4秒转一周。如果将常量waitTime减小一半,电机转速会加快一倍。但因为转子受惯性、摩擦力和其他机械限制,所以电机转速有一个上限,当定子磁场旋转过快时,转子的转速无法跟上,导致电机的旋转也无法跟上,开始跳动(skipping。如果这时再降低欧姆aitTime,电机很可能干脆就停止旋转。

除了本文重点讨论的双相电机以外,步进电机还有其他类型,如三相步进电机或四相步进电机。另外还有一些双相步进电机,它们只有一个中心抽头,同时连接到两个绕组的中心点,这类步进电机外部有5个抽头引出。

同样,步进电机也不是电机家族中的唯一成员,最古老也最简单的电机是直流(DC电机。早期的直流电机使用电刷,现在已经不再流行。如今常见的无刷直流电机,就是利用电子线路代替电刷进行换向的直流电机,这类电机中不存在电刷老化问题,因此其寿命比有刷直流电机长很多。

还有一种感应电机,其工作原理与步进电机或直流电机完全不同。直流电机采用的是直流电压源,而感应电机则采用交流(AC电压源,并且步进电机和直流电机中转子与定子磁场的旋转是同步的,而感应电机中转子的转速滞后于定子磁场的转速。

本文小结

本文对步进电机进行了概括性的介绍,更多的细节等待着您的发现。但只要您理解了本文介绍的电机工作原理,那么您就已经完全可以开始设计、维护和调试步进电机的驱动软、硬件了。

步进电机控制实验

步进电机控制实验 一、实验目的: 了解步进电机工作原理,掌握用单片机的步进电机控制系统的硬件设计方法,熟悉步进电机驱动程序的设计与调试,提高单片机应用系统设计和调试水平。 二、实验容: 编写并调试出一个实验程序按下图所示控制步进电机旋转: 三、工作原理: 步进电机是工业过程控制及仪表中常用的控制元件之一,例如在机械装置中可以用丝杠把角度变为直线位移,也可以用步进电机带螺旋电位器,调节电压或电流,从而实现对执行机构的控制。步进电机可以直接接收数字信号,不必进行数模转换,用起来非常方便。步进电机还具有快速启停、精确步进和定位等特点,因而在数控机床、绘图仪、打印机以及光学仪器中得到广泛的应用。 步进电机实际上是一个数字/角度转换器,三相步进电机的结构原理如图所示。从图中可以看出,电机的定子上有六个等分磁极,A、A′、B、B′、C、C ′,相邻的两个磁极之间夹角为60o,相对的两个磁极组成一相(A-A′,B-B′,C-C′),当某一绕组有电流通过时,该绕组相应的两个磁极形成N极和S极,每个磁极上各有五个均匀分布矩形小齿,电机的转子上有40个矩形小齿均匀地分布的圆周上,相邻两个齿之间夹角为9°。 当某一相绕组通电时,对应的磁极就产生磁场,并与转子形成磁路,如果这时定子的小齿和转子的小齿没有对齐,则在磁场的作用下,转子将转动一定的角度,使转子和定子的齿相互对齐。由此可见,错齿是促使步进电机旋转的原因。 三相步进电机结构示意图 例如在三相三拍控制方式中,若A相通电,B、C相都不通电,在磁场作用下使转子齿和A相的定子齿对齐,我们以此作为初始状态。设与A相磁极中心线对齐的转子的齿为0

单片机基于80C51单片机的步进电机控制系统

中国地质大学长城学院 本科课程设计题目:基于80C51单片机的步进电机控制系统 系别信息工程系 学生姓名 专业电气工程及其自动化 学号 指导教师 职称讲师 2014 年6 月11 日

