断裂力学题

断裂力学题
断裂力学题

岩石断裂力学复习题

1. 弹性体内的裂纹大致上可以分哪三种,在答题纸上按顺序绘出如图 2 的弹性裂纹薄板,在什么样的边界力作用下,裂纹将是 II 型, I 型,III 型,并分别写出其相应的应力强度因子计算式。 I 型:

边界条件: 当∞→z 时,

0xx =σ,∞=y yy σσ,0xy =τ

在裂纹面(y=0)上,

0y y =σ,0xy =τ 应力强度因子:a

y πσ∞

I =K

II 型:

边界条件: 当∞→z 时,

∞=ττxy ,0xx ==yy σσ

在裂纹面(z=x ±i0,a

边界条件: 当∞→z 时,

∞=ττyz ,0xy zz xx τσσσ===yy

在裂纹面(z=x ±i0,a

2. 由 Griffith 能量平衡理论,推导如果弹性薄板两端均匀施加拉应力为σ,薄板中间缺陷裂纹长度l 需小于多少裂纹才不会发生失稳扩展?已知弹性板的杨氏模量为E ,弹性板材料的表面能密度为Г。 解:由Griffith 能量平衡理论求临界裂纹长度:

对于原场拉应力为σ,单位厚度的平板,当有长度为2a 的裂纹产生时,其总共释放的弹性势能为:

'/c 22E a W πσ= (1)

当长度为2a 的裂纹存在时,模型增加的表面能S 为:

Γ=a 4S (2)

当裂纹端部扩展一小段长度da (裂纹长度由2a 发展为2a+2da )时,如果弹性势能释放率dW c /da 大于或等于表面能的增加率dS/da 时,裂纹会失稳,并进一步扩展。则裂纹扩展的条件可表达为:

da dS

da dW c = (3)

将式(1),(2)代入(3),可得远场力σ作用下,使裂纹失稳并扩展的裂纹临界长度a0为:

2/'20a πσΓ=E (4)

3. 什么是裂纹的应力强度因子的?其一般表达式是什么?量纲是什么?应力强度因子与弹性板材料的表面能密度间有何关系。

应力强度因子含义:表征裂纹端部应力场的特征物理量,和裂纹尺寸。几何特征

及荷载有关。

量纲:[应力]×[长度]1/2

应力强度因子与表面能密度的关系:

G 表示裂纹扩展单位面积时系统提供的能量,称“能量释放率”,则:

Ⅰ型:’E K G 2I I =

Ⅱ型:’

E K G 2I I

I I =

Ⅲ型:E K G 2)1(I I I

I I I +=ν(注意是E 不是E ’)

混合型:I I I I I I ++=G G G G

R 为裂纹扩展单位面积所需能量,当G ≥R 时,裂纹扩展。对于理想脆性材料(无塑性变形),R=г,则可通过上方G 关于应力强度因子的表达式,建立理想条件下,裂纹处于临界扩展状态时,应力强度因子与表面能密度г的关系

(不过真的很少有这种提法)。

4. 什么是裂纹扩展力?其定义式与什么?写出复合裂纹破裂力与应力强度因子间的关系?

裂纹扩展力:即能量释放率(用符号G表示),要使裂纹扩展,必需提供动力,裂纹扩展单位面积系统能量的下降率称为能量释放率,它是裂纹扩展的动力。定义式:

格里菲斯能量准则的表述:裂纹每扩展单位面积,系统提供的动力G大于或等于裂纹扩展的阻力R。设整个系统的能量(即势能)用表示,则裂纹扩展的面积所消耗的能量为,按照能量守恒,能量的消耗相当于系统势能下降,即

在极限条件下就有

G与K的关系:

I型裂纹:

II型裂纹:

III型裂纹:

其中:

5. 什么是环向扩展理论?书上4.2是根据环向扩展理论预测的I—II混合型裂纹扩展的方向。根据这个图,请你大体绘出纯I 型裂纹、纯II 型及K I-K II等值混合裂纹的扩展方向。

