汽轮机阀门流量特性对电力系统的影响及其控制分析

汽轮机阀门流量特性对电力系统的影响及其控制分析
汽轮机阀门流量特性对电力系统的影响及其控制分析

汽轮机阀门流量特性对电力系统的影响及其控制分析

作者:焦敬东

来源:《科技创新导报》2012年第27期

摘要:对于整个电力系统产生稳定性因素的就是汽轮机阀门流量的特性,通过电网的建立以及相关的机械设备系统的模型,可以了解和研究关于汽轮机阀门流量特性对电力系统的影响。通过详细的数学分析和研究发现,汽轮机阀门流量特性不稳定的时候,将会导致原动机周期的波动。对于这种情况,要及时的调整并制定出新的汽轮机系统控制策略,新指定的策略必须要对于微分的控制器的进行合理的调节,这样对于系统的阻力有大幅度的增加。

关键词:汽轮机阀门流量特性调速系统控制策略

中图分类号:TK26 文献标识码:A 文章编号:1674-098X(2012)09(c)-0076-01

在当今发电厂里大多采用DEH系统对汽轮机进行控制,擅长管理和控制各种汽阀门是DEH系统中最优质的用途,在DEH系统中必须将指令由流量转化为阀门的开度,所以流量和阀门的开度有着相当密切的关系,也就是阀门流量的特性曲线。若汽轮机阀门实际流量和原来流量特性曲线并没达到一致时,就会出现大的控制偏差。将会对整个机组的安全及变负荷的能力产生一定的影响,最为严重的是使系统发生强烈的振荡,发生这样的现象对于正在高速运转的汽轮机来说是很不安全的。而事实上,因为制作安装的工艺都不一致、阀门长期的磨损,甚至是阀门设计行程和实际行程不一样,这些原因都可以使阀门流量和原来流量的特性曲线不一样,这就要去对阀门流量的特性曲线进行调整,使得汽轮机运行自身的稳定性和经济性有一定的提高和发展。

1汽轮机阀门流量特性的分析

汽轮机流通部分根据经济功率而设计的,机组用喷嘴配汽的方式进行顺阀的运行,汽轮机第一级为调节级,调节级为喷嘴组,当蒸汽经过主汽门以后才可以开启汽门慢慢的通向调节级。所以说,嘴配汽的特点就是部分负荷的时候自身的经济性能比较好较好。因为各个喷嘴之间都会存在一定的间壁,各个调节的汽门已开还是会有一部分进汽,即使在最大的功率下进行调节级还是会损失。假设调节级为四个喷嘴组,将一、二调节汽门打开。

当P0新的蒸汽经过主汽门以及全开门以后,压力就会由降为P0压力变为P2。当第Ⅰ、Ⅱ两组喷嘴与理比焓降相一致的时也就是ΔhtⅠ=ΔhtⅡ时,动叶比焓ht经过的部分是第Ⅲ调节的汽门它的蒸汽流相对比较大,当第Ⅲ喷嘴组的压力为P0时焓降变为ΔhtⅡ。因为调节级后的空间为通的,级后的压力P2一致,所以两股不同的汽流同样膨胀为P2,经过调节级的汽室中经过混合进入第一压力级。当两股气流混合后产生的比焓。

2阀门流量特性存在小偏差对电力的影响及计算

调频试验属于人为的模拟汽轮机转速的变化,可迅速使汽轮机出力发生改变,从而对机组频率特性进行考虑。由此可看出转速阶跃有变化后,流量指令就会大幅度增大。到40S机组变化开始进入稳定状态,和之前的转速阶跃的流量指令相比较,稳定状态的流量指令比较小。而机组回馈增益的指数是1,也就是机组阀门的流量可以反映出实际的阀门流量特性时候,初始的流量指令便等于稳定状态的流量指令。所以说,这个时候的阀门流量和阀门流量的特性之间有一定的偏差,若是对试验过程里的主蒸汽压力的下降进行考虑的话偏就会变得更大。

由于主蒸汽压力变化很小,属于可以完全不用去考虑的压力变化。利用汽轮机模型对机组实际特性进行模拟,模型中可反映出汽轮机局部阀门流量的特性。因为这个机组的负荷控制回馈增益指数为1,所以不可以因为开始的流量指令变成平稳状态的流量指令。

3汽轮机阀门流量特性对电力系统的应用研究

在一个300MW的机组里提出进行阀门的流量特性策略的实验研究,根据所收集到相关的具有阀门特性的数据,并制定出顺序阀的方式。DEH流量需求的指令和实际的等效流量间,其中的横坐标是DEH的指令,纵坐标是DEH的阀门流量。直线是负荷指令的理想阀门流量,曲线是实际DEH负荷指令的阀门流量。DEH阀门的流量特性两段都有显著的偏离,在负荷指令74.89%~87.58%这一区间内段,实际的流量完全小于负荷的指令,最大的偏离是负荷指令83.11%实际流量76.17%时。当实际的流量完全大于负荷指令时,最大的偏离则是负荷指令97.2%实际流量94.2%的时候。

阀门特性拐点存在主要原因是顺序阀中流量函数进行流量的分配,在阀门的预启段流量的计算和阀门的设置没有正确而导致的,所有对流量的曲线必须要进一步的进行调整以及优化。

有关原顺序阀的方式,及依据实际数据计算得出阀门特性曲线的对比。从左往右的顺序,曲线则分三组,依次是CV1、CV2流量的特性曲线,CV4流量的特性曲线以及CV3流量的特性曲线经过计算得到的阀门流量特性结果。从曲线上很明显的可以看出,修改前和修改后曲线差异很大。