摘要 本文研究基于51系列单片机的步进电机控制系统设计,该系统包括以下几个部分:数据采集、数据处理、终端接收,该系统以汇编语言为单片机的驱动程序语言,单片机控制步进电机,主要任务是把二进制数变成脉冲序列,按相序输入脉冲以实现电机转动方向控制,利用单片机实现对步进电机的远距离实时监控,从而达到高效、节能的控制步进电机工作的目的,该系统具有成本低、控制方便的特点。使用单片机驱动四相步进电机,控制步进电机以四相八拍的方式运行,来实现步进电机正向/反向旋转,P1.0~P1.3分别控制步进电机;P1.5~P1.7分别控制步进电机的停止、正转、反转。 关键词:51单片机;步进电机;数据采集;汇编语言;

目录 摘要 0 1 设计目的 (1) 2设计内容与要求 (1) 3 总体设计方案 (1) 3.1整体方案 (1) 3.2具体方案实现 (1) 4系统硬件设计 (2) 4.1复位电路 (2) 4.2晶振电路 (2) 4.3按键电路 (3) 4.4指示灯电路 (3) 4.5驱动电路 (4) 4.6步进电机 (4) 5程序软件设计 (5) 5.1程序流程图 (5) 5.2源程序 (6) 6系统调试与仿真 (7) 7总结 (8)

1设计目的 1.掌握单片机控制步进电机的硬件接口电路。 2.掌握步进电机驱动程序的设计和调试方法。 3.熟悉步进电动机的工作特性。 2设计内容与要求 1.查阅资料,了解步进电机的工作原理。 2.通过单片机给定参数控制电机转动。 3.通过按钮控制正转、反转和停止。 3总体设计方案 3.1整体方案 本系统主要是由AT89C51,步进电机控制器ULN2004,步进电机,通过单片机编程,实现步进电机控制的脉冲分配,使电机实现正转,反转以及停止等功能 3.2具体实现方案 根据系统要求画出单片机控制步进电机的控制框图,见下图。系统包括单片机、按键、驱动电路和步进电机。 键盘80c51单片机 步进电机 驱动电路

伺服电机控制跟变频器控制原理上的区别

伺服电机控制跟变频器控制原理上的区别 伺服的基本概念是准确、精确、快速定位。变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速)。但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。现在市面上流通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反馈闭环控制。所谓伺服就是要满足准确、精确、快速定位,只要满足就不存在伺服变频之争。 两者的共同点: 交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f频率,p 极对数) 二、谈谈变频器: 简单的变频器只能调节交流电机的速度,这时可以开环也可以闭环要视控制方式和变频器而定,这就是传统意义上的V/F控制方式。现在很多的变频已经通过数学模型的建立,将交流电机的定子磁场UVW3相转化为可以控制电机转速和转矩的两个电流的分量,现在大多数能进行力矩控制的著名品牌的变频器都是采用这样方式控制力矩,UVW每相的输出要加霍尔效应的电流检测装置,采样反馈后构成闭环负反馈的电流环的PID调节;ABB的变频又提出和这样方式不同的直接转矩控制技术,具体请查阅有关资料。这样可以既控制电机的速度也可控制电机的力矩,而且速度的控制精度优于v/f控制,编码器反馈也可加可不加,加的时候控制精度和响应特性要好很多。 三、谈谈伺服: 驱动器方面:伺服驱动器在发展了变频技术的前提下,在驱动器内部的电流环,速度环和位置环(变频器没有该环)都进行了比一般变频更精确的控制技术和算法运算,在功能上也比传统的变频强大很多,主要的一点可以进行精确的位置控制。通过上位控制器发送的脉冲序列来控制速度和位置(当然也有些伺服内部集成了控制单元或通过总线通讯的方式直接将位置和速度等参数设定在驱动器里),驱动器内部的算法和更快更精确的计算以及性能更优良的电子器件使之更优越于变频器。 电机方面:伺服电机的材料、结构和加工工艺要远远高于变频器驱动的交流电机(一般交流电机或恒力矩、恒功率等各类变频电机),也就是说当驱动器输出电流、电压、频率变化很快的电源时,伺服电机就能根据电源变化产生响应的动作变化,响应特性和抗过载能力远远高于变频器驱动的交流电机,电机方面的严重差异也是两者性能不同的根本。就是说不是变

