02-动作电位的传导 PPT

静息电位和动作电位产生的具体原因

静息电位和动作电位产生的具体原因 伴随生命活动的电现象,称为生物电。关于生物电在生命活动中所起的作用,目前还不十分清楚。本节着重以神经纤维为例讨论细胞水平生物电的表现形式,即静息电位和动作电位。 一、静息电位及其产生机制 (一)静息电位 静息电位是指细胞在安静状态下,存在于细胞膜的电位差。这个差值在不同的细胞是不一样的,就神经纤维而言为膜外电位比膜内电位高70~90mv。如规定膜外电位为0,则膜内电位当为负值(-70~-90mv)。细胞在安静状态时,保持比较稳定的外正内负的状态,称为极化。极化状态是细胞处于生理静息状态的标志。以静息电位为准,膜内负电位增大,称为超极化。膜内负电位减小,称为去或除极化。细胞兴奋后,膜电位又恢复到极化状态,称为复极化。 (二)静息电位产生的机制 “离子学说”认为,细胞水平生物电产生的前提有二:①细胞内外离子分布和浓度不同。就正离子来说,膜内K 浓度较高,约为膜外的30倍。膜外Na 浓度较高约为膜内的10倍。从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。②细胞膜在不同的情况下,对不同离子的通透性并不一样,如在静息状态下,膜对K 的通透性大,对Na 的通透性则很小。对膜内大分子A-则无通透性。 由于膜内外存在着K 浓度梯度,而且在静息状态下,膜对K 又有较大的通透性(K 通道开放),所以一部分K 便会顺着浓度梯度向膜外扩散,即K 外流。膜内带负电荷的大分子A-,由于电荷异性相吸的作用,也应随K 外流,但因不能透过细胞膜而被阻止在膜的内表面,致使膜外正电荷增多,电位变正,膜内负电荷增多,电位变负。这样膜内外之间便形成了电位差,它在膜外排斥K 外流,在膜内又牵制K 的外流,于是K 外流逐渐减少。当促使K 流的浓度梯度和阻止K 外流的电梯度这两种抵抗力量相等时,K 的净外流停止,使膜内外的电位差保持在一个稳定状态。因此,可以说静息电位主要是K 外流所形成的电一化学平衡电位。 二、动作电位及其产生机制 (一)动作电位 细胞受刺激时,在静息电位的基础上发生一次短暂的扩布性的电位变化,这种电位变化称为动作电位。 实验观察,动作电位包括一个上升相和一个下降相(图2-3)。上升相代表膜的去极化过程。以0mv电位为界,上升相的下半部分为膜的去极化,是膜内负电位减小,由-70~-90mv.变为0mv;上升相的上半部分是膜的反极化(超射),是膜电位的极性发生倒转即膜外变负,膜内变正,由0mv上升到20~40mv。上升相膜内电位上升幅度约为90~130mv。下降相代表膜的复极化过程。它是膜内电位从上升相顶端下降到静息电位水平的过程。由于动作电位幅度大、时间短不超过2ms,波形很象一个尖峰,故又称峰电位。在峰电位完全恢复到静息电位水平之前,膜两侧还有微小的连续缓慢的电变化,称为后电位。 (二)动作电位产生的机制 动作电位产生的机制与静息电位相似,都与细胞膜的通透性及离子转运有关。 l.去极化过程当细胞受刺激而兴奋时,膜对Na 通透性增大,对K 通透性减小,于是细胞外的Na 便会顺其波度梯度和电梯度向胞内扩散,导致膜内负电位减小,直至膜内电位比膜外高,形成内正外负的反极化状态。当促使Na 内流的浓度梯度和阻止Na 内流的电梯度,这两种拮抗力量相等时,Na 的净内流停止。因此,可以说动作电位的去极化过程相当于Na 内流所形成的电一化学平衡电位。 2.复极化过程当细胞膜除极到峰值时,细胞膜的Na 通道迅速关闭,而对K 的通透性增

生理学考试试题附 答案

基本组织: 一、单项选择题 1.衡量组织兴奋性的指标是()。 A.动作电位B.肌肉收缩或腺体分泌C.阈电位D.刺激阈E.以上均不是 2.下列关于反射的叙述,正确的是()。 A.反射弧都是固定不变的B.同一刺激的反射效应相同C.刺激传入神经所产生的反应也是反射D.反射弧的传出途径可以通过体液环节E.反射活动不一定需要反射弧的完整3.下列生理过程中,哪一个不是正反馈()。 A.排尿反射B.血液凝固C.分娩D.组织细胞受到刺激后,通过细胞膜的再生式钠内流E.血浆晶体渗透压增高时,ADH增多使肾脏对水的重吸收增强 4.下列生理过程中,不属于出胞作用的是()。 A.胃腺粘液细胞将粘液分泌到胃腔中B.胰腺细胞分泌胰蛋白酶原到导管中 C.肾小管上皮细胞向管腔分泌NH3D.副交感神经节后纤维末梢释放乙酰胆碱E.交感神经节后纤维末梢释放去甲肾上腺素 5.如果动作电位的持续时间为2ms,理论上每秒能传导的动作电位数不可能超过()。 A. 100次B. 200次C. 300次D. 400次E. 500次 6.降低细胞外液中Na+浓度时,发生的变化是()。 A.静息电位增大,动作电位幅值不变B.静息电位增大,动作电位幅值增高 C.静息电位不变,动作电位幅值降低D.静息电位不变,动作电位幅值增高 E.静息电位减小,动作电位幅值增高 7.安静时,细胞膜内K+向膜外移动是由于()。