当流量指令达到一致时,经过修改CV1、CV2自身的开度比以前扩大了0%~6%,而控制范围也有了一定的缩短,拐点前后的特性明显比原来光滑。在修改之前CV4的预启阶段需流量的指令由原来的62.0%变为78.5%,导致指令调节的死区时间过长,修改之后流量的指令由原来的72.99%变为74.7%,就可以将预启段打开,对于阀门死区的调节很有效果。修改之前CV4的预启段需流量指令由80%变为93.69%,指令调节的时间过长,修改以后流量指令由88.76%变为90.16%就可以将预启段打开,阀门的死区得到了有效的调节。

4结语

汽轮机阀门流量特性对电力系统的影响及其控制分析

汽轮机阀门流量特性对电力系统的影响及其控制分析 发表时间:2019-09-20T15:54:04.687Z 来源:《中国电业》2019年第9期作者:黄伟博 [导读] 众所周知,电力系统的稳定性在很大程度上是取决于汽轮机阀门流量特性的,通过对相关资料的调查,在本篇文章中主要描述了关于汽轮机阀门流量特征是如何影响电力系统的,以及具体的控制策略。 西北电力建设工程监理有限责任公司,陕西西安 71000 摘要:众所周知,电力系统的稳定性在很大程度上是取决于汽轮机阀门流量特性的,通过对相关资料的调查,在本篇文章中主要描述了关于汽轮机阀门流量特征是如何影响电力系统的,以及具体的控制策略。研究过程中,通过建立了一系列的汽轮机及其调速系统、发电机、励磁系统的数学模型,分析得出能够影响电力系统稳定性的主要是由于汽轮机调节阀门流量特性。除此之外,通过对数学模型的分析以及其仿真的结果显示表明,引起电力系统原动机有功功率周期波动的原因是由于汽轮机的阀门流量特征不适宜。通过上述研究,相关专家提出了汽轮机调速系统控制是产生功率波动的主要原因 关键词:汽轮机;阀门流量;电力系统;影响;控制策略 中国电力系统在近年来由于低频振荡多次引发了电网事故。电网以及并网机组的安全稳定性会受到电力系统的低频振荡的严重影响。当电网的稳定性遭到一定程度的破坏时,人民生活水平以及国民经济都会受到严重损失。目前,还不能明确电力系统低频振荡的机理和起因。从电力系统强迫振荡理论来看,当系统持续的周期性功率扰动频率接近于系统功率振荡固有频率时,会产生大幅度的功率振荡,扰动引起的响应在与扰动变化规律相关的同时,还与电力系统本身的特性相关。因此,对汽轮机阀门流量的特性进行相应的分析相当关键。 1、汽轮机调速系统模型的构建 1.1、系统体系的构建 在进行整体的体系构建中,需要对汽轮机的参数值变化进行电力系统的仿真计算。一般情况下,在不同的仿真节点会出现不同的仿真体系控制。因此,可以根据整体的流量参数变化对电力维护系统进行流量特征的变化研究。同时,还要构建相应的流量仿真模型。并确定蒸汽流量的仿真关系。在汽轮机的流量特性曲线上,需要利用现代函数的变化进行等效阀位的控制。这样,在检修、组装及实际应用的过程中会考虑到多层面函数的变化情况,然后对分段性函数的变化数值进行组量的全面性的控制。汽轮机在进行基础性的调速以后,其发电机会出现发电的情况。然后在有功功率的补偿情况下,其无功补偿的效率也会逐步的增加。从而使得电网的整体运行效率增强。 1.2、阀门流量的参数确定 计及阀门流量特性的汽轮机及其调速系统模型是汽轮机体系的基础构建,在不考虑主蒸汽压力变化时,需要对整体的系统进行相应的调控。通常,调节系统前馈作用的结果大部分情况下为汽轮机功率设定值与一次调频功率调整值之和;其计算公式如下所示: T为执行机构的时间常数;K为前馈作用的增益系数。我们可以根据公式对其流量进行较为精准的计算。 2、阀门流量特性优化方法 不难看出,阀门是具备其本身的流量特征的,这是一个客观存在的事实,不可能轻易发生改变。想要优化阀门的流量特征曲线最直接的办法就是优化它们的实际流量特征曲线,优化办法是不相同的。因此,这种优化在一定程度上存在复杂性及难操作性。综上,我们只能根据实际的阀门流量曲线来判断和识别,管理流量曲线从而优化阀门流量,稳定电力系统。具体的操作思路是:在优化流量曲线之前,根据前人总结和测试的各个电力系统的不同阀门运行时的实际流量特征所绘制的流量特征曲线来作为优化阀门管理曲线,然后通过下达指令来实现。这里所说的指令不是普通意义上的指令,而是专业的流量指令一阀门开度指令。在这种思路操作之下,我们便能够实现对阀门管理曲线的优化,从而控制汽轮机蒸汽流量,控制电力系统稳定发展。除此之外,汽轮机阀门流量曲线也需要根据不同的阀门曲线比如单、顺阀的关系来优化进行。到目前为止,主要存在单、顺阀按一定比例设置,在已经研究出的理论中,管理曲线有两种形式,一种是单、顺阀之间采用比例、偏置修正模式;还有一种就是单、顺阀不同的阀门之间采用不同的管理曲线。 事实上,我们根据这些测试得出的关系曲线可以看出,汽轮机阀门开度与进人汽轮机的蒸汽流量是呈现非线性关系的。调节阀门的流量特征曲线是调节汽轮机的实际调节系统的重要方法,根据这种调节,将流量指令改变,从而成为了与之相对应的阀位指令。在现实的生活生产操作中,应用汽轮机调速模型是必不可免的,在这种情况下,通常不区分流量指令和阀位指令。因此,在汽轮机模型当中的阀门流量特性实际上是与等效阀位与蒸汽流量间的关系相互对应的。通常,人们是通过汽轮机生产厂家所提供的汽轮机技术参数来确定汽轮机阀门流量特性曲线的。汽轮机阀门流量特征曲线在理论上是能够与阀门实际特性相对应得,因此在这种情况之下,通常忽略系统所受的流阀流量特征的影响。在这种情况下要给汽轮机和它的调速系统建造模型就必须要考虑汽轮机调节阀门流量特性对它的的影响。 3、汽轮机阀门流量特性对电力系统的控制策略 要改进汽轮机存在的问题需要大量的事实依据。因此经过多次的仿真实验和实际试验得出如下结论:当机组功率发生持续波动时,为了快速的平息这种持续波动,那么汽轮机会将负荷机动控制自动切换为手动控制。但是由于切换控制模式时需要使用运行人员进行人工切换,因此在一定程度上增加了一些不确定性的主观因素。2008年南方电网曾经发生过一起事故,事故的原因就是由于低频振荡引起的。在南方电网发生事故的红河电厂中,其2号机组的功率持续波动时间已经超过了六分钟,而在这六分钟期间,运行人员并未发现也没有采取干预措施,因此才发生了不可挽回的事故。 由此可见,在改进汽轮机控制策略的同时,也要排除人为的主观因素对控制策略的影响。如果从控制策略的角度出发,我们可以认为由于控制器过度调节所以引起功率的波动。所以,在汽轮机所配备的控制系统在进行比例一积分一微分控制环节后应该增加对其限制速率的环节,通过限制速度的方法来抑制通过度调节的行为。在这种改进过后,能够实现汽轮机的控制策略在阀门流量特性不佳时可以减小控制器的过调,从而进一步扣J制汽轮机机组的功率波动。只有在改进策略与原始控制策略都处在正常的情况下时,改进的控制策略才能不影响控制系统的调节品质。只有在汽轮机阀门流量与实际流量特性互不相符时,才能够影响汽轮机的安全性和变负荷能力。改进控制策略后,汽轮机的负荷与主蒸汽流量曲线的连续性和线性度都可以得到改善,也进一步提高了机组的自动化水平和生产效率。 汽轮机阀门流量特性是汽轮机对于阀门开度的调节与通过阀门的蒸汽流量会呈现一定的对应关系。目前,汽轮机调速器模型不会对阀门流量特性对模型结构的影响进行考虑,因此,该模型在实际应用过程中难以解释某些条件下的汽轮机功率波动现象。例如:实际系统在已经发生功率波动时,仿真结果却显示系统能够维持稳定状态。当汽轮机阀门还没有完全开启过关闭时,对于执行机构中的饱和环节可以忽略不计。在对汽轮机及其调速系统参数进行实际测试的过程中,汽轮机的连通管蒸汽容量并不大,对于中、低缸可以进行合缸处理。