步进电动机控制方法

<<技能大赛自动线的安装与调试>>项目二等奖 心得二 心得二:步进电机的控制方法 我带队参加《2008年全国职业院校技能大赛自动线的安装与调试》项目,我院选手和其他院校的三位选手组成了天津代表队,我院选手所在队获得了《2008年全国职业院校技能大赛自动线的安装与调试》项目二等奖,为天津市代表队争得了荣誉,也为我院争得了荣誉。以下是我这个作为教练参加大赛的心得二:步进电机的控制方法 《2008年全国职业院校技能大赛自动线的安装与调试》项目的主要内容包括如气动控制技术、机械技术(机械传动、机械连接等)、传感器应用技术、PLC控制和组网、步进电机位置控制和变频器技术等。但其中最为重要的就是PLC方面的知识,而PLC中最重要就是组网和步进电机的位置控制。 一、 S7-200 PLC 的脉冲输出功能 1、概述 S7-200 有两个置PTO/PWM 发生器,用以建立高速脉冲串(PTO)或脉宽调节(PWM)信号波形。 当组态一个输出为PTO 操作时,生成一个50%占空比脉冲串用于步进电机或伺服电 机的速度和位置的开环控制。置PTO 功能提供了脉冲串输出,脉冲周期和数量可由用户控制。但应用程序必须通过PLC内置I/O 提供方向和限位控制。 为了简化用户应用程序中位控功能的使用,STEP7--Micro/WIN 提供的位控向导可以帮助您在几分钟内全部完成PWM,PTO 或位控模块的组态。向导可以生成位置指令,用户可以用这些指令在其应用程序中为速度和位置提供动态控制。 2、开环位控用于步进电机或伺服电机的基本信息 借助位控向导组态PTO 输出时,需要用户提供一些基本信息,逐项介绍如下: ⑴最大速度(MAX_SPEED)和启动/停止速度(SS_SPEED) 图1是这2 个概念的示意图。 MAX_SPEED 是允许的操作速度的最大值,它应在电机力矩能力的范围。驱动负载所需的力矩由摩擦力、惯性以及加速/减速时间决定。

三相双三拍步进电机控制系统设计要点

摘要 进步电机是几点数字控制系统中常用的控制元件之一。由于其精度高,体积小,控制方便灵活,因此在智能仪表和位置中得到广泛的应用。 步进电机是机电控制中一种常见的执行机构。步进电机最早是在1920年由英国人所开发。1950年后期晶体管的发明也逐渐应用在步进电机上,这对于数字化的控制变得更为容易。以后经过不断改良,使得今日步进电机已广泛运用在需要高定位精度、高分解性能、高响应性、信赖性等灵活控制性高的机械系统中。在生产过程中要求自动化、省人力、效率高的机器中,我们很容易发现步进电机的踪迹,尤其以重视速度、位置控制、需要精确操作各项指令动作的灵活控制性场合步进电机用得最多。步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。他易于实现与计算机或其他数字元件接口,适用于数字控制系统。

1 课程设计任务和要求 课程设计任务 设计一个三相步进电机控制系统,设计一个计算机步进电机程序控制系统,可以对步进电机的转速、转向以及位置进行控制。通过设计,掌握步进电机的工作原理、掌握步进电机控制系统的设计原理、设计步骤,进一步提高综合运用知识的能力。 要求完成的主要任务: (1)设计接口电路和驱动电路,对步进电机进行控制。 (2)选择控制算法,编写控制程序,实现三相步进电机在双三拍工作方式下先正转90度,然后再反转60度,要求其速度可调,转向可控。 (3)写出设计说明书。 课程任务要求 (1)查阅资料,确定设计方案 (2)选择器件,设计硬件电路,并画出原理图和PCB图 (3)画出流程图,编写控制程序 (4)撰写课程设计说明书 2 步进电机的概述 2.1 步进电机的特点 1)一般步进电机的精度为步进角的3-5%,且不累积。 2)步进电机外表允许的温度高。步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 3)步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。 4)步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的

三相步进电机原理与控制方法资料(精)