A.单纯扩散B.易化扩散C.主动转运D.出胞作用E.以上都不是 8.肠上皮细胞由肠腔吸收葡萄糖是由于()。 A.单纯扩散B.易化扩散C.主动转运D.出胞作用E.吞噬作用 9.一般细胞用于维持钠泵转运的能量大约占其代谢能量的()。 A. 5~10%B. 10~20%C. 20~30%D. 30~40%E. 40~50% 10.正常细胞膜内K+浓度约为膜外钾离子浓度的()。 A. 12倍B. 30倍C. 50倍D. 70倍E. 90倍 11.正常细胞膜外Na+浓度约为膜内钠离子浓度的()。 A. 1倍B. 5倍C. 12倍D. 18倍E. 21倍 12.神经细胞在接受一次有效刺激后,兴奋性的周期变化是()。 A.相对不应期→绝对不应期→超常期→低常期 B.绝对不应期→相对不应期→低常期→超常期 C.绝对不应期→低常期→相对不应期→超常期 D.绝对不应期→相对不应期→超常期→低常期 E.绝对不应期→超常期→低常期→相对不应期 13.单根神经纤维的动作电位中负后电位出现在()。 A.去极相之后B.超射之后C.峰电位之后D.正后电位之后E.以上都不是14.就绝对值而言,静息电位的实测值与K+平衡电位的理论值相比()。 A.前者约大10%B.前者大C.前者小D.两者相等E.以上都不对 1

动作电位微专题复习

动作电位微专题复习 教学反思:动作电位有关的知识是高考的高频考点,也是教学的重点和难点,需要进一步进行微专题复习。 1.动作电位产生的机制 (1)阈刺激或阈上刺激使膜对Na+的通透性增加,Na+顺浓度梯度及电位差内流,使膜去极化,形成动作电位的上升支。 (2)Na+通道失活,而K+通道开放,K+外流,复极化形成动作电位的下降支。 2.动作电位的测量 静息电位常见的测定方式是将电流表的两个电极一个放在神经纤维的外侧,另一个放在神经纤维的内侧,由于内外两侧存在电势差,因此电流表指针会发生偏转。 在一个神经纤维上的测定:是指将电流表的两个电极放在同一个神经纤维的外侧(A处和B 处),来测定两个电极处是否有电位差。 3.动作电位产生的影响因素 主要是Na+的平衡电位,此外,其它离子如Ca2+和Cl-,离子通道阻断剂,细胞的代谢等因素。 4.动作电位的传导 动作电位的传导实际上就是兴奋膜向前移动的过程。在受到刺激产生兴奋的轴突与周围静息膜之间都可以产生局部电流,因此可以向两个方向传导,被称之为动作电位的双向传导。动作电位在传导过程中是不衰减的,其原因在于动作电位在传导时,实际上是去极化区域的移动和动作电位的逐次产生,每次产生的动作电位幅度都接近于钠离子的平衡电位,可见其传导距离与幅度是不相关的,因此动作电位幅度不会因传导距离的增加而发生变化。 神经纤维的传导速度极快,但不同的神经纤维的传导速度变化很大。例如,人体的一些较粗的有髓纤维传导速度可达100m/s,而某些较细的无髓纤维的传导速度甚至低于1m/s。 光在空气中的速度:

电流速度为什么就和光速相等 电流是以电场的方式传递的,就是光速.但导线中电子的速度却是很慢的. 在金属导线中,电能的传输速度是每秒三十万公里,与光速同,而我们在大型直线加速器中只能把电子加速到接近光速,其质量已达电子静止质量的四万倍以上,消耗的能量够一座小城镇的用量.从重力场理论中知道,光速是光能传导速度,是能量空间的调整速度,电流速度就是电能传导速度. “电”的传播过程大致是这样的:电路接通以前,金属导线中虽然各处都有自由电子,但导线内并无电场,整个导线处于静电平衡状态,自由电子只做无规则的热运动而没有定向运动,当然导线中也没有电流.当电路一接通,电场就会把场源变化的信息,以大约光速的速度传播出去,使电路各处的导线中迅速建立起电场,电场推动当地的自由电子做漂移运动,形成电流.那种认为开关接通后,自由电子从电源出发,以漂移速度定向运动,到达电灯之后,灯才能亮,完全是一种误解.

窦房结P细胞跨膜电位和产生机理

【提问】窦房结P细胞跨膜电位及产生机理? 【回答】学员dbss9ffe42,您好!您的问题答复如下:外Ca2+浓度的影响,可被Ca2+通道抑制剂(如维拉帕米、Mn2+)阻断。当膜电位由最大复极电位自动去极化到阈电位时,膜上L型Ca2+抖通道被激活,引起Ca2+。内流,导致0期去极化。 祝您学习愉快! 【追问】那么请问窦房结P细胞的复极化是受什么影响【回答】学员nflalihh,您好!您的问题答复如下: 窦房结细胞的动作电位具有以下特点: ①最大复极电位与阈电位的绝对值小; ②0期去极化的幅度小、时程长、去极化速率较慢; ③没有明显的复极1期和2期; ④4期自动去极化速度快。 1.去极化过程:0期去极L型Ca2+通道激活,Ca2+内流。 2.复极化过程:3期复极L型Ca2+通道逐渐失活,Ca2+内流相应减少,及Ik通道的开放,K+外流增加。 3.4期自动去极化机制:①IK:复极至-60mV时,因失活逐渐关闭,导致K+外流衰减,是最重要的离子基础;②Ica-T:

在4期自动去极化到-50mV时,T型Ca2+通道激活,引起少量Ca2+内流参与4期自动去极化后期的形成;③If:窦房结细胞最大复极电位只有-70mY,If不能充分激活,在P细胞4期自动去极化中作用不大。 【追问】老师这道题还是不明白 【回答】学员zhulipeng,您好!您的问题答复如下:窦房结细胞的生物电特点是没有稳定的静息电位。动作电位复极至3期末进入第4期,便自动缓慢去极。 窦房结的最大舒张电位约-60mV,阈电位约-40mV。 0期去极化速度缓慢,主要是Ca2+缓慢内流引起。复极化无明显的l期和2期平台,随即转入复极化3期,后者主要是K+外流形成。4期的自动去极化主要是由于K+通道逐渐关闭,Na+、Ca2+内流逐渐增多而引起。

