用Feynman传播函数求解一维谐振子的尝试

用Feynman传播函数求解一维谐振子的尝试
用Feynman传播函数求解一维谐振子的尝试

用Feynman传播函数求解一维谐振子的尝试

本文旨在结合《高等量子力学》课上关于Feynman传播函数的知识,以及参考侯伯元教授编著的《路径积分与量子物理导引》的知识,尝试用路径积分的方法来求解一维谐振子的问题。

直接引用课上推导的结果,Feynman传播子为:

()()

12

212 11

,,exp

22

j j

j j j j j

x x

m m

x t x t i V x

i

εε

πεε

+

++

??

??

-

??

??

????

=-+O

??

?

?

??

????

??

??

??(1)式子中,令1

j j

t t

ε+

≡-

,并已采用自然单位制,

1

=。

式(1)中,有

()()

2

1

2

j j

j j

x x

m

L t V x

ε

+

-

??

≡-

?

??(2)是拉氏量。考虑一维谐振子,其拉氏量为:

222

22

m m

L x x

ω

=-

(3)那么,Feynman传播子为

()()()

12

22

212 11

,,exp

222

j j

j j j j

x x

m m

D x x i x x

i

ω

εεε

πεε

+

++

??

??

-

??

??

????

=--+O

??

?

?

??

????

??

??

??(4)令

2

00

12,

222

m m

a b

ωε

εε

??

??

=-=

??

?

??

??

??

则,式(4)改写为:

()()

{}()

1

2

22

10101

,,exp2

2

j j j j j j

m

D x x i a x x b x x

i

εε

πε

+++

????

=--?+O

???

??

??(5)而对于Feynman传播函数有,

()()()

{}

,;,exp f

i

t

F f f i i t

D x t x t D x t i L t dt

=??

??

??

(6)

代入式(5)的结论,则有:

(

)

()

112

220101010

,;,exp 22lim N

N N F

f f i i j

j j j j N j j m D x t x t dx i a x x b x x i επε--++→∞==→??????????=?+-????? ?????????????∑∏? (7)

利用迭代的方法来计算,并令式(7)为:

(

)

{}

11110

,;,exp lim N F

f f i i j N j D x t x t A dx i εφ-→∞=→??

=???????∏? (8)

式中,

2

12N

m

A i πε??= ?

??;

()

1

22101011

1

2N j j j j j a x x b x x φα-++=??=+-?+??

∑. (9)

其中,令:

()

()()()()

2

2

2

22

001020

01202000

2

22

00120120120

0222222b b a x x a x x x x x a a b a x x x a x x b x x a α??=++-+-+??????=-+++-????

式中,又有:

22

0010100,.

22b b a a b a a =-=

那么,即可以对式(7)中变量

积分,得:

1

2

2102i A A a π??= ?

?? ()

()

1

222220*********

2

22N j j j j j a x x b x x a x x b x x φ-++=??=+-?+++-??

1x

同理,依次对积分,并利用数学归纳法,则有:

(

)

()

112

220101010

,;,exp 22lim N N N F

f f i i j j j j j N j j m

D x t x t dx i a x x b x x i επε--++→∞==→??????????=?+-?????

?

????

????????

∑∏?(10)

式中,

(

)

20001

22201

2

110

0112,,22,.

k k k k k m a b b b b a b a b b a a ωεε----??

??=-= ? ? ????

?=

+-=

+ (11)

为得到时的则需求时的各个的值。

引入,利用时,利用Taylor 展开式中的领头阶项定义:

11sin 22ωε?ε??= ???

因为时,有

故可以得到,

2

00012sin cos 2a b b ?ε?ε?

?

=-= ??

?

以及递推关系:

11cos k k b b ?ε-=+

利用数列知识,可最终求得:

()0sin 11sin k k b b ?ε?ε+=

231,k x x x -…(

)

,;,F f f i i

D x t x t N →∞

,k k

a b N →∞

ε→?

0ε→?ω

则,有

()sin 2sin 1k m b k ?εε?ε

=

+

于是,

(

)

()()122

22

00

cos 1sin 2sin 1k k

k

k m a b a b b k ?ε

?εε?ε+=

+-==

+

()01sin 12sin k k m a a k ?ε

ε?ε-++=

(12)

将以上结果代入式(10)中,便得到一维谐振子Feynman 传播函数的最终结果:

()

()()

()

11

12

210

220001

2

22

sin ,;,2sin 1sin cos sin exp 22sin sin exp cos ()22sin ()2sin ()lim N F f f i i N j N N f i f i f f i f i m

D x t x t i k m N m i x x b x x N N m m i t t x x x i t t t t ε?επε?ε?ε?ε?εε?ε

ε?εωωωπωω-→∞=→?