本模块由45BC340C型步进电机及其驱动电路组成。 (一步进电机: 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。每输入一个脉冲信号,该电动机就转过一定的角度(有的步进电动机可以直接输出线位移,称为直线电动机。因此步进电动机是一种把脉冲变为角度位移(或直线位移的执行元件。 步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所以又称为脉冲电动机。 随着数字控制系统的发展,步进电动机的应用将逐渐扩大。 步进电动机的种类很多,按结构可分为反应式和激励式两种;按相数分则可分为单相、两相和多相三种。 图1 反应式步进电动机的结构示意图 图1是反应式步进电动机结构示意图,它的定子具有均匀分布的六个磁极,磁极上绕有绕组。两个相对的磁极组成一组,联法如图所示。

模块中用到的45BC340型步进电机为三相反应式步进电机,下面介绍它单三拍、六拍及双三拍通电方式的基本原理。 1、单三拍通电方式的基本原理 设A相首先通电(B、C两相不通电,产生A-A′轴线方向的磁通,并通过转子形成闭合回路。这时A、A′极就成为电磁铁的N、S极。在磁场的作用下,转子总是力图转到磁阻最小的位置,也就是要转到转子的齿对齐A、A′极的位置(图2a;接着B相通电(A、C 两相不通电,转了便顺时针方向转过30°,它的齿和C、C′极对齐(图2c。不难理解,当脉冲信号一个一个发来时,如果按A→C→B→A→…的顺序通电,则电机转子便逆时针方向转动。这种通电方式称为单三拍方式。 图2 单三拍通电方式时转子的位置 2、六拍通电方式的基本原理 设A相首先通电,转子齿与定子A、A′对齐(图3a。然后在A相继续通电的情况下接通B相。这时定子B、B′极对转子齿2、4产生磁拉力,使转子顺时针方向转动,但是A、A′极继续拉住齿1、3,因此,转子转到两个磁拉力平衡为止。这时转子的位置如图3b所示,即转子从图(a位置顺时针转过了15°。接着A相断电,B相继续通电。这时转子齿2、4和定子B、B′极对齐(图c,转子从图(b的位置又转过了15°。

步进电机驱动控制系统设计(有程序)

目录 一前言 (1) 二总体方案设计 (1) 1工作原理 (1) 2方案选择 (1) 2.1时钟脉冲 (1) 2.2脉冲分配器 (1) 2.3驱动器 (1) 3 总的框架 (2) 三单元模块设计 (2) 1单片机模块 (2) 1.1复位控制 (3) 1.2单片机频率 (3) 2接口 (3) 3驱动器ULN2003 (4) 4按键模块 (5) 5步进电机 (5) 5.1工作原理 (5) 5.2 28BYJ48型四相八拍 (7) 四整机调试与技术指标测量 (8) 五设计总结 (8) 参考文献 (9) 附录1电路原理图 (10) 附录2 源程序 (11)

一、前言 步进电动机是一种将电脉冲信号转换成机械位移的机电执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。 二、总体方案设计 1、工作原理 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2、方案选择 (1)时钟脉冲 通常有两种方法实现: 方案一直接有硬件组成如:多谐振荡器 LC 等。 方案二用软件的方式形成优点便于随时更改,调整。 为了方便我们选用软件方式有单片机实现。 (2)脉冲分配器 方案一硬件环形分配器:由计数器等数字电路组成的。有较好的响应速度,且具有直观、维护方便等优点。 方案二软件环分:由计算机接口电路和相应的软件组成的。受到微型计算机运算速度的限制,有时难以满足高速实时控制的要求。由软件完成脉冲分配工作,不仅使线路简化,成本下降,而且可根据应用系统的需要,灵活地改变步进电机的控制方案。 考虑到硬件设备的有限和对步进电机的控制我们选择软件环分可以有单片机实现。 (3)驱动器 方案一使用功率场效应管的单电压功放电路。

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机的区别 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳膜片联轴器,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同

