糖类的提取分离与薄层层析分析

糖类的提取分离与薄层层析分析
糖类的提取分离与薄层层析分析

糖类的提取分离与薄层层析分析

实验简介:薄层层析(thin layer chromatography,TLC)是在吸附剂或支持介质均匀涂布的薄层上进行的,是一种广泛应用于氨基酸、多肽、核苷酸、脂肪酸、脂肪类、糖类、磷脂和生物碱等多种物质的分离和鉴定的层析方法。本实验是从水果中提取单糖、双糖和多糖组分,采用硅胶G薄层层析法分析糖类成分。

一、实验目的

1、了解并初步掌握从水果中分离提取单糖、蔗糖及淀粉的原理。

2、学习薄层层析的一般操作及定性鉴定的方法。

二、实验原理

1、单糖及多糖的提取

凡不能水解为更小分子的糖即为单糖。单糖种类很多,其中以葡萄糖分布最为广泛,存在于各种水果、谷类、蔬菜和动物血液中。由于单糖分子中有多个羟基,增加了它的水溶性,尤其在热水中溶解度很大;在乙醇中也有很好溶解性,但不溶于乙醚、丙酮等有机溶剂中。而蔗糖等双糖分子也易溶于水和乙醇中。因此,单糖和双糖一般可用热水或乙醇将其提取出来。

多糖是由多个单糖分子失水缩合而成的大分子化合物。在自然界中分子结构复杂而多种多样,有不溶性的结构多糖如植物纤维素、半纤维素,动物的几丁质等;另有一些为贮存物质如淀粉、糖原等;还有一些多糖具有复杂的生理功能。多糖中的淀粉不溶于冷水及乙醇,但可溶于热水中形成胶体溶液。因此可以用乙醇提取单糖及低聚糖,然后提取淀粉等多糖。

2、薄层层析

薄层层析的主要原理是根据各组分在溶剂中的溶解度不同和吸附剂对样品各组分的吸附能力的差异,最终将混合物分离成一系列的斑点。

糖的分离鉴定可用吸附层析或分配层析,吸附层析常用的吸附剂为硅胶,分配层析常用的支持剂是硅藻土。在吸附剂或支持剂中添加适宜的黏合剂后再涂布于支持板上,可使薄层粘牢在玻璃板(或涤沦片基)这类基底上。硅胶G是一种已添加了黏合剂—石膏(CaSO4)的硅胶粉,糖在硅胶G薄层上的移动速度与糖的相对分子质量和羟基数等有关,经适当的溶剂展开后,糖在硅胶G薄板上的移动距离为戊糖>己糖>双糖>三糖。若采用硼酸溶液代替水调制硅胶G制成的薄板可提高糖的分离效果。

薄层层析的展层方式有上行、下行和近水平等。一般常采用上行法,即在具有密闭盖子的玻璃缸(即层析缸)中进行,将适量的展层溶剂倒于缸底,把点有样品的薄层板放入缸中即可(如图1所示)。保证层析缸内有充分展层溶剂的饱和蒸汽是实验成功的关键。

图1 密闭式展层缸

1.缸盖2.层析缸3.薄层板

4.点样处5.展层溶剂

三、实验用品

1、实验材料:新鲜葡萄或苹果。

2、实验试剂

(1)标准糖溶液:取果糖、葡萄糖、蔗糖、甘露糖,分别用75%乙醇配制成10mg/mL溶液。

(2)标准糖混合溶剂:取上述各种糖,混合后用75%乙醇配制成10mg/mL溶液。

(3)0.1mol/L硼酸(H3BO3)溶液。

(4)展层溶剂:①乙酸乙酯:乙酸:水=2:1:1;②氯仿:甲醇=60:40(V/V)。

(5)苯胺-二苯胺显色剂:1g二苯胺,1mL苯胺和85%5mL磷酸溶于50mL丙酮。

(6)1mol/L H2SO4

(7)1%碘-碘化钾(I-KI)溶液:将碘化钾20g及碘10g溶于100 mL蒸馏水中,使用前需稀释10倍。

(8)BaCO3

3、实验器材

电吹风,层析缸(带密封盖),烘箱,硅胶G,毛细管(Ф0.5mm),喷雾器,干燥器,玻璃板(5×10cm),玻璃棒,烧杯,直尺,铅笔。

四、实验操作

1、糖类的提取:

(1)还原糖及蔗糖的提取

称取25g新鲜葡萄(去核)或苹果,将其磨碎后转入250mL三角烧瓶中,加入80%乙醇50mL,放在50℃水浴中抽提30min。5000 r/min离心10 min,收集上清液,沉淀用85%乙醇适量再提取1~2次(视样品不同而定反复抽提的次数)。收集合并所有上清液,沉淀部分烘干留待提取测定淀粉等多糖用。

(2)淀粉的水解

取乙醇提取后的沉淀物0.5g,放入三角烧瓶中,加20mL1mol/L H2SO4,盖上表面皿,在沸水浴锅中加热水解,并经常摇动,1.5~2 h后,取一滴水解液放在白瓷板上,加1滴1%I-KI溶液,检查淀粉是否水解完全,如为紫蓝色,则说

明水解不完全,再继续水解0.5h,直至水解液对I-KI不显色为止。

样品冷却后,小心将三角烧瓶中的水解液转移至100mL烧杯中,并用蒸馏水冲洗三角烧瓶3次,加BaCO3中和至中性,过滤或离心,上清液水浴蒸发浓缩后用于TLC分析。

2、硅胶G薄层层析分析

(1)硅胶G薄层板的制备:将制备薄层用的玻璃板预先用洗液洗干净并烘干,玻璃板要求表面光滑。称取硅胶G粉6g,加入12mL 0.1mol/L硼酸溶液,用玻棒在烧杯中慢慢搅拌至硅胶浆液分散均匀、黏稠度适中,然后倾倒在干净、干燥的玻璃板上,倾斜玻璃板或用玻棒将硅胶G由一端向另一端推动,使硅胶G铺成厚薄均匀的薄层。待薄板表面水分干燥后置于烘箱内,待温度升至110O C后活化30min。冷却至室温后取出,置于干燥器中备用(注意:避免薄板骤热、骤冷使薄层断裂或在展层过程中脱落)。制成的薄层板,要求表面平整,厚薄均匀。

(2)点样:取制备好的薄板一块,在距底边1.5cm处划一条直线,在直线上每隔1.5~2cm作一个记号(用铅笔轻点一下,不可将薄层刺破)。用管口平齐毛细管吸取标准样(葡萄糖、果糖、蔗糖、甘露糖)及糖的提取和水解液量约5~50μg,点样体积约1~5μL,可分次滴加,控制点样斑点直径不超过2mm。在点样过程中可用吹风机冷热风交替吹干样品。