???=??? ?+??????????+-???

????????=?-+- ? ?--??∏i x ???????????????????(13)

对式(13)所得的Feynman 传播函数取迹,有此体系的迹核函数:

()()

[]()2

1cos 12

sin 00112

2

122

,;,02sin sin 2sin cos 11

1m i

x iH F i i n i n m d D x x tr e

dx e

i m i i m e

e e ω

ωττ

ωτ

ωτ

ωτωτ

ωττπωτωπωτπωτωωτ--??

-+- ???

-=???==? ???

???

?= ? ? ?-????==-??∑ (14)

可见,一维谐振子束缚态能级为

1,

0,1,22n n n E ω??

+= ??

?

=…

(15)

Feynman 传播子在能量表象下的矩阵元为

(

)

()()

()

()

f i n f i iH t t f f i i f i

n

iE t t n f n i n

x U t t x x n n e

x e

x x ψψ∧

----*

-==∑∑ (16)

对于一维谐振子的波函数,则可由以下过程得到, 令

则有,

()

()()

()2222

1

2sin 111

2cos 11i t i t i t i t i t e e t e e ωωωωωξξ

ωξξ

---=-=-=+=

+ (17)

则,根据式(13),得到:

将此式与厄米多项式双线性母函数对比:

(

)()

22220

22()(y)!

1n

n

n

n t x y t xyt H x H n t ∞

=??

-++??=

??-??∑

(18)

()()

()()

()

(

)1

2

22

1

22

1

2

2221

2

2222,;,0exp cos ()22sin ()2sin ()11exp 221exp exp 21F f i f i f i m im D x t y t t x y x y i t t t t m m x y x y m m m x y x y ωωωπωωωωξξξξπξξωωωξπξ-??????=?-+-? ??? ?--??????

????-+????=-?+-????? ?-??

?????

????=-+-+ ??-???()

222x y ξξ????-???????

i e ωτ

ξ-=

其中,是厄米多项式。

()(

)

112

22201,;,0exp 22!

i n F n n n

n m m D x t y x y H H e n ωτ

ωωπ??∞

-+ ???

=????

=-+ ???????∑(19)

容易通过对比式(18)和式(19)得到,一维谐振子的波函数为:

(

)1

124

2!exp 22n n n n m m x x H ωω?π??????

=-

? ????????? (20)

对应的能量本征值为:

12n n E ω

??

+ ??

?

= (21)

通过以上的分析可见,利用路径积分方法得到的一维谐振子解与利用量子力学的其他方法得到的解是一致的。

()n H x

一维谐振子的本征值问题

摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。 在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动]1[.1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式]2[.一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一般的教材只给定了波动力学的解法]3[.自1963年,Glauber]4[等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光5[-。 学等领域]13 一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 1.矩阵力学解法 取自然平衡位置为坐标原点,并选原点为势能零点,则一维谐振子势V可表成

一维谐振子的本征值问题

一维谐振子的本征值问题 姜罗罗 赣南师范学院物理与电子信息科学系物理学专业2000级(2)班 摘要:一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac算子代数解法和Schr?dinger波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研究前沿课题之一。最后从Dirac算子代数中求解出a?的本征态即谐振子的相干态,并由降算符a?与升算符+a?、光子数n与相位φ的最小不确定关系得出相干态和压缩态。 关键词:量子力学、一维谐振子、Heisenberg矩阵力学、算子代数解法、Schr?dinger波动力学、一维半壁谐振子势阱(垒)、相干态、压缩态。 在量子力学中谐振子不仅是说明量子力学基本原理和方法的一个很好的例子,而且任何体系在平衡位置附近的小振动,例如:分子的振动,原子核辐射场及其他玻色场的振动等,在选择恰当的坐标后,常常可以分解为若干彼此独立的一维谐振子振动]1[.1925年Heisenberg发现矩阵力学,1926年Schr?dinger创立波动力学,同时,Dirac创立在数学上更为一般的理论.可包括矩阵及波动两种形式]2[.一维谐振子的能力本征值问题,在历史上首先为Heisenberg的矩阵力学解决,后来用算子代数的方法给出了极漂亮的解,一