西门子200系列PLC直流步进电机控制方法

直流步进电机plc控制方法 系统功能概述: 本系统采用PLC通过步进电机驱动模块控制步进电机运动。当按下归零按键时,电机1和电机2回到零点(零点由传感器指示)。当按下第一个电机运行按键时,第一个电机开始运行,直到运行完固定步数或到遇到零点停止。当按下第二个电机运行按键时,第二个电机开始运行,运行完固定步数或遇到零点停止。两电机均设置为按一次按键后方向反向。电机运行时有升降速过程。 PLC输入点I0.0为归零按键,I0.1为第一个电机运行按键,I0.2为第二个电机运行按键,I0.3为第一个电机传感器信号反馈按键,I0.4为第二个电机传感器信号反馈按键。 PLC输出点Q0.0为第一个电机脉冲输出点,Q0.1为第二个电机脉冲输出点,Q0.2为第一个电机方向控制点,Q0.3为第二个电机方向控制点,Q0.4为电机使能控制点。 所用器材: PLC:西门子S7-224xpcn及USB下载电缆。编程及仿真用软件为V4.0 STEP 7 MicroWIN SP3。 直流步进电机2个,微步电机驱动模块2个。按键3个。24V开关电源一个。导线若干。 各模块连接方法: PLC与步进电机驱动模块的连接:

驱动模块中EN+、DIR+、CP+口均先接3k电阻,然后接24V 电源。 第一个驱动模块CP-接PLC的Q0.0,DIR-接PLC的Q0.2,EN-接PLC的Q0.4 第二个驱动模块CP-接PLC的Q0.1,DIR-接PLC的Q0.3,EN-接PLC的Q0.4 注意: 1、PLC输出时电压为24V,故和驱动器模块连接时,接了3k 电阻限流。 2、由于PLC处于PTO模式下只有在输出电流大于140mA时,才能正确的输出脉冲,故在输出端和地间接了200欧/2w下拉电阻,来产生此电流。(实验室用的电阻功率不足,用200欧电阻时功率至少在24*24/200=2.88w,即用3w的电阻) 3、PLC与驱动模块连接时,当PLC输出低电平时不能将驱动模块电平拉低,故在EN-和DIR-上接了200欧/2W下拉电阻 驱动模块与电机接法: 驱动模块的输出端分别与电机4根线连接 电机传感器与PLC连接: 传感器电源接24v,信号线经过240欧电阻(试验中两个470电阻并联得到)与24v电源上拉后,信号线接到PLC的I0.3和I0.4

步进电机工作原理、驱动控制系统与选型

步进电机工作原理、驱动控制系统与选型 一、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て。 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A 相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,

电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力 F与(dФ/dθ)成正比 其磁通量Ф=Br*S ;Br为磁密;S为导磁面积; F与L*D*Br成正比;L为铁芯有效长度;D为转子直径;Br=N·I/RN·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 (二)感应子式步进电机