神经细胞动作电位形成的机制及影响因素

讨论神经细胞动作电位形成的机制及影响因素。 动作电位是可兴奋细胞受到刺激时,在静息电位的基础上爆发的一次迅速的,可逆的,并且是可传导的电位变化。 1、神经细胞动作电位形成的机制: ①当细胞受到刺激时,细胞膜上少量Na+通道被激活而开放,Na+顺浓度差,少量内流,导致膜内外电位差下降,产生局部电位。 ②当膜内电位变化到阈电位时,Na+通道大量开放。 ③Na+顺电化学差和膜内负电位的吸引,引发再生式内流。 ④膜内负电位减小到零并变为正电位,形成动作电位(AP)上升支。 ⑤Na+通道关闭,Na+内流停止的同时K+通道被激活而开放。 ⑥由于K+顺浓度差和膜内正电位的吸引,K+迅速外流。 ⑦膜内电位迅速下降,恢复到静息电位(RP)水平,即AP 下降支。 ⑧钠泵的作用,将进入膜内的钠离子泵出膜外同时将膜外多余的钾离子泵入膜内,恢复兴奋前时离子分布的浓度。 2、影响动作电位形成的因素: 主要是Na+的平衡电位,此外,还有其它离子如Ca2+和Cl-,离子通道阻断剂,细胞的代谢等因素。 主要为Na+的平衡电位:

①细胞膜两侧存在离子浓度差,细胞膜内钾离子浓度高于细胞膜外,而细胞外钠离子、钙离子、氯离子高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是钠-钾泵(每3个Na+流出细胞, 就有2个K+流入细胞内。即Na+:K+ =3:2)的转运)。 ②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许钾离子通透,而去极化到阈电位水平时,又主要允许钠离子通透。 ③可兴奋组织或细胞受阈刺激或阈上刺激。 在细胞膜上任何一点产生的动作电位会不衰减地传播到整 个细胞膜上,这称之为动作电位的传导。如果是发生在神经纤维上,传导的动作电位又称为神经冲动。 以神经元为例,动作电位沿轴突的传导是通过跨膜的局部电流实现的。给轴突的某一位点以足够强的刺激,可使其产生动作电位。此时该段膜内外两侧的电位差发生暂时的翻转,即由安静时膜内为负、膜外为正的状态转化为兴奋时的膜内为正、膜外为负的状态,称其为兴奋膜。 兴奋膜与周围的静息膜(未兴奋的膜)无论在膜内还是膜外均存在有电位差,同时细胞膜的两侧的溶液都是导电的,所以兴奋膜与静息膜之间可发生电荷移动,这种电荷移动就是局部电流。在膜外侧,电流从静息膜流向兴奋膜;在膜内侧,电流由兴奋膜流向静息膜。

生理学理论指导:动作电位及其产生机制

在静息电位的基础上,细胞受到一个适当的刺激,其膜电位所发生的迅速、一过性的极性倒转和复原,这种膜电位的波动称为动作电位。动作电位的升支和降支共同形成的一个短促、尖峰状的电位变化,称为锋电位。锋电位在恢复至静息水平之前,会经历一个缓慢而小的电位波动称为后电位,它包括负后电位和正后电位。 细胞的动作电位具有以下共同特征:①动作电位具有“全或无” 特性,动作电位是由刺激引起细胞产生的去极化过程。而且刺激必须达到一定强度,使去极化达到一定程度,才能引发动作电位。对于同一类型的单细胞来说一旦产生动作电位,其形状和幅度将保持不变,即使增加刺激强度,动作电位幅度也不再增加,这种特性称为动作电位的全或无 ( allornone )现象,即动作电位要么不产生要产生就是最大幅度;②动作电位可以进行不衰减的传导,动作电位产生后不会局限于受刺激的部位,而是迅速沿细胞膜向周围扩布,直到整个细胞都依次产生相同的电位变化。在此传导过程中,动作电位的波形和幅度始终保持不变;③动作电位具有不应期。细胞在发生一次兴奋后,其兴奋性会出现一系列变化,包括绝对不应期、相对不应期、超常期和低常期。绝对不应期大约相当于锋电位期间,相对不应期和超常期相当于负后电位出现的时期;低常期相当于正后电位出现的时期。 (二)动作电位的产生机制 动作电位上升支主要由Na吶流形成,接近于Na啲电-化学平衡电位。 1.细胞内外Na+和K+的分布不均匀,细胞外高Na+而细胞内高K+。 2.细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。 3.K+外流增加形成了动作电位的下降支。 在不同的膜电位水平或动作电位发生过程中,Na+通道呈现三种基本

静息电位动作电位的产生机制及影响其大小的主要因素

静息电位,动作电位的产生机制及影响其大小的主要因素 一、静息电位(resting potential, RP) 1、概念:静息电位:细胞在静息(未受刺激)状态下膜两侧的电位差称静息电位(膜电位) 2、静息时细胞的特点 静息时细胞内外离子的特点:①细胞内[K+]一般比细胞外液高30倍;②细胞内带负电荷的生物大分子(主要是蛋白质)比细胞外液高10倍;③细胞外液中[Na+]和[CL-]都比细胞内高20倍。所以,细胞内正离子主要为K+,负离子主要为带负电荷的蛋白质分子。细胞外正离子主要为Na+,负离子主要为CL- 。 静息时细胞膜的选择通透性:①带负电荷的蛋白质分子完全不可通过;②Na+和CL-通透性极小;③K+有较大的通透性。3、静息电位形成的机理:细胞内的K+在细胞膜内外浓度差(内高外低)作用下携带正离子外流,当膜内外K+浓度差(K+外流动力)和K+外流所形成的电位差(K+外流阻力)达到动态平衡时,K+的净通量为零,此时所形成的电位差稳定于某一数值而不再增加,即形成静息电位;所以说静息电位实质为K+外流所形成的跨膜电位。细胞内外的K+不均衡分布和静息状态下细胞膜对K+的通透性是细胞在静息状态下保持极化状态的基础。 二、动作电位 1. 动作电位的概念动作电位(action potential):可兴奋组织接受刺激而发生兴奋时,细胞膜原有的极化状态立即消失,并在膜的内外两侧发生一系列的电位变化,这种变化的电位称为动作电位。 2. 动作电位形成的机理 证明:①人工地改变细胞外液Na+浓度,动作电位上升支及其幅度也随之改变,*海水实验; ②用河豚毒阻断Na+通道后,动作电位幅度↓或消失;③膜片钳实验。3.动作电位组成动作电位的扫描波形包括升支和降支两部分。如采用慢扫描并高度放大,则升支和降支的开始部分显示为尖锐的剑锋状,故动作电位又称为锋电位。动作电位的升支代表细胞受到刺激后膜的去极化和反极化过程,即膜内电位由静息时的-70毫伏逐渐减小到-55毫伏(由于这一膜电位可以激发动作电位产生,故把-55毫伏的膜电位称为阈电位);然后,膜电位再减小到0毫伏(去极化结束);最后膜电位由0毫伏迅速上升到+35毫伏(反极化)。通常把膜电位超出0的正值部分称为超射。动作电位的降支代表细胞的复极化过程。在此过程中,膜电位还要发生变化,先出现微弱的去极化,接着出现超极化;前者称为负后电位,后者称为正后电位。负后电位使膜电位减小,临近阈电位而容易被激发动作电位,故也称之为超常期后电位或去极化电位;正后电位使膜电位增大,远离阈电位而不易发生动作电位,故也称之为低常期后电位或超极化后电位。动作电位出现时间与细胞兴奋性变化时间是相吻合的。动作电位的升支所占时间相当于绝对不应期,降支前半段所占时间相当于相对不应期,负后电位所占时间相当于超常期,正后电位所占时间相当于低常期。通常所说的神经冲动,就是指一个沿着神经纤维传导的动作电位或锋电位 1 / 1