背景知识:

环向扩展理论:即最大环向拉应力准则。Erdogan与薛昌明(Sih)(1963)基于上述实

验观测结果,提出了最大环向拉应力准则。该准则认为:

(1)扩展方向:裂纹沿所对应的的方向扩展,该方向满足以下条件:

(2)扩展起始:当

即达到一定临界情况时,裂纹开始扩展。

裂纹扩展方向:

纯I型裂纹扩展方向(0°)纯II型裂纹扩展方向(-70.53°)I—II混合型裂纹扩展的方向在纯I型裂纹扩展方向和纯II型裂纹扩展方向之间,具体位置跟K I和K II的相对大小有关,考试只要画出相应的趋势即可。K I-K II等值混合裂纹的扩展方向为-53.13°,图略。

6. 什么是应变能密度因子破裂准则?请分别根据最大环向应力破裂准则与应变能密度因子破裂准则预测裂纹角与断裂角?请简要说说与图4.2(上题图)间的相关性。

背景知识:

S称为应变能密度因子

应变能密度因子破裂准则:

裂纹角与断裂角之间的关系:

应变能密度因子破裂准则预测为:

最大环向应力破裂准则预测为:

其中:

相关性:

7. 什么是库仑破裂准则?写破裂强度计算的公式?回顾下程序作的练习

由库伦公式表示莫尔包线的土体抗剪强度理论。岩石抵抗剪切破坏的能力不仅与作用在截面上的剪应力有关,还与作用在该截面上的正应力有关。

00()f n f p ττσ=+-

断层走向对两个断层之间的相互作用影响十分显著。两个断层走向夹角越小,则彼此间的影响越小,锁固段的库仑力变化也越小;两个断层走向夹角越大,锁固段的库仑力变化越大,并且锁固段的影响范围也越大。

在一定范围内,断层长度会对两个断层之间相互作用产生一定的影响。随着断层长度的增加,两个断层锁固段的影响范围也随之增大;但当断层的长度增大至一定值后,这种影响便不再发生显著变化。

断层面上的平均滑移距离越大,则两断层锁固段的库伦应力变化越大,同时锁固段的影响范围也越大。

当摩擦系数的影响存在一个0.6左右的阈值。当摩擦系数大于0.6时,其对两个断层之间库仑力的影响趋于定值;当摩擦系数在0-0.6之间变化时,其对断层间库伦力的影响很大。

8. 从库仑破裂准则出发简要阐述下雨诱发滑坡?页岩气开采、水库蓄水诱发地震的主要原理

降雨入渗至潜在滑动面后,一方面水与岩土体发生物理化学作用,减小了潜在滑动面的粘聚力和摩擦系数,一方面又减小滑动面上的有效应力,导致潜在滑动面的抗剪强度降低;同时降雨入渗会使部分岩土体饱和,增加了潜在滑动面的上覆荷载,导致滑坡发生。

9. 库仑应力的定义是什么?如何计算库仑应力变化

库伦应力定义:0()n CFS P ττμσ=--- 库伦应力变化:()n CFS P τμσ?=?-?-?

10. Byerlee 律指什么?应用条件及主要公式

拜尔利搜集整理了有关岩石的实验结果,发现岩石沿预存面发生摩擦活动遵从实验定律:

a

200506.0a

20085.0m m MP MP N N N N

>+=<=σστσστ

除含大量粘土的岩石外,绝大多数岩石均遵从此定律,与岩性无关。 该定律的主要特点:

1)摩擦系数μ与岩石种类几乎无关,而与滑动面的粗糙程度关系最大 2)摩擦系数与岩石种类有一定关系,但不甚密切 3)摩擦与滑动面的粗糙程度无关.