(3)展层:将已点样的薄板点样一端放入盛有展层溶剂的层析缸中,展层溶剂液面不得超过点样线,层析缸密闭,自下向上展层,当展层溶剂到达距薄板顶端约lcm处时取出薄板,前沿用铅笔或小针作记号。60℃烘箱内烘干或晾干。

(4)显色:将苯胺-二苯胺显色剂均匀喷雾在薄层上,电吹风加热至层析斑点显现,此显色剂可使各种糖显现出不同的颜色。

五、结果

样品中糖的定性鉴定,薄层显色后,根据各显色斑点的颜色相对位置,测算R f值。

将混合样品图谱与标准样品图谱相比较或通过混合样品与标准样品R f值的比较,确定混合样品中所分离的各个斑点分别为何种糖。

六、注意事项

1、自植物中提取糖类时,一般都是利用水和醇进行抽提。因此能溶于水的色素、蛋白质、丹宁、果胶、有机酸等也会随同糖二起被提取出来,从而干扰糖的分析。为了除去干扰物,常需使用澄清剂,如中性醋酸铅、碱性醋酸铅、氢氧化钡等。

2、植物体内有许多能水解糖的酶,因此在分离糖时必须适当地破坏或抑制酶的活性,方能提取天然状态下的糖类。比如采集的新鲜材料应迅速加热干燥或冷冻保存等,使用新鲜材料提取时,宜用沸水和提高乙醇的浓度至85%;如果材料的脂类和色素很高,可用石油醚浸提除去脂和色素。

3、由于糖是多羟基化合物,极性强容易吸附,故多采用含无机盐水溶液制备硅胶薄板,使硅胶薄层吸附能力降低,斑点集中,对分离有所改善,样品承载量也可有显著提高。

4、制备薄板时,薄板的厚度及均一性对样品的分离效果和R f的重复性影响很大,普通薄层厚度以250μm为宜。若用薄层层析法制备少量的纯物质时,薄层厚度可稍大些,常见为500~750μm,甚至1~2mm。

5、活化后的薄层板在空气中不能放置太久,否则会因吸潮降低活性。

6、用于薄层层析的样品溶液的质量要求非常高,样品中必须不含盐,若含有盐分则会引起严重的拖尾现象,甚至有时得不到正确的分离效果。

7、样品溶液应具有一定的浓度,一般为1~5μg/μL,样品太稀,点样次数太多,就会影响分离效果,所以必须进行浓缩处理。

七、作业

1、薄层层析与其他层析法比较有哪些优点?

2、本实验在操作过程中有哪些方面是实验成功的关键?

3、分析本实验的层析图谱。

参考文献

1、史锋等.生物化学实验.杭州:浙江大学出版社,2002

2、张惟杰.糖复合物生化研究技术(第二版). 杭州:浙江大学出版社,1999

编著者-陈彦

薄层层析,显色剂

薄层层析溶剂/展开剂/显色剂的选择配制及注意事 项 摘要: 薄层色谱方法总结:使用的溶剂必须是“分析纯”或“色谱纯”,溶剂组成采用体积量比(如正丁醇- 冰乙酸- 水= 4:1:1,V/V/V),或者绝对量(如18ml 甲苯+ 2 ml 甲醇)。其总量应足以使TLC/HPTLC 板的浸入深度约为5mm。展开剂要求新鲜配制,不要多次反复使用,如需分层,则按要求放置分层后取需要的一相(上层或下层),备用 相关专题薄层层析(TLC)技术薄层色谱方法总结 1.方法原理 (1)流动相利用毛细管力带着样品穿过固定相。 (2) 样品与固定相的相互作用是指组份在移行过程中由于偶极- (诱导) - 偶极相互作用, 氢键和范德华力的作用而产生不同程度的延缓、吸附、分散、离子交换和络合等分离机理。 2.溶剂 使用的溶剂必须是“分析纯”或“色谱纯”,溶剂组成采用体积量比(如正丁醇- 冰乙酸- 水= 4:1:1,V/V/V),或者绝对量(如18ml 甲苯+ 2 ml 甲醇)。其总量应足以使TLC/HPTLC 板的浸入深度约为5mm。展开剂要求新鲜配制,不要多次反复使用,如需分层,则按要求放置分层后取需要的一相(上层或下层),备用。 一、溶剂选择规则: 1、考虑分离成分的极性、溶解度、吸附度。 2、先加入极性较小的溶剂,若不容再加入少量极性大的溶剂 3、一般根据相似相溶原则,需要注意,极性相差大的不混溶。 4、混合溶剂通常使用一个高极性和低级性溶剂组成的混合溶剂。 5、展开剂的比例要靠尝试.一般根据文献中报道的该类化合物用什么样的展开剂,就首先尝试使用该类展开剂,然后不断尝试比例,直到找到一个分离效果好的展开剂。 6、一般把两种溶剂混合时,采用高极性/低极性的体积比为1/3的混合溶剂,如果有分开的迹象,再调整比例(或者加入第三种溶剂),达到最佳效果;如果没有分开的迹象(斑点较“拖”),最好是换溶剂。 二、展开剂的选择条件: ①对的所需成分有良好的溶解性; ②可使成分间分开; ②待测组分的Rf在0.2~0.8之间,定量测定在0.3~0.5之间; ③不与待测组分或吸附剂发生化学反应; ⑤沸点适中,黏度较小; ⑥展开后组分斑点圆且集中; ⑦混合溶剂最好用新鲜配制。 三、溶剂极性参数表 环已烷:-0.2、石油醚(Ⅰ类,30~60℃)、石油醚(Ⅱ类,60~90℃)、正已烷:0.0、甲苯:2.4、二甲苯:2.5、苯:2.7、二氯甲烷:3.1、异丙醇:3.9、正丁醇:3.9、四氢呋喃:4.0、氯仿:4.1、乙醇:4.3、乙酸乙酯:4.4、甲醇:5.1、丙酮:5.1、乙腈:5.8、乙酸:6.0、水:10.2 1、一般来说,弱极性溶剂体系的基本两相由正己烷和水组成,再根据需要加入