医学基础知识生理学名词解释

(一)诸论 1.兴奋性:生理学中将可兴奋细胞接受刺激后产生动作电位的能力称为兴奋性。 2.刺激:能使细胞或机体发生反应的一些环境因素的变化称为刺激。 3.兴奋:细胞功能变化由弱变强的过程称为兴奋。 4.抑制:细胞功能变化由强变弱的过程称为抑制。 5.阈值:是指使细胞膜达到阈电位的刺激强度和时间的总和。 6.阈刺激:能使组织细胞发生变化的最小刺激称为阈刺激。 7.内环境:生理学中将围绕在多细胞动物体细胞周围的液体即细胞外液,称为 内环境。 8.反应:活组织接受刺激后发生的功能改变。 9.内环境稳态:是指内环境的理化性质,如温度、PH、渗透压和各种液体成分 的相对恒定状态。 10.神经调节:是通过反射而影响生理功能的一种调节方式,是人体生理功能中 最主要的一种调节方式。 11.体液调节:是指体内某些特殊的化学物质通过体液途径而影响生理功能的一 种方式。 12.自身调节:是指组织细胞不依赖于神经或体液因素,自身对环境刺激发生的 一种适应性反应。 13.反射:是指机体在中枢神经系统的参与下,对内、外环境作出的规律性应答。 14.非条件反射:是指生来就有、数量有限、形式较固定及较低级的反射活动。 15.条件反射:是指通过后天学习和训练而形成的反射,数量无限,是一种高级 的反射活动。 16.反馈:由受控部分发出的信息反过来影响控制部分的活动。 17.正反馈:受控部分发出的反馈信息,促进加强控制部分的活动,最后使受控 部分的活动朝着与它原先活动相同的方向改变,称为正反馈。 18.负反馈:受控部分发出的反馈信息,调整控制部分的活动,最终使受控部分 的活动朝着与它原先活动相反的方向改变。称为负反馈。 (二)细胞基本功能 1.静息电位:静息时,质膜两侧存在着外正内负的电位差,称为静息电位。 2.动作电位:在静息电位的基础上,给细胞一个适当刺激,可触发其发生可传 播的膜电位波动称为动作电位。 3.阈电位:产生动作电位时,要使膜去极化是最小的膜电位,称为阈电位。 4.局部电位:由于去极化电紧张电位和少量离子通道开放产生的主动反应叠加 尔形成的。 5.终板电位:在神经-肌接头处,由于ACH与受体接合,使终板膜上钠离子内流 大于钾离子外流尔形成的去极化电位。 6.局部电流:由于电位差的存在,动作电位的发生部位分邻近部产生的电流, 称为局部电流。 7.极化:通常将平稳的静息电位存在时细胞膜电位外正内负的状态称为极化。 8.去极化:静息电位减小的过程,称为去极化。 9.反极化:去极化至零电位后膜电位如进一步变为正值,称为反极化。 10.复极化:质膜去极化后,静息电位方向恢复的过程,称为复极化。 11.超极化:静息电位增大的过程或状态称为超极化。 12.兴奋-收缩耦联:将肌细胞的电兴奋和机械性收缩联系起来的中介机制。

动作电位、静息电位等的产生机制及特征

动作电位、静息电位等的产生机制及特征: 静息电位产生的原理是这样的:神经元在静息情况下,细胞膜对K +具有较高的通透性,而对Na +等的通透性很低,并且胞内K +的浓度要远远高于胞外,因此在浓度差的驱动下,K +从胞内流向胞外,而由于K +带有1个正电荷的电量,因此随着K +的流动,膜两侧会形成一个逐渐增大的电位差,这个电位差则会阻止K +进一步进行跨膜扩散。当促进K +向外流动的浓度差与阻止K +向外流动的电位差相等时,离子的净移动就会停止,这是跨膜的电位差称为K +离子的平衡电位(equilibrium potential ),可以根据能斯特(Nernst )方程计算出K +的平衡电位, [K]ln [K]o K i RT E ZF 以上的能斯特方程中,E K 为K +的平衡电位,R 为气体常数,T 为绝对温度,Z 为离子价数,F 为法拉第常数,[K]o 和 [K]i 分别为钾离子在胞外和胞内的浓度,我们将上述参数的值代入后可以计算出K +的平衡电位为-75mV ,而同样的也可以计算出Na +的平衡电位为+55mV 。根据这一能斯特理论,1902年这一静息电位产生机制的“膜假说”被提出了,尽管多数人们接受这一理论,但一直未能得到证实。直到1939年,生物学家Hodgkin 和Huxley 从枪乌贼的巨大神经轴突中第一次精确记录到了静息电位,结果为-60 mV ,与计算推测的K +的平衡电位接近,证实了“膜假说”的可靠性。但实际的静息电位E m 并不完全等于E K ,而是介于E K 和E Na 之间。这说明静息电位的形成主要是K +跨膜流动形成的,但Na +的流动也参与其中。 我们在理解了静息电位产生的机制之后,进一步来探讨动作电位的机制。我们知道电位的变化,归根到底就是膜两侧的离子快速跨膜流动的结果。经过近20年的时间,随着实验技术特别是电压钳、膜片钳(patch clamp technique)等技术的发展,生物学家通过不断的实验研究,才逐渐明确了动作电位的产生机制。动作电位的去极化相是由带正电荷的离子从胞外向胞内移动(例如Na +和Ca 2+的内流)产生的,称为内向电流(inwar current ),相反动作电位的复极化相是由带正电荷的离子(K +)从胞内向胞外移动产生的,称为外向电流(outward current )。但外向电流也可以由带负电荷的离子从胞外流向胞内形成,例如Cl -,那么介导动作电位生成的离子成分是什么?它们是如何被准确控制进行流动的? 最早是由Hodgkin 和Huxley 提出了“钠学说”,由于他们记录到动作电位的峰值达到+50 mV ,非常接近Na + 的平衡电位,因此他们认为在动作电位爆发时,Na + 的一过性内流使得膜电位出现快速、短暂的去极化。而后又设计了