调节阀流量特性介绍

调节阀流量特性介绍 1. 流量特性 调节阀的流量特性是指被调介质流过调节阀的相对流量与调节阀的相对开度之间的关系。其数学表达式为 式中:Qmax-- 调节阀全开时流量 L---- 调节阀某一开度的行程 Lmax-- 调节阀全开时行程 调节阀的流量特性包括理想流量特性和工作流量特性。理想流量特性是指在调节阀进出口压差固定不变情况下的流量特性,有直线、等百分比、抛物线及快开4种特性(表1) 流量特性性质特点 直线调节阀的相对流量与相对开 度呈直线关系,即单位相对 行程变化引起的相对流量变 化是一个常数 ①小开度时,流量变化大,而大开度时流量变化小 ②小负荷时,调节性能过于灵敏而产生振荡, 大负荷时调节迟缓而不及时 ③适应能力较差 等百分比单位相对行程的变化引起的 相对流量变化与此点的相对 流量成正比 ①单位行程变化引起流量变化的百分率是相等的 ②在全行程范围内工作都较平稳,尤其在大开度时, 放大倍数也大。工作更为灵敏有效 ③ 应用广泛,适应性强 抛物线特性介于直线特性和等百分 比特性之间,使用上常以等 百分比特性代之 ①特性介于直线特性与等百分比特性之间 ②调节性能较理想但阀瓣加工较困难 快开在阀行程较小时,流量就有 比较大的增加,很快达最大 ①在小开度时流量已很大,随着行程的增大,流量很 快达到最大 ②一般用于双位调节和程序控制

在实际系统中,阀门两侧的压力降并不是恒定的,使其发生变化的原因主要有两个方面。一方面,由于泵的特性,当系统流量减小时由泵产生的系统压力增加。另一方面,当流量减小时,盘管上的阻力也减小,导致较大的泵压加于阀门。因此调节阀进出口的压差通常是变化的,在这种情况下,调节阀相对流量与相对开度之间的关系。称为工作流量特性[1]。具体可分为串联管道时的工作流量特性和并联管道时的工作流量特性。(1)串联管道时的工作流量特性 调节阀与管道串联时,因调节阀开度的变化会引起流量的变化,由流体力学理论可知,管道的阻力损失与流量成平方关系。调节阀一旦动作,流量则改变,系统阻力也相应改变,因此调节阀压降也相应变化。串联管道时的工作流量特性与压降分配比有关。阀上压降越小,调节阀全开流量相应减小,使理想的直线特性畸变为快开特性,理想的等百分比特性畸变为直线特性。在实际使用中,当调节阀选得过大或生产处于非满负荷状态时,调节阀则工作在小开度,有时为了使调节阀有一定的开度,而将阀门开度调小以增加管道阻力,使流过调节阀的流量降低,实际上就是使压降分配比值下降,使流量特性畸变,恶化了调节质量。 (2)并联管道时的工作流量特性 调节阀与管道并联时,一般由阀支路和旁通管支路组成,调节阀安装在阀支路管路上。调节阀在并联管道上,在系统阻力一定时,调节阀全开流量与总管最大流量之比随着并联管道的旁路阀逐步打开而减少。此时,尽管调节阀本身的流量特性无变化,但系统的可调范围大大缩小,调节阀在工作过程中所能控制的流量变化范围也大大减小,甚至起不到调节作用。要使调节阀有较好的调节性能,一般认为旁路流量最多不超过总流量的20%。 2. 调节阀的选择 2.1 流量特性选择