如何建立薄层色谱法测定有关物质的方法

如何建立薄层色谱法测定有关物质的方法 谢沐风 (上海市药品检验所上海200233) 摘要本文就如何建立TLC法测定有关物质的方法进行论述,系统地阐述了薄层色谱法各条件确定的原理,并列举了质量标准制订中存在的某些问题。 关键词薄层色谱法(TLC法)有关物质方法建立 有关物质是研究药品中除主成分以外的杂质,它可能是原料药合成过程中带入的原料、中间体、试剂、降解物、副产物、聚合体、异构体以及不同晶型、旋光异构的物质,也可能是制剂过程中产生的降解物,或是在贮藏、运输、使用过程中产生的降解物等[1]。这些杂质的存在直接反映药品的有效性和安全性,故要对其进行研究,特别是在药品申报的质量研究资料中需建立其检测方法,并根据生产、稳定性考核等实际情况考虑是否在质量标准中制订该检查项,规定其限度。目前,有关物质的常用测定方法有高效液相色谱法(HPLC法)和薄层色谱法(TLC法)。 TLC的特点是快速、简便,尤其是对无紫外吸收的杂质测定,更具有其应用价值。如能将TLC法与HPLC法有机地结合、或彼此间进行比对研究,便可得到更多、更为准确的有关杂质信息,做到两方法间的相辅相成,相益得彰!本文将着重讨论如何建立薄层色谱法测定有关物质的方法。 1.测定方法类型 常用的方法有杂质对照品法(适用于已知杂质)和自身(稀释)对照法(适用于一般杂质检查,杂质成分少且尚不能取得杂质对照品)。目前国内由于难以获得杂质对照品、故一般均采用自身对照法。 2.展开剂的确定(即专属性试验) 专属性的研究是提供被分析物在杂质和辅料存在时能被区分的证明,该点是色谱条件建立的关键。通常采用在被分析物的对照品或精制品中加入一定量的杂质或辅料,证明色谱条件可将各杂质与被分析物分离[1]。这里的关键是:将多少量的杂质加入到多少量的主成分中。正确的作法是将1%(w/w)浓度量的各杂质加入到100%浓度的主成分中,配制这样的溶液来

啤酒酵母的蔗糖酶的提取提纯及测定

浙江工业大学药学院生物化学实验论文 2013 年12 月13日

啤酒酵母蔗糖酶的提取、提纯及测定研究论文 摘要:为了了解蔗糖酶的性质,我们用啤酒酵母做了一系列的实验,它们主要是以下内容:(1),蔗糖酶的提取与初提纯:a、先将酵母自溶,再两次离心得初提液A;b、接着调PH并加热、离心得热提取液B;c、用乙醇沉淀离心得提取液C。(2),蔗糖酶的纯化—Q Sepharose 柱沉析法:先装柱,再安装盐度梯度发生器与柱的平衡,接着加样并洗脱,最后处理结果与交换剂的再生并得到提取液D。(3),蔗糖酶活力的测定:第一人做葡萄糖标曲,第二人测定各提取液反应后的值,得各提取液的酶活力与回收率。(4),蔗糖酶蛋白质含量的测定及活力OD 540 计算:遇上一个实验相反,第二人做标曲,第一个人测与各提取液相对应的OD 660值,再对比得到各提取液的总蛋白、比活力、蛋白回收率、酶活回收率与纯化倍数。(5),微量凯氏定氮法(以B为样品):先将样品B消化得消化液,洗涤定氮仪,再将消化液蒸馏,用HCl滴定馏出液,计算蛋白质含量。(6),SDS-PAGE测定蛋白质的相对分子质量:首先制备分离胶并使之凝固,再制备浓缩胶使之在分离胶之上凝固,加处理后的样品和标准液,接着电泳,最后染色和脱色,确定样品相对分子质量。 关键词:蔗糖酶;蛋白质;提取;纯化;酶活力测定;Folin-酚试剂;微量凯式定氮;SDS-聚丙烯胺凝胶;标曲;电泳; 正文: 文献综述 蔗糖酶(Sucrase,EC 3.2.1.26)又称转化酶(Invertase),可作用于β21,2糖苷键,将蔗糖水解为D2葡萄糖和D2果糖,广泛存在于动植物和微生物中,主要从酵母中得到。蔗糖酶的最适温度为45℃-50℃,最适ph为4.0-4.5. 实验原理、试剂与器材、操作方法、结果与分析、注意事项、认识与体会 1 蔗糖酶的提取及初步提纯 1.1实验原理 酵母中含有蔗糖酶,而蔗糖酶属于胞内酶,所以常将细胞壁破碎后进行提取。酶的生产方法有生物提取法、微生物发酵法及化学合成法,细胞破碎又有化学裂解法、低渗溶液法等,本法属于生物提取法、菌体自溶的方法。经破碎提取的蔗糖酶液再经热提取、乙醇沉淀提取,使蔗糖酶得到初步的提纯。 1.2 试剂与器材 1.2.1试剂

Stains-for-Developing-TLC-Plates(薄层层析显色剂)

Stains for Developing TLC Plates Once a TLC has been developed, it is frequently necessary to aid in the visualization of the components of a reaction mixture. This is true primarily because most organic compounds are colorless. Frequently, the organic compounds of interest contain a chromophore which may be visualized by employing either a short or a long wave UV lamp. These lamps may be found as part of a standard organic chemistry research or teaching lab. Typical examples of functional groups which may be visualized through this method are aromatic groups, α,β-unsaturated carbonyls, and any other compounds containing extensively π-conjugated systems. While exposing these TLC plates to UV light, you will notice that the silica gel will fluoresce, while any organic molecule which absorbs UV light will appear as a dark blue spot. Circling these spots gently with a dull pencil will permit an initial method for visualization. Fortunately, there are a number of permanent or semi-permanent methods for visualization which will not only allow one to see these compounds but also provide a method for determining what functional groups are contained within the molecule. This method is referred to as staining the TLC plate, and experience will allow you to determine what functional groups will appear as what color upon visualization. Following is a listing of the most commonly employed stains, the kind of compounds for which they're usually employed, and a typical recipe. A Note on TLC Plates Although it should be obvious, be sure that the kind of TLC plate you are using is compatible with the stain or the conditions for its development. For instance, the inexpensive plates using a plastic polymer backing cannot be used for stains requiring heat for development. Glass backing is fine for this, but the silica gel is typically not tightly bonded to the glass, and tends to be inadvertantly scraped off very easily; thus, these are not suitable for storage following development. In our group, we use aluminum-backed plates, which are less expensive than glass, are heat-impervious, the silica gel is very tightly bound to the backing, and are so thin that, if desired, a particularly spectacular plate can be taped into your lab notebook. The Stain List Iodine The staining of a TLC plate with iodine vapor is among the oldest methods for the visualization of organic compounds. It is based upon the observation that iodine has a high affinity for both unsaturated and aromatic compounds. Recipe A chamber may be assembled as follows: To 100 mL wide mouth jar (with cap) is added a piece of filter paper and few crystals of iodine. Iodine has a high vapor pressure for a solid and the chamber will rapidly become saturated with iodine vapor. Insert your TLC plate and allow it to remain within the chamber until it develops a