浅谈静息电位和动作电位的产生机制

静息电位与动作电位 一、静息电位(RP)的产生机制:在静息状态下,细胞膜对K+具有较高的通透性是形成静息电位的最主要因素。细胞膜内K+浓度约相当于细胞外液的30倍,K+将顺浓度梯度跨膜扩散,但扩散的同时也在细胞膜的两侧形成逐渐增大的电位差,且该电位差造成的驱动力与浓度差的驱动力的方向相反,阻止K+进一步跨膜扩散。当逐渐增大的电位差驱动力与逐渐减小的浓度差驱动力相等时,便达到了稳态。此时的膜电位处于K+的平衡电位(EK+=-90~-100mv),电位差的差值即平衡电位,平衡电位决定着离子的流量。当细胞外液中K+浓度增加(高钾)时,膜内外K+的浓度差减小,K+因浓度差外移的驱动力降低,K+外流减少。故达到稳态时,K+平衡电位的绝对值减小;反之亦然。而细胞膜对Na+亦有一定的通透性,扩散内流的Na+可以部分抵消由K+扩散外流所形成的膜内负电位。所以,EK+=-90~-100mv,而RP=-70~-90mv。可见,细胞外液Na+浓度对RP的影响不大。除了以上两个方面,还有钠泵的生电作用。钠泵使细胞内高钾、细胞外高钠。若钠泵受抑制,膜内外K+的浓度差减小,K+外流减少,K+平衡电位的绝对值减小,静息电位的绝对值也减小。综上所述,影响静息电位水平的因素:(1)细胞膜对K+和Na+的相对通透性;(2)细胞外液K+的浓度;(3)钠泵的活动。 二、动作电位(AP)的产生机制:在静息状态下,细胞膜外Na+浓度约为细胞内液的10倍余,Na+有向膜内扩散的趋势;并且静息时膜内存在着相当数量的负电位,吸引着Na+向膜内移动。但由于静息时细胞膜对Na+相对不通透,因此,Na+不能大量内流。 当刺激引起去极化达到阈电位,细胞膜上的电压门控Na+通道大量被激活,细胞膜对Na+的通透性突然增大,Na+大量内流,造成细胞膜的进一步去极化;而膜的进一步去极化,又将导致更多的Na+通道开放,有更多的Na+内流,引起细胞膜迅速、自动地去极化。 Na+的大量内流,以至膜内负电位因正电荷的增加而迅速消失。又因为细胞膜外Na+浓度约为细胞内液的10倍余,使得Na+内流在膜内负电位绝对值减小到零时仍可以继续,进而出现正电位,直至膜内正电位增大到足以对抗浓度差所引起的Na+内流,便达到了平衡电位(顶点),此时膜对Na+的净通量为零。但是膜内电位并不停留在正电位状态,很快Na+通道失活,膜对Na+变为相对不通透,而对K+的通透性增加。于是膜内K+在浓度差和电位差的驱动力下外流,使膜内电位由正电位又向负电位发展,以后再逐渐恢复到静息电位水平(动作电位的幅度由静息电位的绝对值和Na+的平衡电位值相加决定)。 当细胞外液Na+浓度降低时,膜内外Na+的浓度差减小,将导致去极化时Na+内流减少,Na+的平衡电位减小,动作电位峰值降低;反之亦然。

2019届二轮复习 动作电位的产生与传导图 教案(浙江专用)

重点题型4动作电位的产生与传导图 【规律方法】 (1)动作电位的产生示意图(神经纤维上某一位点不同时刻的电位变化图) ①a处:静息电位,K+外流,膜电位为外正内负,处于极化状态。 ②ac段:动作电位的形成过程,Na+内流。其中ab段膜电位为外正内负,仍处于极化状态;b点膜内、膜外电位差为零;bc段膜电位为外负内正,处于反极化状态;c点膜电位达到峰值。 ③cd段:静息电位的恢复过程,即复极化过程,恢复极化状态,K+外流。 ④de段:膜内外离子分布恢复到原来的静息水平。 (2)动作电位的传导示意图(某一时刻神经纤维上不同位点的电位大小图) 该图记录的是某一时刻神经纤维上不同位点的电位大小图,根据图示dc段K+外流和ca段Na+内流可判断兴奋传导方向为从左到右。 ①a处:静息电位,还未曾兴奋,K+外流,处于极化状态;对应(1)图的a处。 ②ac段:动作电位的形成过程,Na+内流,处于去极化和反极化过程,此时,c 点膜电位刚好达到峰值;对应(1)图的ac段。 ③cd段:静息电位的恢复过程,即复极化过程,K+外流;对应(1)图的cd段。 ④de段:膜内外离子分布恢复到原来的静息水平,e点刚好恢复静息电位;对应 (1)图的de段。