阀门实际特性曲线与理想特性曲线的对比分析

阀门实际特性曲线与理想特性曲线的对比分析 组长:万昌正 组员:潘强广马华培王昱威张藤张鹏飞 实验目的 1.了解实验装置的结构,使用流程和使用方法 2.了解三种常用的阀门固有流量特性曲线:线性、快开、等百分比。并与 工作状态下实际流量特性曲线进行对比。 3.根据阀门对应的流量特性,对阀门进行优化筛选。 实验背景意义 众所周知,调节阀是自动控制中直接与流体相接触的执行器。对热工对象来说,其控制流体(往往是水)的流量和压力,关系着生产过程、空气调节等自动化的技术目标的实现。 随着生产技术的发展,调节阀的结构型式越来越多,调节阀结构型式的选择主要是根据工艺参数(温度、压力、流量)、介质性质(粘度、腐蚀性、毒性、杂质状况)以及调节系统的要求(可调节比、噪音、泄漏量)综合考虑来确定。一般情况下,应首选普通单、双座阀和套筒阀。因为此类调节阀结构简单,阀芯形状易于加工,比较经济;或根据具体的特殊要求选择相应结构形式的调节阀。结构型确定以后,调节阀的具体规格关系到阀的流量特性是否与系统特性相匹配,关系到系统是否稳定性高、经济性好。因此正确选取调节阀的结构形式、流量特性和产品规格,对于自控系统的稳定性、经济合理性有着十分重要的作用。 实验任务分解 对实验内容的分析总结后,我组成员对实验任务进行了细化分解,将实验项目拆分成几个小的实验内容单元,具体任务可见下图。 表一:任务分解 实验原理 阀门的流量特性曲线:根据阀门两端的压降,阀门流量特性分固有流量特性和工作流量特性。固有流量特性是阀门两端压降恒定时的流量特性,亦称为理想流量特性。工作流量特性是在工作状态下(压降变化)阀门的流量特性,阀门出

阀门流量计算方法介绍

阀门流量计算方法 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 1 流速:磅/小时(蒸汽或水) FLOW RATE LBS/HR (Steam or Water) 在此: Where:

dp = 压降,单位:PSI dp = pressure drop in PSI F = 流速,单位:磅/小时 F = flow rate in lbs./hr. = 比容积的平方根,单位:立方英尺/磅 (阀门下游) = square root of a specific volume in ft3/lb. (downstream of valve) 公式2 FORMULA 2 流速:加伦/分钟(水或其它液体) FLOW RATE GPM (Water or other liquids) 在此: Where: dp = 压降,单位:PSI dp = pressure drop in PSI Sg = 比重 Sg = specific gravity Q = 流速,单位:加伦/分钟 Q = flow rate in GPM 局限性 LIMITATIONS 上列公式在下列条件下无效: Above formulas are not valid under the following conditions: a.对于可压缩性流体,如果压降超过进口压力的一半。 For compressible fluids, where pressure drop exceeds half the inlet pressure.

汽轮机高调门流量特性优化试验方案

汽轮机高调门流量特性优化 试验方案 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

皖能马鞍山发电有限公司2号机组汽轮机高调门流量特性优化试验方案 2013年4月10日

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 负责单位:安徽科讯电力技术服务中心 协作单位:皖能马鞍山发电有限公司 起日期:2013年4月10日14:00——20:00 负责人:张兴 工作人员:张兴、施壮 编写 ____________ 审阅 ____________ 审核____________ 批准____________

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 1、试验目的 为提高皖能马鞍山发电有限公司2号机组运行的安全性和经济性,根据合同要求,我单位计划于2013年4月10日对2号机组汽轮机高调门进行流量特性测试及优化,并完成2号机组汽轮机进行单/顺阀切换试验。 2、试验条件 (1)、机组在设计的正常工况下稳定运行,负荷能从额定负荷(汽机高调门全开时)至60%左右的额定负荷范围之间变化。 (2)、试验过程中由运行人员手动控制燃料量维持主汽压力稳定。 (3)、信号测量设备应满足精度要求并有效期内的检定合格证书。数据记录通过分散控制系统进行。 (4)、历史数据站工作正常,能完成对主汽压力、调节级压力、给定值、流量指令、阀位指令/开度、功率等参数的采集,并能生成*.csv或*.xls格 式文件,且数据分辨率满足测试要求。 3、试验内容 通过汽轮机高调门流量特性测试及参数优化试验,根据机组实际特性及标准流量参考线对多阀、单阀流量特性进行统一整定。 4、试验方法及步骤 各高调门单个流量特性测试

调节阀的特性及选择(DOC)