薄层色谱 的详细步骤

. 薄层色谱分析步骤详解 薄层色谱法(thin layer chromatography简写TLC)是一种物理化学的分离技术,常用于药物的分离与分析。现对此方法的分析步骤及留意事项提点建议。 完成TLC分析通常需经制板、点样、展开、检出4步操纵。 ⑴制板 在一平面支持物(通常为玻璃)上,均匀地涂制硅胶、氧化铝或其他吸附剂薄层、样品的分离、检测就在此薄层色谱板上进行。 一般选用适当规格的表面光滑平整的玻璃板。常用的薄层板规格有:10cm×20cm、5cm×20cm、20cm×20cm等。称取适量硅胶,加进0.2%~0.5%羧甲基纤维素钠溶液(CMC-Na),充分搅拌均匀,进行制板。一般来说10cm×20cm的玻璃板,3~5g硅胶/块;硅胶与羧甲基纤维素钠的比例一般为1:2~1:4。制好的玻璃板放于水平台上,留意防尘。在空气中自然干燥后,置1l0℃烘箱中烘0.5~lh,取出,放凉,并将其放于紫外光灯(254nm)下检视,薄层板应无花斑、水印,方可备用。 ⑵点样 用微量进样器进行点样。点样前,先用铅笔在层析上距末端lcm 处轻轻画一横线,然后用毛细管吸取样液在横线上轻轻点样,假如要重新点样,一定要等前一次点样残余的溶剂挥发后再点样,以免点样斑点过大。一般斑点直径大于2mm,不宜超过5mm.底线距基线1~2.5cm,点间间隔为lcm左右,样点与玻璃边沿间隔至少lcm,为防止边沿效应,可将薄层板两边刮往1~2cm,再进行点样。 ⑶展开 将点了样的薄层板放在盛在有展开剂的展开槽中,由于毛细管作用,展开溶剂在薄层板上缓慢前进,前进至一定间隔后,取出薄层板,样品组分固移动速度不同而彼此分离。 ①展开室应预饱和。为达到饱和效果,可在室中加进足够量的展开剂;或者在壁上贴两条与室一样高、 宽的滤纸条,一端浸进展开剂中,密封室顶的盖。 ②展开剂一般为两种以上互溶的有机溶剂,并且临用时新配为宜。 ③薄层板点样后,应待溶剂挥发完,再放人展开室中展开。 ④展开应密闭,展距一般为8~15cm。薄层板放进展开室时,展开剂不能没过样点。一般情况下,展开剂浸进薄层下真个高度不宜超过0.5cm。 ⑤展开剂每次展开后,都需要更换,不能重复使用。 ⑥展开后的薄层板用适当的方法,使溶剂挥发完全,然后进行检视。 ⑦Rf值一般控制在0.3~0.8,当Rf值很大或很小时,应适当改变活动相的比例。 ⑷斑点的检出 展开后的薄层板经过干燥后,常用紫外光灯照射或用显色剂显色检出斑点。对于无色组分,在用显色剂时,显色剂喷洒要均匀,量要适度。紫外光灯的功率越大,暗室越暗,检出效果就越好。 展开分离后,化合物在薄层板上的位置用比移值(Rf值)来表示。化合物斑点中心至原点的间隔与溶剂前沿至原点的间隔的比值就是该化合物的Rf值。 ;.

【免费下载】生物化学实验示范报告 蔗糖酶的提取与纯化正确

生物化学实验示范报告: 实验名称:蔗糖酶的分离提取与纯化 实验目的: 1.掌握蔗糖酶分离提纯的原理与实验操作方法; 2.掌握有机溶剂分级纯化蔗糖酶的原理和操作方法,了解蔗糖酶的离子交换层析法纯化原理; 3.掌握酶活、酶比活等基本概念及测定原理、计算和操作方法; 4.巩固并熟练掌握Folin法测定牛血清蛋白和3、5 -二硝基水杨酸法测定葡萄糖标准曲线制作方法,并能通过回归方程测定还原糖及蛋白质的含量。 实验原理: 蔗糖酶分离提纯原理:酵母中的蔗糖酶含量很丰富,实验以安琪酵母粉为原料,首先采用自溶法破碎细胞壁、再用乙醇分级和DEAE—纤维素柱层析两步分离提纯,制备纯度较高的蔗糖酶制剂。酶分离 提纯的原理与蛋白质的相同。但酶是有催化活性的蛋白质,在分离提纯过程中必须注意:防止酶变性失活;随时测定酶的比活力,并跟踪酶的去向、衡量酶提纯的程度及得率。 有机溶剂分级纯化蔗糖酶原理:利用不同蛋白质在不同浓度的有机溶剂—乙醇中溶解度的差异将蔗糖酶蛋白与其它蛋白质杂质进行有机溶剂分级沉淀,而使提取的蔗糖酶得以纯化(32%的乙醇饱和度沉 淀分离杂蛋白,47.5%的乙醇饱和度沉淀分离酶蛋白)。操作必须在低温下进行且避免有机溶剂局部过浓;分离后应立刻除去有机溶剂并用水或缓冲溶液溶解沉淀的酶蛋白(复溶),确保酶的活性;pH多选在酶 蛋白的等电点附近;有机溶剂在中性盐存在时能增加蛋白质的溶解度减少变性,提高分离效果。 蔗糖酶的离子交换层析法纯化原理:本实验采用DEAE-纤维素(DEAE-C11)微粒状的、弱碱性的阴离子纤维素为柱料,进行蔗糖酶的进一步纯化。它具有分辨率高、化学性质稳定、有开放性的长链结构、有较大的表面积、对蛋白质的吸附容量大等优点;纤维素上离子基团的数量不多,排列疏散,对蛋白质 的吸附不是太牢固,用缓和的洗脱条件即可达到分离的目的,不致引起蛋白质的变性。 蔗糖酶活力与比活的测定:在蔗糖酶的纯化过程中,通过3、5-二硝基水杨酸法测定蔗糖酶催化蔗糖生成还原糖的量,测定酶活力大小,跟踪酶的活力。在本实验条件下,每3min释放lmg还原糖所需的酶量定义为一个活力单位;通过Folin法测定酶蛋白的含量,计算蔗糖酶的比活。单位质量的酶蛋白中所含酶的活力称为酶的比活。 主要实验器材: 1. 试管、血糖管; 2. 秒表; 3. 冰盐浴; 4. 恒温水浴; 5.离心机; 6. 721- 型分光光度计; 7. 柱层析装置; 8. 梯度洗脱装置; 9. 部分收集器;10. 电磁搅拌器;11. 冰箱;12. DEAE—纤维素。