【技能提升】 1.某种有机磷农药能使突触间隙中的乙酰胆碱酯酶(分解乙酰胆碱)活性受抑制,某种蝎毒会抑制Na+通道的打开。下图表示动作电位传导的示意图,其中a为突触前膜,b为突触后膜。下列叙述正确的是() A.轴突膜处于②状态时,Na+内流且不需要消耗ATP B.处于③与④之间的轴突膜,Na十通道大量开放 C.若使用该种有机磷农药,则在a处不能释放乙酰胆碱 D.若使用该种蝎毒,则能引起b处去极化,形成一个动作电位 解析②状态时,处于复极化过程,K+外流,不需要消耗ATP,A错误;处于③与④之间的轴突膜处于反极化状态(未到峰值),此时的Na+通道大量打开,Na+内流,B正确;有机磷农药,不影响a处释放乙酰胆碱,而是影响突触间隙中的乙酰胆碱酯酶活性,C错误;由于该种蝎毒会抑制Na+通道的打开,所以不能引起b处去极化,形成一个动作电位,D错误。 答案 B 2.甲为神经元的动作电位产生图,乙中的Ⅰ、Ⅱ、Ⅲ是神经元质膜上与静息电位和动作电位有关的转运蛋白。下列叙述错误的是() A.AB段的出现是转运蛋白Ⅰ活动导致的 B.BC段的出现是转运蛋白Ⅱ开启导致的 C.CD的出现是转运蛋白Ⅲ开启导致的 D.AB段时的神经元质膜为外正内负状态 解析分析甲图曲线,AB段为膜静息电位,是由钾离子外流引起,需要转运蛋

浦肯野、窦房结细胞跨膜电位及其形成机制-X

第二节心脏的电生理学及生理特性(5学时) Part 2 浦肯野、窦房结细胞跨膜电位及其形成机制(1学时)掌握内容浦肯野细胞与心室肌细胞动作电位的主要差异和4期产生的离 、子机制。窦房结细胞生物电活动的特点、动作电位的分期和各期产生的离子机制(I Ca-L I 、I K1、I f、 I Ca-T)。试比较浦肯野细胞和窦房结细胞4期自动去极的离子机制差异。 K 熟悉内容参与心室肌细胞和窦房结细胞动作电位各期形成的各离子通道开闭的条件及主要通道的阻断剂。 了解内容工作细胞和自律细胞的生理特点差异及主要代表细胞。试解释心房肌细胞无明显2期的原理。 [练习] (一)选择题 【A1型题】单项选择题,每题有A、B、C、D、E五个备选答案,请从中选出一个最佳答案。 1. 心室肌细胞与浦肯野细胞动作电位的主要区别在于 A. 0期去极化速度与幅度不同 B. 1期复极化的机制不同 C. 平台期复极化的机制不同 D. 3期复极化的机制不同 E. 4期自动去极化的有无 2. 区分心肌快、慢反应细胞的依据是 A. 收缩力的大小 B. 0期去极化的速率 C. 平台期的长短 D. 3期复极化的快慢 E. 4期自动去极化的速度 3. 可阻断浦肯野细胞0期去极化的药物是 A. 普萘洛尔 B. 河豚毒素 C. 阿托品 D. 维拉帕米 E. 四乙(基)胺 4. 窦房结细胞的起搏活动是由于 A. 递减性K+电流 B. 递增性净内向电流 C. 递减性K+外流与递增性Na+内流 D. 经L型Ca2+通道的递增性内流 E. 递减性K+外流与L型Ca2+通道的递增性内流 5. 低温、缺氧或代谢抑制,影响细胞的钠-钾泵活动时,将导致 A. 静息电位值增大,动作电位幅度减小 B. 静息电位值减小,动作电位幅度增大 C. 静息电位值增大,动作电位幅度增大

神经干动作电位及其传导速度的测定

实验4 神经干动作电位不应期和传导速度的测定 【实验目的】 1.加深理解兴奋传导的概念并了解神经兴奋传导速度测定的基本原理和方法。 2.验证和加深理解神经干动作电位后兴奋性的规律性变化。 【实验原理】 1.神经纤维兴奋时产生一个可以传播的动作电位,动作电位依局部电流或跳跃传导的方式 沿神经纤维传导,其速度取决于神经纤维直径、内阻、有无髓鞘等。坐骨神经的动作电位是由一群不同兴奋阈值、传导速度(v)和幅值的峰形电位所总和而成,为复合动作电位。测定该复合动作电位传导的距离(s)和经过这些距离所需的时间(t),即可根据v=s/t计算出神经干兴奋的传导速度。 2.神经组织和其他可兴奋组织一样,在接受一次刺激产生兴奋后,其兴奋性将会发生规律 性的变化,一次经过绝对不应期、相对不应期、超常期和低常期,然后再回到正常的兴奋水平。为了测定坐骨神经发生一次兴奋后的兴奋性周期变化,可采用双脉冲刺激法。 即先给与一个一定强度的“条件刺激”,使神经产生兴奋,在神经发生兴奋后,按不同的时间间隔在给与一个“测试刺激”,观察测试刺激是否引起动作电位以及动作电位的大小,以此来反应神经兴奋性的变化,测出相对不应期和绝对不应期。 【实验对象】 蛙或蟾蜍。 【实验器材与药品】 微机生物信号采集处理系统、蛙类手术器械1套、神经标本屏蔽盒、滤纸片、棉球、任氏液。 【实验方法和步骤】 一、蛙或蟾蜍坐骨神经标本制备 标本制备方法参见实验“神经干动作电位的引导”。 二、仪器连接及参数选定 1.仪器连接:同实验3。 2.刺激器参数选定:刺激方式:单次;刺激波宽:0.1~0.2ms;刺激强度:数伏至数十伏。 通过显示器观察到方波位置,而后调节延时使之到适当位置。 3.前置放大器调节:增益:1000;高频滤波:10kHz;时间常数:0.01。 4.计算机调节:见有关计算机操作部分。 三、观察项目 1.神经干兴奋传导速度的测量 将坐骨神经干标本置于神经标本屏蔽盒内的电极上,神经干需与两对引导电极r1和r2以及刺激电极保持良好的接触。 1.1 将r1记录电极连于前置放大器输入端,调节刺激器刺激强度以产生最大动作电位。 1.2 根据计算机采样时间,可测量出从刺激伪迹前沿至动作电位起始转折处的时间间隔(毫