4)假定滑动面之间充填了很厚的断层泥,只要这层断层泥不是由蒙脱石、蛭石和伊利石组成,岩石的摩擦滑动就好像断层泥根本就不存在,与两块岩石彼此接触在一起摩擦滑动情况一样. 但是,如果滑动面之间充填有以上三种矿物的断层泥,哪怕是很薄的一层,摩擦滑动都将非常容易发生,即摩擦系数是一个十分小的值。

11.安德森断裂理论的假设条件是什么?正断层、逆断层、走滑断裂发生的构造条件是什么?其断层倾角各有何特征? 1)安德森断裂理论数学表达以及假设条件:

2)正断层发生的构造条件:

正断层是指上盘下降,上盘上升的构造运动,有利于正断层发生的地质构造是经历水平拉伸和或垂向抬升的地质构造。

3)逆断层发生的构造条件:

逆断层是指上盘上升,下盘下降的构造运动,有利于逆断层发生的地质构造是收到区域性水平挤压的地质构造的影响容易发生逆断层。

4)走滑断裂发生的构造条件:

走滑断层是指断层面走向发生发生相对水平运动的断层,有利于断层发生的地质构造是在地质构造区域发生纯剪切或简单剪切或二者的复合形式是较容易发生走滑断裂。

5)断层倾角特征:

正断层的倾角一般比较陡,发生在45度到80度之间;反之逆断层的角度比较缓在20到45度之间,对于具有推覆构造的逆断层其倾角可能在10到15度之间。

12.非线性断裂理论与线性断裂理论的区别是什么?断层亚临界扩展是什么现象?

1)线性断裂力学主要包括格里菲斯脆性材料裂纹扩展准则,欧文的应力场强度观点以及应力强度因子断裂准则以及Grwith能量准则线弹性断裂力学的核心内容。线弹性断裂力学是弹性理论在含有裂纹体中的应用,而弹性理论的假设同样保留在线弹性断裂力学的理论中,即小变形假设以及应力应变呈线性假设。岩石的应力应变行为仅仅在某一应力大小范围内是近似线弹性的,而且还只能针对一定尺度,这个尺度要远远大于岩石的颗粒尺度. 当我们的考察尺度小到接近颗粒尺度,或当应力超出一定范围时,岩石就表现出越来越强烈的非线性。

为了克服这种物理上的不合理性, 人们提出了几种非线性修正理论, 包括达格德尔(1960)提出的塑性区理论, 或曰带状屈服模型, 巴仁布莱特(Barenblatt, 1962)的内聚力模型.

2)由于介质流变性质的影响,当构造力使断层的应力强度因子达某阀值后断层即开始亚临界扩展 ; 即使构造力保持不变,扩展也将不断加速并最终导致失稳扩展即,地震.由于构造力变化情况不同,断层扩展表现为实际观测到的多种形态扩展速度的变化速率不同,孕震期长短随之异动

13. 地震目录是什么?什么是完整的地震目录?如何估计完备的地震目录的最小震级?

地震目录:是指按时间顺序,对地震的主要参数进行收录,编辑成目录资料,是进行活动构造、地震预报和工程地震研究的基础资料。 完整的地震目录:

如何估算完备的地震目录的最小震级? 最大曲率法

选择震级曲率曲线中斜率最大的值所对应的震级作为Mc 。 拟合优度测试法

拟合优度测试法测度的是拟合的FDM 与实验的FDM 之间的差异,当目录不完全时,二者差异较大。在操作过程中,对于每一个震级的下限,均采用最大释然估计,计算其对应的a 和b 值,从而构造出一个严格符合GR 关系的FDM 。 b 值稳定法

将b 值看成0c M 的函数,并假设b 值会随着0c M 的接近而靠近Mc ,b 的标准值为0.03,可动态调整。 分段斜率中值分析法

是由Amorese 提出的,是一种迭代寻找累计FDM 多次改变点的方法,此方法从用迭代找出FDM 中斜率的不连续点,其主要不连续点就是Mc 。 完整性震级范围法

是由Wossner 和Wiemer 提出的,通过建立一个包含两部分的模型,完备记录部分用G-R 定律描述,地震事件百分百记录,不完备部分用累计正态分布来表

示,其公式为

公式5中,μ是有百分之50概率探测到的震级,σ是标准差。由于Mc 在探测密度函数中显示表示,所以可以用最似然来估计Mc 。

14. 理解G-R Law(震级频率关系)与Omori-Utus Law(大森-宇津余震衰减率)的表达式?b 值与p 值分别隐含的物理意义是什么?如何估算b 值? G-R 准则