壳寡糖的酶法制备和分离技术可行性研究报告

壳寡糖的酶法制备和分离技术可行性 研究报告 1

2

新苗人才计划项目 3

项目名称:壳寡糖的酶法制备和分离技术的研究 一、立项背景及意义 壳寡糖(Chitooligosaccharide),又名甲壳低聚糖,是由氨基葡萄 4

糖经过β-1,4-糖苷键连接而成的聚合度约为2-20的低聚糖,其分子量低于5000,具有稳定的三维结构。壳寡糖可运用壳聚糖经过生物酶技术降解制得。 壳聚糖广泛存在于自然界的虾壳、蟹壳和真菌中,虽然有特殊的生物活性,但由于其分子量大、水溶性差,在人体内不易被吸收而使其应用受到限制。作为一种生物技术产品,壳寡糖几乎包括了所有壳聚糖的所有优点,它具有良好的生物相容性和生物降解性、亲水性、吸附性、生物学活性等多种理化特征以及天然、高效、毒副作用少、抗药性不显著、性能多样等特点。科学研究表明,壳寡糖的功能作用和生物活性比起壳聚糖将提高数十倍、应用领域更加广泛、人体吸收率近100%(壳聚糖吸收率6.48%),而且增加了促进钙吸收的新的功能作用,具有较高的科技含量和附加值,发达国家称其为”软黄金”。 壳寡糖具有三调(免疫调节、调节pH值、调节荷尔蒙)、三降(降血脂、降血糖、降血压)、三排(排胆固醇、排重金属离子、排毒素)、三抑(抑制癌细胞、抑制癌细胞转移、抑制癌毒素)等功能,同时,还具有抗自由基、防辐射、抗炎、止血以及促进伤口愈合等功能。壳寡糖及其衍生产品可广泛应用于医药、保健、食品、日化、农业等领域。在医药保健领域具有提高免疫、活化细胞、调节血糖血脂血压胆固醇、预防治疗癌症、强化肝功、促进钙吸收、增殖肠道有益菌等功能;在食品饮料领域是一种良好的健康食 5

实验十一 色素的分离(层析法)

实验十一色素的分离(层析法) 一、目的要求 1.进一步了解绿叶中色素的组成及各色素的颜色和性质。 2.学会用层析法分离色素的操作技术,了解层析分析的有关知识。 二、实验原理 层析分离技术是一种物理分离方法,按分离原理的不同,层析法可分为吸附层析、分配层析、离子交换层析、亲和层析等数种方法。按操作方式的不同,又可分为柱型、薄层和纸型。在本实验中采用柱吸附层析法分离叶色素,由于叶色素中各色素被吸附剂吸附的程度不同以及它们被溶剂溶解的能力不同,所以在层析柱中向下移动的距离不同而得以分离。 用适当的溶剂如石油醚、甲醇、丙酮、苯等,可将绿叶中的色素(叶绿素a、叶绿素b、胡萝卜素、叶黄素)提取出来,提取液通过吸附柱将其中的各种色素分开,吸附柱常用蔗糖、碳酸钙、氧化铝等吸附剂制成。 三、实验器材 抽滤瓶、研钵、带托玻璃棒、层析柱(20㎝×1㎝)、分液漏斗、烧杯,具塞试管。 40 ℃烘干的菠菜叶、脱脂棉 四、实验试剂 1.石油醚 2.甲醇 3.苯 4.无水硫酸钠 5.细粉状蔗糖 6.无水碳酸钙 7.氧化铝 8.海砂 五、操作步骤 1.取烘干的菠菜叶1 g置于研钵中,加少许海砂研碎。浸入含有22.5 mL 的石油醚、2.5 mL苯和7.5 mL甲醇的混合溶剂中,放置约1 h。 2.将上述溶液置于分液漏斗中,加5 mL水轻轻上下颠倒数次,静置后弃去水层(其中溶有甲醇),应避免剧烈振荡,否则发生乳化现象。将剩余的液体通过装有无水硫酸钠(5 g)的漏斗过滤除去水分,即得到色素提取液(必要时可在通风橱中小心浓缩)。提取液于干燥的试管中保存,并用塞子将试管塞紧。 3.取层析柱1支(也可用25 mL酸式滴定管代替),在下端塞上一块脱脂棉,将约2 g细粉状氧化铝装入柱中,每装少许就用带托的玻璃棒压紧,尤其四周要与柱壁紧密相接,不得留有空隙。装到3 cm高为止。用同样的方法装入约2.5 g 细粉状碳酸钙,高度为5 cm,然后再用同样的方法将约3.5 g的细蔗糖粉末装入柱内,高度为7 cm。最后在蔗糖上面再放一块脱脂棉,将准备好的吸附柱装在抽滤瓶上(见图实-3)。

薄层色谱的展开剂和显色剂

薄层色谱展开剂与显色剂 展开剂的选择: 一般常用溶剂按照极性从小到大的顺序排列大概为:石油迷<己烷<苯<乙醚<乙酸乙酯<丙酮<乙醇<甲醇使用单一溶剂,往往不能达到很好的分离效果,往往使用混合溶剂通常使用一个高极性和低级性溶剂组成的混合溶剂,高极性的溶剂还有增加区分度的作用,常用的溶剂组合有:< p> Petroleumether/Ethylacetate,petroleumether/Acetone,Petroleumether/Eth er, Petroleumether/CH2Cl2, ethylacetate/MeOH,CHCl3/ethylacetate 展开剂的比例要靠尝试.一般根据文献中报道的该类化合物用什么样的展开剂,就首先尝试使用该类展开剂,然后不断尝试比例,直到找到一个分离效果好的展开剂。展开剂的选择条件:①对的所需成分有良好的溶解性;②可使成分间分开;③待测组分的Rf在0.2~0.8之间,定量测定在0.3~0.5之间;④不与待测组分或吸附剂发生化学反应;⑤沸点适中,黏度较小;⑥展开后组分斑点圆且集中;⑦混合溶剂最好用新鲜配制。 一般来说,弱极性溶剂体系的基本两相由正己烷和水组成,再根据需要加入甲醇、乙醇,乙酸乙酯来调节溶剂系统的极性,以达到好的分离效果,适合于生物碱、黄酮、萜类等的分离;中等极性的溶剂体系由氯仿和水基本两相组成,由甲醇、乙醇,乙酸乙酯等来调节,适合于蒽醌、香豆素,以及一些极性较大的木脂素和萜类的分离;强极性溶剂,由正丁醇和水组成,也靠甲醇、乙醇,乙酸乙酯等来调节,适合于极性很大的生物碱类化合物的分离。很多时候,展开剂的选择要靠自己不断变换展开剂的组成来达到最佳效果。