步进电机控制方法

第四节 步进电机的控制与驱动 步进电机的控制与驱动流程如图4-11所示。主要包括脉冲信号发生器、环形脉冲分配器和功率驱动电路三大部分。 步进脉冲 方向电平 图4-11 步进电机的控制驱动流程 二、步进电机的脉冲分配 环形分配器是步进电机驱动系统中的一个重要组成部分,环形分配器通常分为硬环分和软环分两种。硬环分由数字逻辑电路构成,一般放在驱动器的内部,硬环分的优点是分配脉冲速度快,不占用CPU的时间,缺点是不易实现变拍驱动,增加的硬件电路降低了驱动器的可靠性;软环分由控制系统用软件编程来实现,易于实现变拍驱动,节省了硬件电路,提高了系统的可靠性。 1.采用硬环分时的脉冲分配 采用硬环分时,步进电机的通电节拍由硬件电路来决定,编制软件时可以不考虑。控制器与硬环分电路的连接只需两根信号线:一根方向线,一根脉冲线(或者一根正转脉冲线,一根反转脉冲线)。假定控制器为AT89S52单片机,晶振频率为12MHz,如图4-18:P1.0输出方向信号,P1.1输出脉冲信号。 则控制电机走步的程序如下: (1)电机正转100步 MOV 0FH,#100D ;准备走100步 CONT1: SETB P1.0 ;正转时P1.0=1 CLR P1.1 ;发步进脉冲的下降沿(设驱动器对于脉冲的下降沿有效) NOP ;延时(延时的目的是让驱动电路的光耦充分导通) NOP ;延时(根据驱动器的需要,调整延时) SETB P1.1 ;发步进脉冲的上升沿 MOV 0EH,#4EH ;两脉冲之间延时20000μs(决定电机的转速) MOV 0DH,#20H ;20000的HEX码为4E20 CALL DELAY ;调用延时子程序 DJNZ 0FH,CONT1 ;循环次数减1后,若不为0则继续,循环100次 RET (2)电机反转100步 MOV 0FH,#100D ;准备走100步 CONT2: CLR P1.0 ;反转时P1.0=0 CLR P1.1 ;发步进脉冲的下降沿(设驱动器对于脉冲的下降沿有效) NOP ;延时(延时的目的是让驱动电路的光耦充分导通) NOP ;延时(根据驱动器的需要,调整延时) SETB P1.1 ;发步进脉冲的上升沿

步进电机控制速度的方法

步进电机只能够由数字信号控制运行的,当脉冲提供给驱动器时,在过于短的时间里,控制系统发出的脉冲数太多,也就是脉冲频率过高,将导致步进电机堵转。要解决这个问题,必须采用加减速的办法。就是说,在步进电机起步时,要给逐渐升高的脉冲频率,减速时的脉冲频率需要逐渐减低。这就是我们常说的“加减速”方法。 步进电机转速度是根据输入的脉冲信号的变化来改变的,从理论上讲,给驱动器一个脉冲,步进电机就旋转一个步距角(细分时为一个细分步距角)。实际上,如果脉冲信号变化太快,步进电机由于内部的反向电动势的阻尼作用,转子与定子之间的磁反应将跟随不上电信号的变化,将导致堵转和丢步。 所以步进电机在高速启动时,需要采用脉冲频率升速的方法,在停止时也要有降速过程,以保证实现步进电机精密定位控制。加速和减速的原理是一样的。以加速实例加以说明:加速过程是由基础频率(低于步进电机的直接起动最高频率)与跳变频率(逐渐加快的频率)组成加速曲线(降速过程反之)。跳变频率是指步进电机在基础频率上逐渐提高的频率,此频率不能太大,否则会产生堵转和丢步。 步电机系统解决方案

加减速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦曲线等。使用单片机或者PLC,都能够实现加减速控制。对于不同负载、不同转速,需要选择合适的基础频率与跳变频率,才能够达到最佳控制效果。指数曲线,在软件编程中,先算好时间常数存贮在计算机存贮器内,工作时指向选取。通常,完成步进电机的加减速时间为300ms以上。如果使用过于短的加减速时间,对绝大多数步进电机来说,就会难以实现步进电机的高速旋转。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以 步电机系统解决方案

基于MCU和DSP的步进电机控制技术(精)

基于MCU和DSP的步进电机控制技术 步进电机已经渗透入我们生活的方方面面,本文介绍了一些重要的步进电机相关技术,为开发人员基本了解步进电机的工作原理提供了足够的信息,同时也介绍了用微控制器或数字信号处理器控制步进电机 的方法。 步进电机也叫步进器,它利用电磁学原理,将电能转换为机械能,人们早在20世纪20年代就开始使用这种电机。随着嵌入式系统(例如打印机、磁盘驱动器、玩具、雨刷、震动寻呼机、机械手臂和录像机等的日益流行,步进电机的使用也开始暴增。不论在工业、军事、医疗、汽车还是娱乐业中,只要需要把某件物体从一个位置移动到另一个位置,步进电机就一定能派上用场。步进电机有许多种形状和尺寸,但不论形状和尺寸如何,它们都可以归为两类:可变磁阻步进电机和永磁步进电机。本文重点讨论更为简单也更常用的永磁步进电机。 步进电机的构造 如图1所示,步进电机是由一组缠绕在电机固定部件--定子齿槽上的线圈驱动的。通常情况下,一根绕成圈状的金属丝叫做螺线管,而在电机中,绕在齿上的金属丝则叫做绕组、线圈、或相。如果线圈中电流的流向如图1所示,并且我们从电机顶部向下看齿槽的顶部,那么电流在绕两个齿槽按逆时针流向流动。根据安培定律和右手准则,这样的电流会产生一个北极向上的磁场。