调节阀的特性及选择 调节阀是一种在空调控制系统中常见的调节设备,分为两通调节阀和三通调节阀两种。调节阀可以和电动执行机构组成电动调节阀,或者和气动执行机构组成气动调节阀。 电动或气动调节阀安装在工艺管道上直接与被调介质相接触,具有调节、切断和分配流体的作用,因此它的性能好坏将直接影响自动控制系统的控制质量。 本文仅限于讨论在空调控制系统中常用的两通调节阀的特性和选择,暂不涉及三通调节阀。 1.调节阀工作原理 从流体力学的观点看,调节阀是一个局部阻力可以变化的节流元件。对不可压缩的流体,由伯努利方程可推导出调节阀的流量方程式为 ()()212 212 42 P P D P P A Q -=-= ρ ζ πρζ 式中:Q——流体流经阀的流量,m 3 /s ; P1、P2——进口端和出口端的压力,MPa ; A——阀所连接管道的截面面积,m 2 ; D——阀的公称通径,mm ; ρ——流体的密度,kg/m 3 ; ζ——阀的阻力系数。 可见当A 一定,(P 1-P 2)不变时,则流量仅随阻力系数变化。阻力系数主要与流通面积(即阀的开度)有关,也与流体的性质和流动状态有关。调节阀阻力系数的变化是通过阀芯行程的改变来实现的,即改变阀门开度,也就改变了阻力系数,从而达到调节流量的目的。阀开得越大,ζ将越小,则通过的流量将越大。 2.调节阀的流量特性 调节阀的流量特性是指流过调节阀的流体相对流量与调节阀相对开度之间的关系,即 ?? ? ??=L l f Q Q max 式中:Q/Q max ——相对流量,即调节阀在某一开度的流量与最大流量之比; l/L ——相对开度,即调节阀某一开度的行程与全开时行程之比。 一般说来,改变调节阀的阀芯与阀座之间的节流面积,便可控制流量。但实际上由于各种因素的影响,在节流面积变化的同时,还会引起阀前后压差的变化,从而使流量也发生变化。为了便于分析,先假定阀前后压差固定,然后再引申到实际情况。因此,流量特性有理想流量特性和工作流量特性之分。 2.1 调节阀的理想流量特性 调节阀在阀前后压差不变的情况下的流量特性为调节阀的理想流量特性。调节阀的理想流量特性仅由阀芯的形状所决定,典型的理想流量特性有直线流量特性、等百分比(或称对数)流量特性、抛物线流量特性和快开流量特性,如图5-6所示。

流量与阀门开度的关系

阀门的流量特性 不同的流量特性会有不同的阀门开度; ①快开流量特性,起初变化大,后面比较平缓; ②线性流量特性,是阀门的开度跟流量成正比,也就是说阀门开度达到 50%,阀门的流量也达到50%; ③等百流量特性,跟快开式的相反,是起初变化小,后面比较大。 阀门开度与流量、压力的关系,没有确定的计算公式。它们的关系只能用笼统的函数式表示,具体的要查特定的试验曲线。 调节阀的相对流量Q/Qmax与相对开度L/Lmax的关系 :Q/Qmax=f(L/Lmax) 调节阀的相对流量Q/Qmax与相对开度L/Lmax、阀上压差的关系: Q/Qmax=f(L/Lmax)(dP1/dP)^(1/2)。 调节阀自身所具有的固有的流量特性取决于阀芯形状,其中最简单是直线流量特性:调节阀的相对流量与相对开度成直线关系,即单行程变化所引起的流量变化是一个常数。 阀能控制的最大与最小流量比称为可调比,以R表示,R=Qmax/Qmin, 则直线流量特性的流量与开度的关系为: Q/Qmax=(1/R)[1+(R-1)L/Lmax] 开度一半时,Q/Qmax=51.7% 等百分比流量特性:Q/Qmax=R^(L/Lmax-1) 开度一半时,Q/Qmax=18.3% 快开流量特性:Q/Qmax=(1/R)[1+(R^2-1)L/Lmax]^(1/2)

开度一半时,Q/Qmax=75.8% 流量特性主要有直线、等百分比(对数)、抛物线及快开四种 ①直线特性是指阀门的相对流量与相对开度成直线关系,即单位开度变化引起的流量变化时常数。 ②对数特性是指单位开度变化引起相对流量变化与该点的相对流量成正比,即调节阀的放大系数是变化的,它随相对流量的增大而增大。 ③抛物线特性是指单位相对开度的变化所引起的相对流量变化与此点的相对流量值的平方根成正比关系。 ④快开流量特性是指在开度较小时就有较大的流量,随开度的增大,流量很快就达到最大,此后再增加开度,流量变化很小,故称快开特性。 隔膜阀的流量特性接近快开特性, 蝶阀的流量特性接近等百分比特性, 闸阀的流量特性为直线特性, 球阀的流量特性在启闭阶段为直线,在中间开度的时候为等百分比特性。

汽轮机高调门流量特性优化试验方案

检索号: 皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 2013年4月10日

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 负责单位:安徽科讯电力技术服务中心 协作单位:皖能马鞍山发电有限公司 起日期:2013年4月10日14:00——20:00 负责人:张兴 工作人员:张兴、施壮 编写____________ 审阅____________ 审核____________ 批准____________

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 1、试验目的 为提高皖能马鞍山发电有限公司2号机组运行的安全性和经济性,根据合同要求,我单位计划于2013年4月10日对2号机组汽轮机高调门进行流量特性测试及优化,并完成2号机组汽轮机进行单/顺阀切换试验。 2、试验条件 (1)、机组在设计的正常工况下稳定运行,负荷能从额定负荷(汽机高调门全开时)至60%左右的额定负荷范围之间变化。 (2)、试验过程中由运行人员手动控制燃料量维持主汽压力稳定。 (3)、信号测量设备应满足精度要求并有效期内的检定合格证书。数据记录通过分散控制系统进行。 (4)、历史数据站工作正常,能完成对主汽压力、调节级压力、给定值、流量指令、阀位指令/开度、功率等参数的采集,并能生成*.csv或*.xls格式 文件,且数据分辨率满足测试要求。 3、试验内容 通过汽轮机高调门流量特性测试及参数优化试验,根据机组实际特性及标准流量参考线对多阀、单阀流量特性进行统一整定。