般的教材只给定了波动力学的解法]3[.自1963年,Glauber ]4[等人提出谐振子相干态以后,相干态和压缩态以其特有的最小不确定性和超完备性备受人们的关注,被广泛应用于量子光学等领域]135[-。 一维谐振子的本征值问题属于定态问题。本文首先给出了一维谐振子本征值问题的Heisenberg 矩阵力学解法,Dirac 算子代数解法和Schr ?dinger 波动力学解法。在此基础上,给出了一维半壁谐振子势阱(垒)问题的解法。然后讨论了相干态和压缩态,它们是非经典量子效应,在超标准量子极限的高精度光学测量、超低噪光通信及量子通信领域有着广泛的应用前景,是物理学研 究前沿课题之一。最后从Dirac 算子代数中求解出a ?的本征态即谐振子的相干态,并由降算符a ?与升算符+a ?、光子数n 与相位φ的最小不确定关系得出相干态和压缩态。 1.矩阵力学解法 V 可 表成 2 2 1kx V x = (1) k 为刻画简谐作用力强度的参数.设谐振子质量为μ,令 μ ωk = (2) 它是经典谐振子的自然频率,则一维谐振子的Hamilton 量可表为 图1.一维谐振子势 222?2 12??x p H μωμ+= (3) 在能量H ?表象中,由于

第三章 谐振子

第三章 谐振子 一 内容提要 1 一维线性谐振子的能级与波函数 2221)(x x V μω= 2222 12??x p H μω+= ,3,2,1)2 1(=ω+=n n E n )()(222 1 x H e N x n x n n α-=ψ [其中 ! 2n N n n πα= μω = α ] 2 谐振子的升降算符 [1] 升降算符 )??(2?p i x a μω-μω=+ )??(21p i x μω-α= )??(2?p i x a μω+μω= )??(21p i x μω+α= 则 )??(2?++μω =a a x )??(2?+-μω-=a a i p [2] 升降算符的性质 11?++ψ+=ψn n n a 1?-ψ=ψn n n a 1]?,?[=+a a 二 例题讲解 1 一维谐振子如果考虑非谐振微扰项4 ' ?x H λ=,求体系能级的一级修正。 解:>+<μω λ>=<λ>==<+n a a n n x n n H n E n 42 4 ' ) 1()??()2(? 可以导出 )122(3)??(24++>=+<+n n n a a n 那么 = ) 1(n E )122()(4322++μω λn n 2 已知单摆在重力作用下能在竖直平面内摆动。求: [1] 小角度近似下,体系的能量本征值及归一化本征函数。 [2] 由于小角度近似而引起的体系基态能级的一级近似。 解:摆球平衡位置作为势能零点 摆球重力势能为 )cos 1(θ-==mgl mgh V (1) [1] 由公式 -θ+θ-=θ4 2! 41!211c o s (2)

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。 2 经典力学中的一维谐振子 在经典力学中基本方程以牛顿定律为基础,研究质点位移随时间变化的规

用Feynman传播函数求解一维谐振子的尝试

用Feynman传播函数求解一维谐振子的尝试 本文旨在结合《高等量子力学》课上关于Feynman传播函数的知识,以及参考侯伯元教授编著的《路径积分与量子物理导引》的知识,尝试用路径积分的方法来求解一维谐振子的问题。 直接引用课上推导的结果,Feynman传播子为: ()() 12 212 11 ,,exp 22 j j j j j j j x x m m x t x t i V x i εε πεε + ++ ?? ?? - ?? ?? ???? =-+O ?? ? ? ?? ???? ?? ?? ??(1)式子中,令1 j j t t ε+ ≡- ,并已采用自然单位制, 1 =。 式(1)中,有 ()() 2 1 2 j j j j x x m L t V x ε + - ?? ≡- ? ??(2)是拉氏量。考虑一维谐振子,其拉氏量为: 222 22 m m L x x ω =- (3)那么,Feynman传播子为 ()()() 12 22 212 11 ,,exp 222 j j j j j j x x m m D x x i x x i ω εεε πεε + ++ ?? ?? - ?? ?? ???? =--+O ?? ? ? ?? ???? ?? ?? ??(4)令 2 00 12, 222 m m a b ωε εε ?? ?? =-= ?? ? ?? ?? ?? 则,式(4)改写为: ()() {}() 1 2 22 10101 ,,exp2 2 j j j j j j m D x x i a x x b x x i εε πε +++ ???? =--?+O ??? ?? ??(5)而对于Feynman传播函数有, ()()() {} ,;,exp f i t F f f i i t D x t x t D x t i L t dt =?? ?? ?? (6)