酵母蔗糖酶提取方法的研究

酵母蔗糖酶提取方法的研究 生命科学学院 10级生物科学类李倩 10197022 指导老师:陶芳 摘要:采用自溶法从酵母中提取蔗糖酶,通过抽提、30﹪乙醇分级、50﹪乙醇分级和透析,同时测定各步的蛋白质浓度和酶活,并据此计算比活、回收率和纯化倍数。 关键词:蔗糖酶提取自溶法 Research on the Extraction Method of Yeast Sucrose School of Life Sciences,Biological Sciences of grade 2, li Qian, 10197022 Abstract:The autolysis extract from yeast invertase,through extraction,30 ethanol fractionation and dialysis,simultaneous determination of each step of concertration of protein and enzyme avtivity,and then calculate the radio of live,recovery and purification. Key words:yeast;extraction;autolysis method 前言:蔗糖酶(Sucrase,EC 3.2.1.26)又称转化酶(Invertase),1928年Dumas等首先指出酵母菌发酵蔗糖时必须有这种酶的存在,蔗糖在蔗糖酶的作用下,水解为葡萄糖和果糖,还原力增加,又由于生成果糖,甜度增加。 按水解蔗糖的方式,蔗糖酶可分为从果糖末端切开蔗糖的β-D-呋喃果糖苷酶(β-D-frutofuranosidases,EC 3.2.1.26)和从葡萄糖末端切开蔗糖的α-D-葡萄糖苷酶(α-D-glucosidases,EC 3.2.1.20)。前者存在于酵母中,后者存在于霉菌中。工业上多从酵

薄层层析常用显色剂配制及显色方法

碘: 适用于不饱和或者芳香族化合物 配制方法:在100ml广口瓶中,放入一张滤纸,少许碘粒。或者在瓶中,加入10g碘粒,30g硅胶 高锰酸钾 适用于含还原性基团化合物,比如羟基,氨基,醛 配制方法:1.5g KMnO4 + 10g K2CO3 + 1.25mL 10% NaOH + 200mL 水. 使用期3个月 磷钼酸(PMA) 广谱 配制方法:10 g of 磷钼酸+100 mL 乙醇 紫外灯 适用于含共轭基团的化合物,芳香化合物 硫酸铈 生物碱 配制方法:10%硫酸铈(IV)+15%硫酸的水溶液 氯化铁 苯酚类化合物 配制方法:1% FeCl3 + 50% 乙醇水溶液. 桑色素(羟基黄酮) 广谱, 有荧光活性 配制方法:0.1% 桑色素+甲醇 茚三酮 适用于氨基酸

配制方法:1.5g 茚三酮+ 100mL of 正丁醇+ 3.0mL 醋酸 二硝基苯肼(DNP) 适用于醛和酮 配制方法:12g二硝基苯肼+ 60mL 浓硫酸+ 80mL 水+ 200mL 乙醇 香草醛(香兰素) 广谱 配制方法:15g 香草醛+ 250mL 乙醇+2.5mL 浓硫酸 溴甲酚绿 适用于羧酸,pKa<=5.0 配制方法:在100ml乙醇中,加入0.04g溴甲酚绿,缓慢滴加0.1M的NaOH水溶液,刚好出现蓝色即至。 钼酸铈 广谱 配制方法:235 mL 水+ 12 g 钼酸氨+ 0.5 g 钼酸铈氨+ 15 mL 浓硫酸 茴香醛(对甲氧基苯甲醛)1 广谱 配制方法:135 乙醇+ 5 mL 浓硫酸+ 1.5 mL of 冰醋酸+ 3.7 mL 茴香醛,剧烈搅拌,使混合均匀. 茴香醛(对甲氧基苯甲醛)2 适用于萜烯,桉树脑(cineoles), withanolides, 出油柑碱(acronycine) 配制方法:茴香醛:HClO4:丙酮:水(1:10:20:80)

蔗糖酶的提取分离

蔗糖酶的发酵生产及酶学性质研究 摘要:本实验酵母中蔗糖酶进行分离纯化并对酶学性质进行了初步的研究。结果表明:酵母蔗糖酶的最适pH为5.0, 最适温度为45℃。 关键词:蔗糖酶、酶学性质 1前言 蔗糖酶(Sucrase, EC3.2.1.26) 又称转化酶(Invertase)。可作用于β-1,2糖苷键,将蔗糖水解为D-葡萄糖和D-果糖。由于果糖甜度高,可用以转化蔗糖,增加甜味,制造人造蜂蜜,防止高浓度糖浆中的蔗糖析出,制造含果糖和巧克力的软心糖,还可为果葡糖浆的工业化生产提供新的方法。 本实验对酶的动力学性质分析, 是酶学研究的重要方面。本研究通过一系列实验对酵母蔗糖酶的动力学性质如最适温度、最适pH、酶的固定化等进行了初步研究,更好的了解了没得性质。 2材料与方法 2.1 材料与设备 2.1.1 实验材料 酵母、活性干酵母、壳聚糖 2.1.2 试剂及配制方法 葡萄糖、蔗糖、豆芽汁浸汁、Na 2HPO 4 、KH 2 PO 4 、MgSO 4 、NaCl、NaOH、Na 2 CO 3 、盐 酸、氨水、琼脂、酒精均为国产分析纯。 95%乙醇溶液、DEAE-Sepharose Fast Flow、1 mol/L醋酸溶液、0.05 mol/L Tris-HCl缓冲液(pH值7.3)0.05 mol/L Tris-HCl缓冲液(内含0.5 mol/L NaCl溶液,pH值7.3) 葡萄糖标准液配制(1mg/ml):预先将分析纯葡萄糖置80℃烘箱内约12小时。准确称取500mg葡萄糖于烧杯中,用蒸馏水溶解后,移至500ml容量瓶中,定容,摇匀(冰箱中4℃保存期约一星期)。 1% 3,5-二硝基水杨酸(DNS)试剂:酒石酸钾钠100 g溶于400 mL蒸馏水,加热中依次加入NaOH 5 g,3,5-二硝基水杨酸5 g,苯酚1 g,亚硫酸钠0.25 g,搅拌至溶。冷却后定容至500 mL,储于棕色瓶室温保存。 10%蔗糖溶液:10g蔗糖溶解于蒸馏水中,定容至100ml 0.1 mol/L pH 7.8 Tris-HCl缓冲液