4、试验方法及步骤 4.1各高调门单个流量特性测试 (1)、由运行人员将机组负荷升至90%额定负荷左右,并将所有汽机调门全开, 记录下当前机前压力值。 (2)、逐渐减小GV1阀门指令,直至该调门全关。在此过程中其它调门一直维 持全开状态。试验过程中由运行人员手动控制燃料维持主汽压力稳定。 (3)、GV1阀门全关且主汽压力稳定后,由热控人员逐渐将该调门调整至全开位。 (4)、按照(2)、(3)步骤顺序依次进行GV2、GV3、GV4高调门的阀门流量特 性测试试验。 4.2单阀方式下高调门整体流量特性测试 (1)、由运行人员将机组负荷升至90%额定负荷左右,并将所有汽机调门全开, 记录下当前机前压力值。 (2)、由运行人员在DEH画面上阶跃减小目标值(阶跃量2%),设定值变化速 率设定为0.5%,使汽机高调门逐渐关小,直至机组负荷降至60%额定负荷左右。每次目标值变化后需待主汽压力稳定时再进行下一负荷点的测试。 (3)、试验过程中由运行人员手动控制燃料维持主汽压力稳定。 (4)、记录上述过程中单阀运行方式下汽机高调门的整体流量特性。 4.3单阀/多阀控制方式切换预试验 首先在70%额定负荷左右,逐渐降低主汽压力,将主汽调阀调整至全开位置,在DEH控制回路中,按下“顺序阀控制”按钮,开始由单阀向顺序阀方式切换过程,试验过程中出现轴承振动、瓦温变化大现象,应立即终止试验。、 4.4多阀方式下高调门整体流量特性测试 (1)、由运行人员将机组负荷升至90%额定负荷左右,并将所有汽机调门全开, 记录下当前机前压力值。

溢流阀压力流量特性

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀 (2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的围之,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

阀门流量系数Cv值

阀门流量系数Cv 值 阀门流量系数Cv 值字体大小:大| 中| 小2014-08-03 12:53 阅读(839) 评论(0) 分类:流量系数即:C 值(欧美 标准称为Cv 值,国际标准称为:KV 值)是阀门、调节阀等值是保障管道流量控制系统正常工作的重要步骤。是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。 工业阀门的重要工艺参数和技术指标。正确计算和选择CV 流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV 值须通过测试和计算确定。阀门是流量系数是衡量阀门流通能力的指标,流量系数值越大说流体流过阀门时的压 力损失越小.上海申弘阀门有限公司主营阀门有:减压阀(气体减压阀,可调式减压阀,波纹管减压阀,活塞式减压阀,蒸汽 减压阀,先导式减压阀,空气减压阀,氮气减压阀,水用减压阀, 自力式减压阀,比例减压阀)、安全阀、保温阀、低温阀、球 阀、截止阀、闸阀、止回阀、蝶阀、过滤器、放料阀、隔膜阀、旋塞阀、柱塞阀、平衡阀、调节阀、疏水阀、管夹阀、排污阀、排气阀、排泥阀、气动阀门、电动阀门、高压阀门、中压阀门、低压阀门、水力控制阀、真空阀门、衬胶阀门、衬氟阀门。阀门系数的定义:流量系数表示流体流经阀门产生单位压力损失时流体的流量,由于单位的不同,流量系数

有几种不同的代号和量值.一般式C=QVp/PC---流量系数 Q---体积流量p---流体密度P---阀门压力损失概述:流量特性是调节阀的一种重要技术指标和参数。在调节阀应用过程中做出正确的选型具有 非常重要的意义。固有特性(流量特 性):在经过阀门的压力降恒定时,随着截流元件(阀板)从关 闭位置运动到额定行程的过程中流量系数与截流元件(阀板) 行程之间的关系。典型地,这些特性可以绘制在曲线图上, 其水平轴用百分比行程表示,而垂直轴用百分比流量(或Cv 值)表示。由于阀门流量是阀门行程和通过阀门的压力降的函数,在恒定的压力降下进行流量特性测试提供了一种比较阀门特性类型的系统方法。用这种方法测得的典型的阀门特性 有线性、等百分比和快开(图2)。等百分比特性:一种固有流 量特性,额定行程的等量增加会理想地产生流量系数(Cv)的等百分比的改变(图2)。线性特性:一种固有流量特性,可以用一条直线在流量系数(Cv 值)相对于额定行程的长方形 图上表示出来。因此,行程的等量增加提供流量系数(Cv)的 等量增加。图2 快开特性:一种固有流量特性:在截流元件 很小的行程下可以获得很大的流量系数(图2)。额定流量下的 压力降:也是表示气动元件的流量特性之一。气动元件常常在额定流量下工作,故测定额定流量下气动元件上下游的压力降,作为该元件的流量特性指标。显然,此指标也只反映不可压缩流态下的浏览特性。阀门流量系数流量系数

【良心出品】各种阀门的特性

导读: 阀门的选型在化工管路设计中占有重要的地位,科学、合理地选择阀门既能保证生产安全运行,又能降低装置的建设费用。在化工设计中常用阀门的品种多、功能不同,为管路系统选择合适的阀门须了解常用阀门的特点、用途。 阀门是压力管道系统的重要组成部分,其主要功能是: 接通和截断介质; 防止介质倒流; 调节压力、流量;分离、混合或分配介质; 防止介质压力超过规定数值,以保证管道或设备安全运行等。只有了解常用阀门的特点及用途,才能在设计中给管道系统选定最适合的阀门。 常用阀门的特点、用途 工程上阀门种类很多,由于流体的压力、温度和物理化学性能的不同,所以对流体系统的控制要求也不相同,其中闸阀、截止阀、止回阀、旋塞阀、球阀、蝶阀和隔膜阀在化工装置中应用最广泛。 闸阀 闸阀是化工生产装置中用得最多的一种类型,流体流经闸阀时不改变流向,当闸阀全开时阻力系数小,适用的口径围、压力温度范围都很宽。与同口径的截止阀相比,其安装尺寸较小。在一般情况下,设计中首选闸阀。