在坐标表象中处理一维线性谐振子问题

初中物理 题目:在坐标表象中处理一维线性谐振子问题 作者单位:响水滩乡中心学校 作者姓名:宁国强 2012年9月28日

在坐标表象中处理一维线性谐振子问题 响水滩中心学校 宁国强 摘 要:本文阐述了在坐标表象中处理一维线性谐振子问题的方法和思路,阐述了一般表象的概念。 关键词:一维线性谐振子;坐标表象; 一、 能量本征值、本征函数的求解 取自然平衡位置为坐标原点,并选原点为势能零点,则一维线性谐振子的势能为 221()2V x x μω= (1) 其中μ是谐振子的质量,ω是经典谐振子的自然频率。一维谐振子的哈密顿函数为 222122 p H x μωμ=+ (2) 体系的能量本征方程(亦即不含时Schr ?dinger 方程)为 ()()222221?22d x x E x dx μωψψμ??-+= ??? h (3) 严格的谐振子势是一个无限深势阱(如图1所示),粒子只存在束缚态,即起波函数应满足以下条件: ()0x x ψ→∞ ???→ (4) 将方程(3)无量纲化,为此,令

x ξα==, α= λ=2E ω h (5) (3)式可改写为 () 2220d d ψλξψξ+-= (6) 这是一个变系数二阶常微分方程。为了求解它,我们先看ψ在ξ→±∞时的渐进行为。当ξ????很大时,λ与2ξ相比可以略去,因而在ξ→±∞ 时,方程(6)可近似表示为 2220d d ψξψξ -= (7) ξ→±∞时, 它的渐近解为2/2~e ξψ±。因为波函数的标准条件要求当ξ→±∞时ψ应为有限,所以2/2e ξψ:不满足边界条件(4)式,应弃之。波函数指数上只能取负号,即2/2e ξψ-:。方程(6)在ξ为有限处的 根据以上讨论,可令方程(6)在ξ为有限处的解有如下形式: ()()2 2Ae H ξψξξ-= (8) 式中A 为归一化系数,(8)代入(6)式,得 ()22210d H dH H d d ξλξξ -+-= (9) 用级数解法,即把H 展开成ξ的幂级数来求这个方程的解。这个级数必须只含有有限项,才能在ξ→±∞ 时使()ψξ为有限,而级数只含有限项的条件是λ 为奇数:21n λ=+,()0,1,2n =L L 。代入(5)中的第三式,可得一维线性谐振子的能级为 12n E n ω??=+ ?? ?h , ()0,1,2n =L L (10) 因此,线性谐振子的能量只取分立值(如图2所示),两相邻能级间的间隔为ωh ,这与普朗克关于能量是量子化的假设相符合。

2.4一维谐振子

§ 2.4 一维谐振子 一、能量本征方程 二、级数解法 三、本征值和本征波函数 平衡位置附近的微振动可近似认为是简谐振动。例如原子核内质子和中子的振动、原子和分子的振动、固体晶格离子的振动等。 一、能量本征方程 取振子的平衡位置为坐标原点 2222 2212?x m x m H ω+-=d d )()(212222 22x E x x m x m ψ=ψ????????+-ωd d 因为0min =V ,∞ →min out V ,所以∞<

能量本征值问题转化成如下定解问题 0)()()(222=ψ-+ψξξλξξd d )(lim =ψ±∞ →ξξ 下面会看到,束缚态条件要求λ只能取特定值 ,2,1,0,12=+=n n λ 这导致能量的量子化。 首先把上述方程转化成可以用级数求解的形式。考虑±∞→ξ的渐近解。这时系数为λ的项可以忽略,方程趋近于 02 22 =ψ-ψξξd d 渐近通解为 2 2 22e e ξξ-+≈ψB A ,(±∞→ξ) 但因2 2ξe 不满足束缚态的条件,所以渐近解取为 2 2~ξ-ψe 把波函数写成 )(2ξξu -=ψe

代入方程 0)(222=ψ-+ψξλξd d 后,求解ψ的问题则转化成求解u 的方程 )1(222=-+-u u u λξξξd d d d 这个方程称为Hermite 方程,可以用级数求解。 二、级数解法 在原点0=ξ附近,用幂级数 k k k a u ξξ∑∞ ==0 )( 代入Hermite 方程,得 0)1(2)1(0 11 22 =-+--∑∑∑∞ =-∞ =-∞ =k k k k k k k k k a ka a k k ξλξξξ 把前两项的求和序号改为从0开始 0)1(2)1)(2(0 2=-+-++∑∑∑∞ =∞ =∞ =+k k k k k k k k k a ka a k k ξλξξ 由此得到展开系数 k a 的递推关系 ,2,1,0,)1)(2() 1(22=++--= +k a k k k a k k λ

相关主题
相关文档
最新文档