即震级频率关系,表示某地区某段时间内发生震级≥M 的地震数N(M)可用如下关系式表达:

bM a M LogN -=)(

参数a 表示该地区的地震活动水平,参数b 不仅仅描述大、小地震的比例关系,同时也与地应力状态密切相关,b 值高代表地应力水平低,b 值低代表地应力水平高。并且b 值主要决定于应力状况和介质性质,还受构造条件、温度、流体、和破裂方式等诸多因素的影响。b 值的表现十分复杂,但b 值无疑是地震过程物理场变化的重要表现。 大森-宇津余震衰减率

地震的余震频度随时间的变化,可用如下改良的大森公式表示: P

c t K

t n )()(+=

式中,)(t n 是余震发生的时间频度,t 是自主震发生后的时间长度,K C P 都是余震活动的时间变化参量,P 称为余震衰减系数。

参数P 表示余震衰减程度,P 值的大小可能与余震区岩石的物性,以及应力场的空间不均匀性有关,它依赖于岩石的摩擦强度相对于剪切应力的松弛时间的恢复比。 如何估算? 最大释然估计

由于只有完整的地震数才符合GR关系,所以Mmin被定义为最小完整震级。最小二乘法

由GR准则,可知:

=

(

LogN-

)

M

bM

a

令Y=lgN,X=M得到如下:

组成法方程:

Y=

AX

解法方程,求未知矢量X:

从而求解得到:

断裂力学期末考试试题含答案

一、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分) 3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15) 4. 简述脆性断裂的K 准则及其含义?(15) 5. 请简述疲劳破坏过程的四个阶段?(10) 6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分) 7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分) 二、 推导题(10分) 请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式? 三、 证明题(10分) 定义J 积分如下, (/)J wdy T u xds Γ =-????,围绕裂纹尖端的回路Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。 四、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 答: 按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I 型)、滑开型(II 型)和撕开型(III 型),如图所示

断裂力学基础(学习笔记)

第一章 断裂力学的基本概念 宏观裂纹的产生: 1) 制造时存在而无损检测漏检:大型锻件容易出现白点裂纹,夹杂裂纹;高强度钢易出现 焊接裂纹 2) 构件中原来存在的较小裂纹,在周期性的工作应力(疲劳应力)下逐渐发展长大的; 3) 腐蚀性价值中工作的构件,在应力和介质联合作用下,小裂纹也会逐渐发展成宏观裂纹; 总之构件内部存在的宏观裂纹是造成构件低应力脆断的直接原因。 材料力学:研究不含宏观裂纹构件的强度、刚度和稳定性; 断裂力学:研究含有宏观裂纹构件的安全性 裂纹:夹渣、气孔、未焊透、大块夹杂; 断裂韧性:只与材料本身、热处理、加工工艺有关; Y a K c Ic σ=是材料抵抗低应力脆性破坏的韧性参数 Ic K 是材料性能,裂纹形状大小Y a 一定时,Ic K 越大,使裂纹快速扩展导致构件脆断所需应力c σ也越高,构件阻止裂纹失稳扩展的能力就越大。 应力场强度因子: Y a K I σ= 断裂韧性Ic K 是应力强度因子I K 的临界值,I K 是裂纹前端应力场强度的度量,它和裂纹大小、形状以及外加应力都有关 断裂力学的应用 a Y K I σ?= Q Y π 1.1= 22212.0??? ? ??-Φ=s Q σσ: 形状因子 Φ是和椭圆轴比有关的椭圆积分,可查手册获得;