闸阀的缺点: 高度大; 启闭时间长; 在启闭过程中,密封面容易被冲蚀; 修理比截止阀困难; 不适用于含悬浮物和析出结晶的介质; 也难于用非金属耐腐蚀材料来制造。 当闸阀部分开启时,介质会在闸板背面产生涡流,易引起闸板的冲蚀和振动,阀座的密封面也容易损坏,因此闸阀不适用于需要调节流量的场合,只适用于全开或全闭的情况,即一般用于控制流体的启闭。 闸阀按阀杆上螺纹位置分明杆式和暗杆式,明杆式闸阀适用于腐蚀介质,在化工工程上基本使用明杆式闸阀。暗杆闸阀主要用于水道上,多用于低压、无腐蚀性介质的场合,如一些铸铁和铜阀门。按闸板的结构形式分楔式闸板、平行式闸板。楔式闸板有单闸板,双闸板之分。 平行式闸板多用于油气输送系统,在化工装置中不常用。 闸阀的应用: 适用于蒸汽、高温油品及油气等介质及开关频繁的部位,不宜用于易结焦的介质。楔式单闸板闸阀适用于易结焦的高温介质。楔式双闸板闸阀适用于蒸汽、油品和对密封面磨损较大的介质,或开关频繁部位,不宜用于易结焦的介质。 截止阀 截止阀是化工装置广泛应用的阀型。一般多装在泵出口、调节阀旁路流量计上游等需调节流量之处。

2、控制阀流量特性解析

2、控制阀流量特性解 析 -CAL-FENGHAI.-(YICAI)-Company One1

控制阀流量特性解析 控制阀的流量特性是控制阀重要技术指标之一,流量特性的偏差大小直接影响自动控制系统的稳定性。使用单位希望所选用的控制阀具有标准的固有流量特性,而控制阀生产企业要想制造出完全符合标准的固有流量特性控制阀是非常困难的,因直线流量特性相对简单,且应用较少,所以本文重点对等百分比流量特性进行讨论。 控制阀的流量特性是指介质流过阀门的相对流量与相对行程之间的关系,数学表达式为Q/Qmax = f(l/L),式中:Q/Qmax—相对流量。指控制阀在某一开度时的流量Q与全开流量Qmax之比; l/L—相对行程。指控制阀在某一开度时的阀芯行程l与全开行程L之比 一般来讲,改变控制阀的流通面积便可以控制流量。但实际上由于多种因素的影响,在节流面积发生变化的同时,还会产生阀前、阀后压力的变化,而压差的变化又将引起流量的变化,为了便于分析,先假定阀前、阀后压差不变,此时的流量特性称为理想流量特性。 理想流量特性主要有等百分比(也称对数)、直线两种常用特性,理想等百分比流量特性定义为:相对行程的

等值增量产生相对流量系数的等百分比增加的流量特性,数学表达式为Q/Qmax = R(l/L-1)。 理想直线流量特性定义为:相对行程的等值增量产生相对流量系数的等值增量的流量特性,数学表达式为 Q/Qmax=1/R[1+(R-1)l/L] 式中R—固有可调比,定义为在规定偏差内的最大流量系数与最小流量系数之比。 常见的控制阀固有可调比有30、50两种。 当可调比R=30和R=50时,直线、等百分比的流量特性在相对行程10%~100%时各流量值见表一 表一 由上表可以看出,直线流量特性在小开度时,流量相对变化大,调节作用强,容易产生超调,可引起震荡,在大开度时调节作用弱,及时性差。而等百分比流量特性小开度时流量小,流量变化也小,在大开度时流量大,流量变化

水泵特性曲线的关系

主要是由三条特性曲线组成,分别是: H-qv曲线,表示泵的扬程与流量关系。曲线,表示泵的轴功率与流量的关系。 ηqv曲线,表示泵的效率与流量的关系。 扬程随流量的增加而减少,轴功率随流量的增加而增加; 流量为零时,效率为零; 流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降 1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能曲线,合理配备水泵的台数。 2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过 度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好 用的。 5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 6、合理,主要就是检修,否则可以不用阀门。 7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况下,那么压力不会变化,轴功率会增加。 &问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有 关,还有可能增加。但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可 以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。 离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。此图由泵 的制造厂家提供,供使用部门选泵和操作时参考。

阀门特性

调节阀介绍,等百分比特性,线性特性,抛物线特性 调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。本手册主要介绍电动调节阀和气动调节阀两种。 调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节并通常分为直通单座式和直通双座式两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。 流通能力Cv是选择调节阀的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以Cv表示,单位为t/h,液体的Cv值按下式计算。 根据流通能力Cv值大小查表,就可以确定调节阀的公称通径DN。 调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下: (1)等百分比特性(对数) 等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。 (2)线性特性(线性) 线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。

(3)抛物线特性 流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。 从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