柱层析分离的实验方法和技巧

柱层析分离的实验方法和技巧 常说的过柱子应该叫柱层析分离,也叫柱色谱。我们常用的是以硅胶或氧化铝作固定相的吸附柱。由于柱分的经验成分太多,所以下面我就几年来过柱的体会写些心得,希望能有所帮助。 一:柱子可以分为:加压,常压,减压 压力可以增加淋洗剂的流动速度,减少产品收集的时间,但是会减低柱子的塔板数。所以其他条件相同的时候,常压柱是效率最高的,但是时间也最长,比如天然化合物的分离,一个柱子几个月也是有的。 减压柱能够减少硅胶的使用量,感觉能够节省一半甚至更多,但是由于大量的空气通过硅胶会使溶剂挥发(有时在柱子外面有水汽凝结),以及有些比较易分解的东西可能得不到,而且还必须同时使用水泵抽气(很大的噪音,而且时间长)。以前曾经大量的过减压柱,对它有比较深厚的感情,但是自从尝试了加压后,就几乎再也没动过减压的念头了。 加压柱是一种比较好的方法,与常压柱类似,只不过外加压力使淋洗剂走的快些。压力的提供可以是压缩空气,双连球或者小气泵(给鱼缸供气的就行)。特别是在容易分解的样品的分离中适用。压力不可过大,不然溶剂走的太快就会减低分离效果。个人觉得加压柱在普通的有机化合物的分离中是比较适用的。 二:关于柱子的尺寸 应该是粗长的最好。柱子长了,相应的塔板数就高。柱子粗了,上样后样品的原点就小(反映在柱子上就是样品层比较薄),这样相对的减小了分离的难度。试想如果柱子十厘米,而样品就有二厘米,那么分离的难度可想而知,恐怕要用很低极性的溶剂慢慢冲了。而如果样品层只有0.5厘米,那么各组分就比较容易得到完全分离了。当然采用粗大的柱子要牺牲比较多的硅胶和溶剂了,不过这些成本相对于产品来说也许就不算什么了(有些不环保的说,不过溶剂回收重蒸后也就减小了部分浪费)。 现在见到的柱子径高比一般在1:5~10,书中写硅胶量是样品量的30~40倍,具体的选择要具体分析。如果所需组分和杂质分的比较开(是指在所需组分rf在0.2~0.4,杂质相差0.1以上),就可以少用硅胶,用小柱子(例如200毫克的样品,用2cm ×20cm的柱子);如果相差不到0.1,就要加大柱子,我觉得可以增加柱子的直径,比如用3cm的,也可以减小淋洗剂的极性等等。

最全的TLC经验薄层层析显色剂

最全的TLC 经验 薄层色谱(TLC )是一种非常有用的跟踪反应的手段,还可以用于柱色谱分离中合适溶剂的选择。薄层色谱常用的固定相有氧化铝或硅胶,它们是极性很大(标准)或者是非极性的(反相)。流动相则是一种极性待选的溶剂。在5.301 中以及大多数实验室实验中,都将使用标准硅胶板。将溶液中的反应混合物点在薄板上,然后利用毛细作用使溶剂(或混合溶剂)沿板向上移动进行展开。 根据混合物中组分的极性,不同化合物将会在薄板上移动不同的距离。极性强的化合物会“粘” 在极性的硅胶上,在薄板上移动的距离比较短。而非极性的物质将会在流动的溶剂相中保留较长的时间从而在板上移动较大的距离。化合物移动的距离大小用Rf值来表达。这是一个位于0?1之间的数值,它的定义为:化合物距离基线(最先点样时已经确定)的距离除以溶剂的前锋距离基线的距离。薄层色谱(TLC )实验步骤: 1)切割薄板。通常,买来的硅胶板都是方形的玻璃板,必需用钻石头玻璃刀按照模板的形 状进行切割。在切割玻璃之前,用尺子和铅笔在薄板的硅胶面上轻轻地标出基线的位置(注意不 要损坏硅胶面)。借助锋利的玻璃切割刀和一把引导尺,你便可方便地进行玻璃切割。当整块玻璃 被切割后,你就可以进一步将其分成若干独立的小块了。(开始的时候,也许你 会感到有一些难度,但经过一些训练以后,你便会熟练地掌握该项技术。) 2)选取合适的溶剂体系。化合物在薄板上移动距离的多少取决于所选取的溶剂不同。在戊 烷和己烷等非极性溶剂中,大多数极性物质不会移动,但是非极性化合物会在薄板上移动一定距离。相反,极性溶剂通常会将非极性的化合物推到溶剂的前段而将极性化合物推离基线。一个好的溶剂体系应该使混合物中所有的化合物都离开基线,但并不使所有化合物都到达溶 剂前端,Rf 值最好在0.15~0.85 之间。虽然这个条件不一定都能满足,但这应该作为薄层 色谱分析的目标(在柱色谱中,合适的溶剂应该满足Rf在0.2~0.3之间)。那么,应该选取 哪些溶剂呢?一些标准溶剂和他们的相对极性(从LLP 中摘录)列于如下:强极性溶剂:甲醇〉乙醇〉异丙醇 中等极性溶剂:乙氰〉乙酸乙酯〉氯仿〉二氯甲烷〉乙醚〉甲苯 非极性溶剂:环己烷,石油醚,己烷,戊烷 常用混合溶剂: 乙酸乙酯/己烷:常用浓度0~30% 。但有时较难在旋转蒸发仪上完全除去溶剂。乙醚/戊烷体系:浓度为0~40%的比较常用。在旋转蒸发器上非常容易除去。乙醇/己烷或戊烷:对强极性化合物 5~30% 比较合适。 二氯甲烷/己烷或戊烷:5~30%,当其他混合溶剂失败时可以考虑使用。 3)将1~2mL 选定的溶剂体系倒入展开池中,在展开池中放置一大块滤纸。 4)将化合物在标记过的基线处进行点样。我们用的点样器是买来的,此外,点样器也可从加热过的Pasteur吸管上拔下(你可以参照UROP )。在跟踪反应进行时,一定要点上起始反应物、反应混合物以及两者的混合物。 5)展开:让溶剂向上展开约90%的薄板长度。 6)从展开池中取出薄板并且马上用铅笔标注出溶剂到达的前沿位置。根据这个算Rf数值。7)让薄板上的溶剂挥发掉。 8)用非破坏性技术观察薄板。最好的非破坏性方法就是用紫外灯进行观察。将薄板放在紫外灯下,用铅笔标出所有有紫外活性的点。尽管在5.301 中不用这种方法,但我们将采用另一常用的无损方法--用碘染色法。(你可以参看UROP)。 9)用破坏性方式观测薄板。当化合物没有紫外活性的时候,只能采用这种方法。在 5.301 中,提供了很多非常有用的染色剂。使用染色剂时,将干燥的薄板用镊子夹起并放入染色剂中,确