动作电位传导典型考试试题分析

动作电位传导典型试题分析在高中生物教学中,动作电位的传导始终是个难点,需要掌握传导的示意图,需要明确去极化和复极化产生的机理。如果采取曲线的绘制可以帮助解决相关的问题。 试题1:甲图所示为在枪乌賊一条巨大神经纤维上给予适当强度刺激后的 t 时刻, 处膜电位的情况,电位测量方式均按乙图所示。已知静息电位值为-70mv。下列相关说法正确的是() A.静息电位是由膜内钾离子经主动转运至膜外而导致的 B.①②之间有神经纤维膜正处于Na+通道打开的去极化过程 C.t 后的某一时刻,③处神经纤维膜可能处于反极化的状态 D.⑤处离刺激点距离未知,因此在刺激后的某时刻可能出现膜外Na+浓度低于膜内的现象 答案:B 解析:静息电位是由膜内钾离子经通道蛋白易化扩散至膜外而导致的,A错误;ld 因为是右侧刺激,动作电位向右传导,①②之间处于去极化,有神经纤维膜正处于Na+通道打开的去极化过程,B正确;t 时刻时,③处处于复极化过程,t 后的某一时刻,③处神经纤维膜应该可能处于极化的状态,C错误;由于钠-钾泵的主动转运,Na+始终膜外

浓度高,不管⑤处离刺激点距离是多少,因此在刺激后的某时刻不可能出现膜外Na+浓度低于膜内的现象,D正确。 试题可以通过动作电位的传导,绘制如下的图帮助理解(刺激点在左侧): 试题2:(2019年9月全能生试题)将枪鸟贼一条巨大神经纤维置于一定浓度的溶液中,图甲为在神经纤维上给予适当强度刺激后的t1时刻,处膜电位的情况,电位测量方式均按图乙所示。已知静息电位值为一70mV,下列相关说法正确的是() A.随着刺激强度的不断增强,动作电位大小不断增大 B.若提高神经纤维所处外界溶液的K+浓度,则静息电位绝对值增大 C.若刺激点在的①左侧,②③之间神经纤维膜处于Na+通道打开的去极化过程

生理学理论指导:动作电位及其产生机制

精品文档 在静息电位的基础上,细胞受到一个适当的刺激,其膜电位所发生的迅速、一过性的极性倒转和复原,这种膜电位的波动称为动作电位。动作电位的升支和降支共同形成的一个短促、尖峰状的电位变化,称为锋电位。锋电位在恢复至静息水平之前,会经历一个缓慢而小的电位波动称为后电位,它包括负后电位和正后电位。 细胞的动作电位具有以下共同特征:①动作电位具有“全或无”特性,动作电位是由刺激引起细胞产生的去极化过程。而且刺激必须达到一定强度,使去极化达到一定程度,才能引发动作电位。对于同一类型的单细胞来说一旦产生动作电位,其形状和幅度将保持不变,即使增加刺激强度,动作电位幅度也不再增加,这种特性称为动作电位的全或无(allornone)现象,即动作电位要么不产生要产生就是最大幅度;②动作电位可以进行不衰减的传导,动作电位产生后不会局限于受刺激的部位,而是迅速沿细胞膜向周围扩布,直到整个细胞都依次产生相同的电位变化。在此传导过程中,动作电位的波形和幅度始终保持不变;③动作电位具有不应期。细胞在发生一次兴奋后,其兴奋性会出现一系列变化,包括绝对不应期、相对不应期、超常期和低常期。绝对不应期大约相当于锋电位期间,相对不应期和超常期相当于负后电位出现的时期;低常期相当于正后电位出现的时期。 (二)动作电位的产生机制 动作电位上升支主要由Na+内流形成,接近于Na+的电-化学平衡电位。 1.细胞内外Na+和K+的分布不均匀,细胞外高Na+而细胞内高K+。 2.细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。 3.K+外流增加形成了动作电位的下降支。 在不同的膜电位水平或动作电位发生过程中,Na+通道呈现三种基本功能状态:①备用状态:其特征是通道呈关闭状态,但对刺激可发生反应而迅速开放,因此,被称作备用状态;②激活状态:此时通道开放,离子可经通道进行跨膜扩散;③失活状态:通道关闭,离子不能通过,即使再强的刺激也不能使通道开放。细胞在静息状态即未接受刺激时,通道处于备用状态。当刺激作用时,通道被激活而开放。多数通道开放的时间很短,如产生锋电位上升支的Na+通道开放时间仅为1-2ms,随即进入失活状态。必须经过一段时间,通道才能由失活状态恢复至静息的备用状态。通道的功能状态,决定着细胞是否具有产生动作电位的能力,与不应期有密切联系。 .

静息电位和动作电位及其产生原理

静息电位和动作电位及其产生原理 生物电现象是指生物细胞在生命活动过程中所伴随的电现象。它与细胞兴奋的产生和传导有着密切关系。细胞的生物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产生的动作电位。心电图、脑电图等均是由生物电引导出来的。 1.静息电位及其产生原理 静息电位是指细胞在安静时,存在于膜内外的电位差。生物电产生的原理可用"离子学说"解释。该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A-)无通透性,膜内大分子A-被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位。因此,静息电位主要是K+外流所形成的电-化学平衡电位。 2.动作电位及其产生原理 细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。这种膜内为正、膜外为负的电位梯度,阻止Na+继续内流。当促使Na+内流的浓度梯度与阻止Na+内流的电位梯度相等时,Na+内流停止。因此,动作电位的上升相的顶点是Na+内流所形成的电-化学平衡电位。 在动作电位上升相达到最高值时,膜上Na+通道迅速关闭,膜对Na+的通透性迅速下降,Na+内流停止。此时,膜对K+的通透性增大,K+外流使膜内电位迅速下降,直到恢复静息时的电位水平,形成动作电位的下降相。 可兴奋细胞每发生一次动作电位,膜内外的Na+、K+比例都会发生变化,于是钠-钾泵加速转运,将进入膜内的Na+泵出,同时将逸出膜外的K+泵入,从而恢复静息时膜内外的离子分布,维持细胞的兴奋性。 (二)动作电位及其产生原理 1.概念:细胞受刺激时在静息电位基础上产生的可传布的电位变化,细胞兴奋的标志 波形:锋电位:上升相:去极化(-70mV→0mV)反极化(超射)(0mV→+30mV)下降相:复极化(+30mV→-70mV附近) 峰电位是动作电位的主要成份