第二章 线弹性断裂力学 弹性力学的某些概念: 应力分量:3 应变分量:3 胡克定律和广义胡克定律: 平面应力:z 方向总力和为0,x,y 平面有正应力和切应力,这三个应力沿z 轴(厚度方向)都一样,与z 无关,仅是x,y 的函数,这种应力状态称为平面应力状态。当板很薄时,可认为是平面应力状态。0=z σ 体内应变分量只有三个,厚度方向认为没有应变,这种应变状态称为平面应变状态。()y x z σσυσ+= 对试件来说,厚度很小就是平面应力状态;厚度很大就是平面应变状态;厚度中等,两外表面不受力属于平面应力状态;中间大部分地区由于受两端面的约束,沿厚度方向不能变形,故属于平面应变状态; 三种裂纹组态: 张开型裂纹(I):外加正应力和裂纹面垂直; 最容易引起低应力脆断; 滑开型裂纹(II):外加剪应力和裂纹面平行; 撕开型裂纹(III):外加剪应力与裂纹面错开; 裂纹顶端附近应力场 复变函数求解; 塑性区及其修正: 裂纹尖端应力不可能无限大,材料一旦屈服,弹性规律就失效,若屈服区很小周围仍然是弹性区,经修正线性弹性断裂力学仍然有效; 屈服判据: 最大剪应力判据(屈雷斯加判据):在复杂加载条件下,当最大剪应力等于材料的极限剪应力(即单向拉伸剪应力)时,材料就屈服; 2 2min max max σσστ-==s 形状改变能判据(米塞斯判据):当复杂应力状态的形状改变能密度,等于单向拉压屈服时的形状改变能密度时,材料就屈服; ()()()22132322212s σσσσσσσ=-+-+- xy y x y x τσσσσσσ+-±+=2 )(2221 ()???+=2130 σσυσ

国际焊接工程师考试IWE-结构试题

1.按ISO2553进行焊缝图示是,在为不说明符号后面可以给处下述哪些内容? A.施焊焊工的号码 B.焊接位置 C.焊接电源种类 D.按ISO5817的评定组别 E.焊接方法 2.如采用X型对接焊取代V型对接焊: A.焊接接头性能提高 B.焊接金属耗材降低 C.焊接成本降低 D.横向收缩增大 E.收缩角度增大 3.关于焊缝许用应力的选择,下述哪些说法是正确的? A.与焊缝的接头形式有关 B.与母材本身的需用应力有关 C.环境条件对焊缝许用应力无影响 D.焊缝许用应力的选择与应力状态无关 E.焊缝许用应力的选择与焊缝质量级别无关 4.焊接结构设计方法之一是按许用应力设计,计算焊缝强度时,是否有焊缝许用应力 A.计算焊缝强度时,使用母材许用应力,并不另外有焊缝许用应力的概念 B.计算焊缝强度时,应当采用焊缝许用应力 C.焊缝许用应力始终是母材许用应力同一数值 D.焊缝许用应力不一定等于母材许用应力,数值也可以小于母材许用应力 E.焊缝许用应力不一定等于母材许用应力,数值也可以大于母材许用应力 5.图1557中所示截面的惯性矩IX为: A.592cm4 B.576cm4 C.632cm4 D.608cm4 E.620cm4 6. 下述哪些关于正应力的说法是正确的? A.正应力平行地作用于截面 B.正应力是由轴向力和弯矩产生的 C.在承受弯曲载荷的梁上不会出现弯曲拉应力和弯曲压应力 D.人们把正应力划分为拉和压应力及弯曲拉应力和弯曲压应力 E.纯剪力载荷能够产生正应力