薄层层析的原理与操作

薄层层析的原理与操作 薄层色谱,或称薄层层析(thin-layer chromatography),是以涂布于支持板上的支持物作为固定相,以合适的溶剂为流动相,对混合样品进行分离、鉴定和定量的一种层析分离技术。这是一种快速分离诸如脂肪酸、类固醇、氨基酸、核苷酸、生物碱及其他多种物质的特别有效的层析方法,从50年代发展起来至今,仍被广泛采用。 一、基本原理 薄层层析是把支持物均匀涂布于支持板(常用玻璃板,也可用涤纶布等)上形成薄层,然后用相应的溶剂进行展开。薄层层析可根据作为固定相的支持物不同,分为薄层吸附层析(吸附剂)、薄层分配层析(纤维素)、薄层离子交换层析(离子交换剂)、薄层凝胶层析(分子筛凝胶)等。一般实验中应用较多的是以吸附剂为固定相的薄层吸附层析。 吸附是表面的一个重要性质。任何两个相都可以形成表面,吸附就是其中一个相的物质或溶解于其中的溶质在此表面上的密集现象。在固体与气体之间、固体与液体之间、吸附液体与气体之间的表面上,都可能发生吸附现象。 物质分子之所以能在固体表面停留,这是因为固体表面的分子(离子或原子)和固体内部分子所受的吸引力不相等。在固体内部,分子之间相互作用的力是对称的,其力场互相抵消。而处于固体表面的分子所受的力是不对称的,向内的一面受到固体内部分子的作用力大,而表面层所受的作用力小,因而气体或溶质分子在运动中遇到固体表面时受到这种剩余力的影响,就会被吸引而停留下来。吸附过程是可逆的,被吸附物在一定条件下可以解吸出来。在单位时间内被吸附于吸附剂的某一表面积上的分子和同一单位时间内离开此表面的分子之间可以建立动态平衡,称为吸附平衡。吸附层析过程就是不断地产生平衡与不平衡、吸附与解吸的动态平衡过程。 例如用硅胶和氧化铝作支持剂,其主要原理是吸附力与分配系数的不同,使混合物得以分离。当溶剂沿着吸附剂移动时,带着样品中的各组分一起移动,同时发生连续吸附与解吸作用以及反复分配作用。由于各组分在溶剂中的溶解度不同,以及吸附剂对它们的吸附能力的差异,最终将混合物分离成一系列斑点。如作为标准的化合物在层析薄板上一起展开,则可以根据这些已知化合物的Rf值(后面介绍Rf值)对各斑点的组分进行鉴定,同时也可以进一步采用某些方法加以定量。 薄层层析有许多优点:它保持了操作方便、设备简单、显色容易等特点,同时展开速率快,一般仅需15~20分钟;混合物易分离,分辨力一般比以往的纸层析高10~100倍,它既适用于只有0.01μg的样品分离,又能分离大于500mg的样品作制备用,而且还可以使用如浓硫酸、浓盐酸之类的腐蚀性显色剂。薄层层析的缺点是对生物高分子的分离效果不甚理想。 二、固定相支持剂的选择和处理 在薄层层析时,对支持剂的选择主要考虑两方面:一是支持剂的性质与适用范围;二是支持剂的颗粒大小。一般来说,所选吸附剂应具有最大的比表面积和足够的吸附能力,它对欲分离的不同物质应有不同的吸附能力,即有足够的分辨力;所选吸附剂与溶剂及样品组分不会发生化学反应。吸附力的强弱规律可概括如下:吸附力与两相间界面张力的降低成正比,某物质溶液中被吸附的程度与其在溶剂中的溶解度成反比。极性吸附剂易吸附极性物质,非极性吸附剂易吸附非极性物质。同族化合物的吸附程度有一定的变化方向,例如,同系物极性递减,而被非极性表面吸附的能力将递增。

甲壳素脱乙酰酶

甲壳素脱乙酰酶的研究进展 摘要:甲壳素是一种天然含氮多糖类物质,脱乙酰基后生成壳聚糖。由于其资源丰富、结构与性能独特而被广泛应用。目前,壳聚糖的制备大多采用碱法使甲壳素脱乙酰基,由于此法所用碱液浓度高,反应时间长,产品质量不稳定,且对环境造成严重污染。而采用酶法可以有效避免以上问题,且利用甲壳素脱乙酰酶的作用,可制备出具有高脱乙酰度且性能独特的壳聚糖。 关键词:甲壳素;脱乙酰酶;壳聚糖。 Abstract:Chitin is a kind of natural nitrogen polysaccharides material, acetyl off to create chitosan. Because of its rich resources, structure and performance of unique and widely used. At present, the preparation of chitosan is used mostly to take off the acetyl chitin exists, because this method used high concentration of lye, reaction time long, the product quality is not stable, and causing serious pollution to the environment. And the enzymatic can effectively avoid above problem, and the use of chitin deacelation enzyme function, can be prepared by a high deacelation degree and performance of the unique chitosan. Key words: chitin; deacetylase; chitosan. 1. 甲壳素及壳聚糖概述 甲壳素是1811年由法国学者布拉克诺(H. Braconnot)发现的,1823年由欧吉尔(A. Odier)从甲壳动物外壳中提取出来,并命名为chitin,译名为几丁质,又名甲壳质、壳多糖,化学名称为β-(1-4)-2-乙酰氨基-2-脱氧-D-葡萄糖,是N-乙酰-D-葡萄糖胺以β-1,4糖苷键连接起来的直链多聚物[1]。甲壳素是一种天然存在的高分子多糖,广泛存在于甲壳类动物如虾、蟹、昆虫的外壳,真菌和植物的细胞壁中[2]。甲壳素是自然界中存在的仅次于纤维素的第二大类生物材料,被科学界誉为"第六生命要素"、“动物纤维素”。 甲壳素呈晶体状态,几乎不溶于水和一般有机溶剂,这在很大程度上限制了其应用[3]。壳聚糖(Chitosan)是甲壳素的N-脱乙酰基形式,由于壳聚糖分子中有大量的游离氨基,分子带正电荷,化学性质活泼,易于对其进行各种化学修饰,并且可以溶于酸性及中性水溶液中,因而得到了十分广泛的应用。例如用于污水处理,饮用水及饮料的澄清,食品的防腐剂、增稠剂、稳定剂,可降解包装材料,化妆品保湿剂,人造皮肤,手术缝合线,反渗透膜和超滤膜,酶的固定化载体,层析材料,药物缓释剂,赋形剂等。另外,壳聚糖还有许多保健功能,可以作为膳食纤维添加到食品中,还可以降血脂,促进免疫球蛋白的产生,抗肿瘤,促进伤口愈合,促进骨胳生长等等。 2. 甲壳素脱乙酰酶(CDA) 甲壳素脱乙酰酶(chitin deacetylase, E.C.3.5.1.41,以下简称CDA)是一种催化甲壳素中N- 乙酰基- D- 葡糖胺的乙酰胺基水解的酶[4]。可以利用它代替现有的浓碱热解法生产壳聚糖,这不但可以解决目前壳聚糖生产中的环境污染问题,而且可以生产出某些用化学法不能

相关文档
最新文档