生理学名词解释大全

(一)诸论 1.兴奋性:生理学中将可兴奋细胞接受刺激后产生动作电位得能力称为兴奋性。 2.兴奋:细胞功能变化由弱变强得过程称为兴奋。 3.抑制:细胞功能变化由强变弱得过程称为抑制。 4.阈值:就是指使细胞膜达到阈电位得刺激强度与时间得总与。 5.阈刺激:能使组织细胞发生变化得最小刺激称为阈刺激、 6.内环境:生理学中将围绕在多细胞动物体细胞周围得液体即细胞外液,称为内环境。 7.反应:活组织接受刺激后发生得功能改变。 8.内环境稳态:就是指内环境得理化性质,如温度、PH、渗透压与各种液体成分得相对恒定 状态、 9.神经调节:就是通过反射而影响生理功能得一种调节方式,就是人体生理功能中最主要得 一种调节方式、 10.体液调节:就是指体内某些特殊得化学物质通过体液途径而影响生理功能得一种方式。 11.自身调节:就是指组织细胞不依赖于神经或体液因素,自身对环境刺激发生得一种适应性 反应。 12.反射:就是指机体在中枢神经系统得参与下,对内、外环境作出得规律性应答。 13.非条件反射:就是指生来就有、数量有限、形式较固定及较低级得反射活动。 14.条件反射:就是指通过后天学习与训练而形成得反射,数量无限,就是一种高级得反射活 动、 15.反馈:由受控部分发出得信息反过来影响控制部分得活动。 16.正反馈:受控部分发出得反馈信息,促进加强控制部分得活动,最后使受控部分得活动朝着 与它原先活动相同得方向改变,称为正反馈。 17.负反馈:受控部分发出得反馈信息,调整控制部分得活动,最终使受控部分得活动朝着与它 原先活动相反得方向改变。称为负反馈、 (二)细胞基本功能 1.通道:就是一类贯穿脂质双层,中央带有亲水性孔道得膜蛋白。 2.载体:就是介导小分子物质转运得另一类膜蛋白,它具有特异性、 3.跨膜电位:当膜上得得离子通道开放而引起带电离子跨膜流动时,从而在膜两侧形成电位, 称为跨膜电位、 4.静息电位:静息时,质膜两侧存在着外正内负得电位差,称为静息电位。 5.动作电位:在静息电位得基础上,给细胞一个适当刺激,可触发其发生可传播得膜电位波动 称为动作电位、 6.阈电位:产生动作电位时,要使膜去极化就是最小得膜电位,称为阈电位、 7.局部电位:由于去极化电紧张电位与少量离子通道开放产生得主动反应叠加尔形成得。 8.终板电位:在神经—肌接头处,由于ACH与受体接合,使终板膜上钠离子内流大于钾离子 外流尔形成得去极化电位。 9.局部电流:由于电位差得存在,动作电位得发生部位分邻近部产生得电流,称为局部电流、 10.极化:通常将平稳得静息电位存在时细胞膜电位外正内负得状态称为极化。 11.去极化:静息电位减小得过程,称为去极化、 12.反极化:去极化至零电位后膜电位如进一步变为正值,称为反极化、 13.复极化:质膜去极化后,静息电位方向恢复得过程,称为复极化、 14.超极化:静息电位增大得过程或状态称为超极化、 15.兴奋-收缩耦联:将肌细胞得电兴奋与机械性收缩联系起来得中介机制。 16.等长收缩:收缩时,肌肉只有张力得增加而长度保持不变。

神经干动作电位传导速度的测定

神经干动作电位传导速度的测定 实验对象:蟾蜍 一实验目的 掌握坐骨神经标本的制备方法。 掌握引导神经干复合动作电位和测定其传导速度的基本原理。 二相关知识 (一)兴奋及兴奋性的概念 (二)动作电位的潜伏期、动作电位时程和幅值 1、动作电位:各种可兴奋细胞在受到刺激而兴奋时,可以在细胞膜静息电位的基础 上发生一次短暂的,可向周围扩布的电位波动。这种电位波动称为动作电位。(三)、动作电位的传导 局部电流的形式 1、细胞外记录 2、神经干的动作电位 神经干是由许多粗细不等的有髓和无髓神经纤维组成的混合神经,故神经干动作电位与单根神经纤维的动作电位不同,它是由许多神经纤维的动作电位合成的一种复合电位。 三实验原理 (一)、单根神经纤维动作电位的引导及其传导 1、记录出了一个先升后降的双相动作电位的原理 当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。在神经干左端给予电刺激后,则产生一个向右传导的冲动(负电位),当冲动传到1电极(负电极)下方时,此处电位较2处为低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,为了便于观察,习惯上规定负波向上)。随后,冲动继续向右侧传导,离开1电极传向2电极处。当它到达2电极(正电极)下方时,因1电极处神经差不多已恢复到原来的状态,于是2电极处又较1电极处为负,引起扫描线向下偏转,记录出一个向下的波形。这样,在神经冲动向右传导的过程中,就记录出了一个先升后降的双相动作电位。 负电极在前时,它首先记录到神经干表面由正变负的电位变化,经历了由正到负再到正的过程,因此记录出动作电位的上相。当在后的正电极记录到这种同样的电位变化过程时,显示相反的情况,记录出动作电位的下相。如果互换正、负电极的位置,则记录到先降后升的双相动作电位。 C. A点神经纤维多于B点(次要原因)。 (二)、神经干动作电位的引导及其传导 四实验步骤 (一)、制备蛙类坐骨神经-胫腓神经标本 通过观看录象让学生学习制作方法 (二)、连接实验装置 注意电极的安装,正负不要接反。 (三)、实验参数设置: (四)、实验观察、记录和测量

相关文档
最新文档