7. 在图示5种薄壁型材中, 哪些会出现扭转? A.1 B.2 C.3 D.4 E.5 8. 由于焊接技术方法原因,在DIN18800标准中,对于角焊缝厚度推荐了界限值,下述哪些关系对于角XXXXXX? A.a的最小值≥4 B.a的最大值≤0.7*t min C.a的最小值≥(t min)∧(1/2)-0.5 D.a的最大值≤0.7*t max E.a的最小值≥(t max)∧(1/2)-0.5 9.XX裂韧研究和应用中,裂纹尖端张开位移(COD)法主要用于哪些情况? A.适用弹塑性断裂力学 B.适用线弹塑性断裂力学 C.主要适用于塑性较好的中、低强度钢 D.主要适用于超高强度钢 E.可用小试样间接求得材料平衡应变断裂韧性KIC 10.用断裂力学研究焊接结构中疲劳裂纹扩展规律,其影响裂纹扩展速率(da/dN)的XXX? A.应力振幅 B.平均应力 C.裂缝长度a D.最大应力 E.疲劳强度 11.哪种结构的脆断倾向较小? A.厚壁接头 B.薄壁接头 C.在厚壁和薄壁构件之间的可以自由收缩的接头 D.在厚壁和薄壁构件之间的不能自由收缩的接头 E.具有较高C和N含量的材料 12.焊接接头的疲劳强度之所以比铆焊等其它连接的疲劳强度小,其原因是: A.焊接接头性能不均匀 B.焊接缺陷 C.焊接接头应力集中 D.焊接应力变形 E.结构整体性 13.疲劳强度用σ0表示,是什么意思? A.应力循环内最大应力σmax=0 B.应力循环内最小应力σmin=0 C.应力循环内的平均应力σm=0 D.应力循环内的最大应力与最小应力相等,即σmax=σmin

核工业基本知识试题汇总

1.核电站是以核能转变为电能的装置,将核能变为热能的部分称为核岛,将热能变为电 (+)能的部分称为常规岛。 2.重水堆冷却剂和载热剂是去离子水。(—) 3.堆芯中插入或提升控制捧的目的是控制反应堆的反应性。(+) 4.压水堆中稳压器内的水-汽平衡温度的保持是借助于加热和喷淋。(+) 5.由国家核安全局制定颁发的安全法规都是指导性文件。(—) 6.断裂力学可以对含裂纹构件的安全性和寿命作出定量或半定量的评价和计算。(+) 7.焊缝具有冶金和几何双重不连续性,往往是在役检查区域的选择重点。(+) 8.所有核电厂的堆型都必须要有慢化剂降低中子的能量。(-) 9.核电站压水堆型的反应堆压力容器和蒸汽发生器中的所有部件都属于核I级部件。(-) 10.自然界中U-235,U-234,U-238三种同位素具有不同的质子数和相同的中子数。(-) 11.断裂的基本类型有三种,张开型裂纹(I型);滑开型裂纹(II型);撕开型裂纹(III (-)型),在工程构件内部,滑开型裂纹是最危险的,容易引起低应力脆断。 12.制造压力壳的材料,对Co和B含量的严格控制的目的是为了减少放射性,避免吸收中 (-)子和提高抗拉强度。 13.应用无损检测最主要的目的在于安全和预防事故的发生。(+) 14.结构件内部存在有微裂纹,必然会是造成构件低应力脆断。(-) 15.核能是一种可持续发展的能源,通过几十年经验总结证明,核能是安全、经济、干净 (+)的能源。 16.我国当前核电站的主要堆型是轻水压水堆。(+) 17.前苏联于1954年建成的第一座核电站,开辟了人类和平利用原子能的先河。(+) 18.不锈钢通过淬火提高强度和硬度。(-) 19.在役检查的可达性是要求受检部位、人员及设备的工作空间和通道满足HAD103/07的 ( + )有关规定。 20.压水堆核电站的冷却剂和载热剂也是降低裂变的中子能量慢化剂。( + ) 21.核电站的类型是由核反应堆堆型确定的,目前世界上的主要堆型仅有轻水堆、重水堆。(—) 22.从断裂力学的角度考虑,选材时材料强度越高越好。(—) 23.核用金属材料必须对钴、硼等杂质元素含量严加限制。( + ) 24.核工业I、II级无损检测人员资格鉴定考试包括“通用考试”和“核工业专门考试” ( - ) 两部分。 25.核工业无损检测的报考者实际操作考试内容包括正确应用仪器进行检测,给出检测结 ( ) 果并对结果进行解释的能力。但不包括安全防护规则的制定与实施。 26.金属材料的性能分为机械性能、物理性能、化学性能和工艺性能是指材料的强度、硬 ( ) 度、韧性和塑性四方面。 27.现代意义上的无损检测是广泛利用计算机技术检测高精尖设备和装置的无损检测方 ( ) 法。 28.核电是一种干净的能源,其对环境影响小。如一座1000MW单机组的核电站每年约产生 ( ) 30吨高放废燃料和800吨中、低放废物,以及6,000,000吨二氧化碳。 29.核安全2级部件是指具备防止或减轻事故后果之功能的设备。( + ) 30.目前运行的核电站是以裂变和聚变的方式来释放核能的。(—) 31.高强度低合金钢中硫和磷元素能起到细化晶粒的作用。(—)