调节阀流量特性选择

调节阀的流量特性如何选择 控制阀的流量特性是介质流过控制阀的相对流量与相对位移(控制阀的相对开度)间的关系,一般来说改变控制阀的阀芯与阀座的流通截面,便可控制流量。但实际上由于多种因素的影响,如在截流面积变化的同时,还发生阀前后压差的变化,而压差的变化又将引起流量的变化。 在阀前后压差保持不变时,控制阀的流量特性称为理想流量特性;控制阀的结构特性是指阀芯位移与流体流通截面积之间的关系,它纯粹由阀芯大小和几何形状决定,与控制阀几何形状有关外,还考虑了在压差不变的情况下流量系数的影响,因此,控制阀的理想流量特性与结构特性是不同的。 理性流量特性主要由线性、等百分比、抛物线及快开四种。在实际生产应用过程中,控制阀前后压差总是变化的,这时的流量特性称为工作流量特性,因为控制阀往往和工艺设备串联或并联使用,流量因阻力损失的变化而变化,在实际工作中因阀前后压差的变化而使理想流量特性畸变成工作特性。 控制阀的理想流量特性,在生产中常用的是直线、等百分比、快开三种,抛物线流量特性介于直线与等百分比之间,一般可用等百分比来代替,而快开特性主要用于二位式调节及程序控制中。因此,控制阀的特性选择是指如何选择直线和等百分比流量特性。 目前控制阀流量特性的选择多采用经验准则,可从下述几个方面考虑: 1、从调节系统的质量分析 下图是一个热交换器的自动调节系统,它是由调节对象、变送器、调节仪表和控制阀等环节组成。 K1变送器的放大系数,K2调节仪表的放大系数,K3执行机构的放大系数,K4控制阀的放大系数,K5调节对象的放大系数。 很明显,系统的总放大系数K为:K=K1*K2*K3*K4*K5 K1、K2、K3、K4、K5分别为变送器、调节仪表、执行机构、控制阀、调节对象的放大系数,在负荷变动的情况下,为使调节系统仍能保持预定的品质指标;则希望总的放大系数在调节系统的整个操作范围内保持不变。通常,变送器、调节器(已整定好)和执行机构的放大系数是一个常数,但调节对象的放大系数却总是随着操作条件变化而变化,所以对象的特性往往是非线性的。因此,适当选择控制阀的特性,以阀的放大系数的变化来补偿调节对象放大系数的变化,而使系统的总放大系数保持不变或近似不变,从而提高调节系统的质量。 因此,控制阀流量特性的选择应符合: K4*K5=常数 对于放大系数随负荷的加大而变小的现象,假如选用放大系数随负荷加大而变大的等百分

调节阀的流量特性

调节阀的流量特性、流通能力的计算与选择 摘要:企业的能源计量已成为节能减排的重要方式,而流量调节阀作为流量控制中的重要方法,文章详细介绍了调节阀的流量特性,直线特性、等百分比特性及介于两者之间的抛物线特性的流量调节阀的作用及如何选型。 关键词:调节阀;流量特性;流通能力;等百分比特性;直线特性 调节阀作为一个执行器将来自控制器的信号,变成控制量作用在对象上。它是控制系统的重要组成部分,在选择使用时,应和选用传感器、变送器一样,从现有的商品中,选择能满足要求的产品。 下面介绍调节阀的流量特性和口径的计算。 1 调节阀的流量特性及其选择 1.1 调节阀的流量特性 调节阀的流量特性是指流过调节阀介质的相对流量与调节阀的相对开度之间的关系,即: 式中: Q/Q max:相对流量,即调节阀某一开度下的流量与全开流量之比; L/L max:相对开度,即调节阀某一开度下的行程与全开行程之比。 调节阀流量特性是由调节阀阀芯形状决定的。阀芯形状有柱塞阀和开口阀两类,而每一类都分为直线特性、等百分比特性和抛物线特性。此外还有平板形的快开特性。图1 是阀芯形状示意图,图2 是理想流量特性图。

图1 阀芯形状 图2 理想流量特性(1)直线特性;(2)等百分比特性;(3)快开特性;(4)抛物线特性 所谓理想流量特性是指阀前后压差在流量改变时保持不变条件下,所得到的流量特性,这自然应在实验条件下才能形成恒定的压差。 从图2 可以看出,各流量特性线,当开度为零时,相对流量为3.3%,可知在相对开度为零时为最小流量,且此最小流量与最大流量之比为3.3%,或者说最大流量与最小流量之比为30。直线流量特性的斜率等于常数,与相对流量值无关;等百分比流量特性的斜率与相对流量成正比;抛物线特性介于直线和等百分比特性之间。 1.2 调节阀流量特性的选择 工程所用调节阀的特性有直线特性、等百分比特性及介于两者之间的抛物线特性,此外还有快开特性。对于直通调节阀可用等百分比特性阀代替抛物线特性阀,而快开特性阀只应用于双位控制和程序控制中。因此,在选择阀门特性时,更多的是指如何选择等百分比特性阀和直线特性阀。 (1)等百分比特性阀应用场合:①管道阻力大时,或者阀前后压差变化比较大的情况,使用等百分比特性阀;②当系统负荷大幅度变化时,且各开度处的流量相对值变化为一定值,因此选用等百分比特性阀具有较强的适应性。

调节阀流通能力与流量特性

调节阀流通能力与流量特性 调节阀用于调节介质的流量、压力和液位。根据调节部位信号,自动控制阀门的开度,从而达到介质流量、压力和液位的调节。调节阀分电动调节阀、气动调节阀和液动调节阀等。 调节阀由电动执行机构或气动执行机构和调节阀两部分组成。调节阀通常分为直通单座式调节阀和直通双座式调节阀两种,后者具有流通能力大、不平衡办小和操作稳定的特点,所以通常特别适用于大流量、高压降和泄漏少的场合。 流通能力C V是选择调节阀的主要参数之一,调节阀的流通能力的定义为:当调节阀全开时,阀两端压差为0.1MPa,流体密度为1g/cm3时,每小时流径调节阀的流量数,称为流通能力,也称流量系数,以C V表示,单位为t/h,液体的C V值按下式计算。 根据流通能力C V值大小查表,就可以确定调节阀的公称通径DN。 调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下: (1) 等百分比特性(对数)等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。 (2) 线性特性(线性)线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。 (3) 抛物线特性流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。 从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为最优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。

相关文档
最新文档