现在假设我们构造一个定子上缠绕有两个绕组的电机,内置一个能够绕中心任意转动的永久磁铁,这个可旋转部分叫做转子。图2给出了一种简单的电机,叫做双相双极电机,因为其定子上有两个绕组,而且其转子有两个磁极。如果我们按图2a所示方向给绕组1输送电流,而绕组2中没有电流流过,那么电机转子的南极就会自然地按图中所示,指向定子磁场的北极。 再假设我们切断绕组1中的电流,而按图2b所示方向给绕组2输送电流,那么定子的磁场就会指向左侧,而转子也会随之旋转,与定子磁场方向保持一致。

步进电机 驱动器 控制器三者的关系

电机行业专业求职平台 1.步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况 下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机、交流电机在常规下使用。步进电机必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。它涉及到机械、电机、电子及计算机等许多专业知识。 提及此知识,希望能给予正在对电机选型的客户有所帮助。 2.力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度,则产生力 F与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积 F与L*D*Br成正比 L为铁芯有效长度,D为转子直径 Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径 力矩与电机有效体积*安匝数*磁密成正比(只考虑线性状态) 因此,电机有效体积越大,励磁安匝数越大,定转子间气隙越小,电机力矩越大,反之亦然。 一、混合式步进电机

电机行业专业求职平台1、特点: 混合式(又称感应子式步进电机)与传统的反应式步进电机相比,结构上转子加有永磁体,以提供软磁材料的工作点,而定子激磁只需提供变化的磁场而不必提供磁材料工作点的耗能,因此该电机效率高,电流小,发热低。因永磁体的存在,该电机具有较强的反电势,其自身阻尼作用比较好,使其在运转过程中比较平稳、噪音低、低频振动小。 混合式步进电机某种程度上可以看作是低速同步电机。一个四相电机可以作四相运行,也可以作二相运行。(必须采用双极电压驱动),而反应式电机则不能如此。例如:四相,八相运 行(A-AB-B-BC-C-CD-D-DA-A)完全可以采用二相八拍运行方式.不难发现其条件为C= A ,D=B . 一个二相电机的内部绕组与四相电机完全一致,小功率电机一般直接接为二相, 而功率大一点的电机,为了方便使用,灵活改变电机的动态特点,往往将其外部接线为八根引线(四相),这样使用时,既可以作四相电机使用,更可以作二相电机绕组串联或并联使用。 2、分类 混合式步进电机可分二相、三相、四相、五相等,我公司混合式步进电机以相数可分为:二相电机、三相电机: TEB20H,TEB28H,TEB35H,TEB39H,TEB42H,TEB57H,TEB86H,TEB110 H,TEC57H,TEC86H,TEC110H,TEC130H. 3、步进电机的静态指标术语 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半 步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)

伺服电机控制原理

伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似。其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅 0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)。 交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W的小功率控制系统。 二、交流伺服电动机原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈

MSP430单片机对步进电机的驱动控制设计

MSP430单片机对步进电机的驱动控制设计 单片机实现的步进电机控制系统具有成本低、使用灵活的特点,广泛应用于数控机床、机器人,定量进给、工业自动控制以及各种可控的有定位要求的机械工具等应用领域。步进电机是数字控制电机,将脉冲信号转换成角位移,电机的转速、停止的位置取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,非超载状态下,根据上述线性关系,再加上步进电机只有周期性误差而无累积误差,因此步进电机适用于单片机控制。步进电机通过输入脉冲信号进行控制,即电机的总转动角度由输入脉冲总数决定,而电机的转速由脉冲信号频率决定。步进电机的驱动电路是根据单片机产生的控制信号进行工作。因此,单片机通过向步进电机驱动电路发送控制信号就能实现对步进电机的控制。 1 系统设计原理 步进电机控制系统主要由单片机、键盘LED、驱动/放大和PC上位机等4个模块组成,其中PC机模块是软件控制部分,该控制系统可实现的功能:1)通过键盘启动/暂停步进电机、设置步进电机的转速和改变步进电机的转向;2)通过LED管显示步进的转速和转向等工作状态;3)实现三相或四相步进电机的控制:4)通过PC上位机实现对步进电机的控制(启停、转速和转向等)。为保护单片机控制系统硬件电路,在单片机和步进电机之间增加过流保护电路。图l为步进电机控制系统框图。 2 系统硬件电路设计 2.1 单片机模块 单片机模块主要由MSP430FG4618单片机及外围滤波、电源管理和晶振等电路组成。MSP430FG4618单片机内部的8 KB RAM和116 KB Flash满足控制系统的存储要求,P1和P2端口在步进电机工作过程中根据按键状态判断是否跳入中断服务程序来改变步进电机的工作状态,USART模块实现单片机和PC上位机之间的通信,实现PC机对步进电机控制。电源管理电路提供稳定的3.3 V和5 V电压,分别给单片机、晶振电路和驱动和功率放大电路供电。32 kHz晶振给单片机、键盘/显示接口器件8279和脉冲分配器

伺服电机内部结构及其工作原理

创作编号:BG7531400019813488897SX 创作者:别如克* 伺服电机内部结构

伺服电机工作原理

伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、2 6V、36V、115V等多种。

几种常见步进电机控制方法庶谈

几种常见步进电机控制方法庶谈 摘要:本文对步进电机工作原理、运行性能进行了详细阐述,分析了步进电机细分驱动系统的作用和适用性,研究了步进电机常见的控制方法。 关键词:步进电动机;控制方法 1 简介 步进电机把电脉冲信号变换成角位移以控制转子转动的电机,是机电一体化的重要执行机构。步进电机整机结构简单,可以在宽广的频率范围内实现调速,其转速不受负载大小的影响,过载性好,动作相应快,控制方便,可实现快速起停、正反转控制。并且由其组成的开环系统物美价廉,实用可靠。伴随着自动化技术的突飞猛进,步进电机的运用的广度和深度与日俱增。 步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。反应式步进电机结构简单、成本低,动态性能弱、效率不高、发热量大,可靠性低;永磁式步进电机动态性能好、输出力矩大,但运转精度差;混合式步进电机集以上两种步进电机的优势于一身,输出力矩大、动态性能好,但结构复杂、成本高昂。市场是最为常见的主要是两相混合式步进电机,其突出的性价比使得其在步进电机市场中占据90%以上的市场份额。 2 PLC控制步进电机应用及举例 步进电机是数字控制电机,其驱动电路根据控制信号工作,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合单片机控制。通过单片机控制可以实现由脉冲分配进行控制换相顺序,由给定工作方式正序换相通电控制步进电机的(即实现步进电机正转或反转),通过改变两个脉冲的间隔控制步进电机的速度等调节。 如图1所示的35BY型永磁步进电机是该电机的接线图。要使用步进电机转动,只要轮流给各引出端通电即可。将COM端标识为C,只要AC、C、BC、C,轮流加电就能驱动步进电机运转。通过查阅电机的相关参数,得出控制电路的基本设计思路:工作电压为12V,最大电流为0.26A,选用ULN2003来作为驱动。通过P1.4-P1.7来控制线圈的通断(开机时,P1.4-P1.7均为高电平),将P1.4-P1.7顺序切换至低电平即可实现电机驱动运行。单片机控制35BY48S03型步进电机的电路原理图如图2所示。 ■ 图1 35BY型步进电机的接线图 ■

相关文档
最新文档