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

弹塑性断裂力学考试题

注:自己多改改啊,6月18日早上交。 1.在例3.2中,更精确地分析是假定悬臂梁在长度a+a 0处固定,根据实验测定a 0取h/3较合适。并考虑变形引起的位移,取V=1/3,试求能量释放率。 解:根据题意 V EBh a a p V EJ a a p ++=++=?3 3030)(83)(2 试件柔度 p V EBh a a p c ++=?=3 30)( 所以G I =3 22 22)3(1221h EB p h a d d p B a c += 2.某发电机转子在动平衡时发生断裂。断裂后发现垂直于最大拉应力方向的一个圆形片状缺陷。直径约在2.5~ 3.8cm 之间。缺陷处的最大拉应力为350MPa 。试估算转子的临界裂纹尺寸。经测定,转子材料的断裂韧度k 1c =(34~59)MPa m 。 解:缺陷处应力强度因子为 a k πσπ 2 1= 又k 1c =(34~59)MPa m ,350=σMPa a=(0.74~2.2)cm 所以裂纹直径为1.5~4.4cm 3.气瓶内径D=508mm ,壁厚t=35.6mm ,纵向有表面裂纹,深度a=16mm ,长度2L=508mm ,材料的屈服极限0σ=538MPa ,断裂韧度k 1c =110MPa m ,试求爆破压力。假设为理想塑性材料,考虑塑性区修正。 解:利用半椭圆表面裂纹应力强度因子 )(/]})(241[{1.121 211k E k a k s σππ+= =c a 254 16=0.063 ,查表得)(k E =1.008 21 211]})(241[{1.1) (s c k a k E k σππσ+= =21)]}8.53110(24116[{1.1110008.1ππ+ ?=14.2 kg/mm 2

拉伸试验的作用及试样的形状及尺寸-推荐下载

1.拉伸试验的作用及试样的形状及尺寸 答:作用:测定材料的弹性,强度,塑性,应变硬化和韧性等许多重要力学性能指标; 形状:光滑圆柱试件,板状试件; 尺寸:①圆柱形拉伸试件:试件的标距长度Lo应比Do要大得多,通常Lo>5Do; Ao Ao 板状拉伸试件:标距长度Lo应满足下列关系式:Lo﹦5.65或11.3;其中Ao 为试件的初始面积。 2.应力状态柔度系数的物理意义及应用? 答:应力状态柔度系数:在各种加载条件下,最大切应力τmax与最大正应力σmax之比,记为α,α=τmax/σmax.。α(拉伸)﹤α(扭转)﹤α(压缩) 3.金属材料的弹性不完善性包括那几个方面? 答:弹性不完善性是指收到应力作用是,没有立即发生相应的弹性应变去除应力时应变也不是随即消失,包括弹性后效,弹性滞后,包申效应三个方面。 4.金属材料使用过程和生产过程对材料有什么要求?(强度和塑性) 答:在进行材料选择时,设计师必须首先考虑强度,导电性或导热性,密度及其他性能。然后,在考虑材料的加工性能和使用行为(其中材料的可成塑性,机械加工性,电稳定性,化学持久性及辐照行为是重要的。)以及成本和材料来源。 所谓强度是指金属材料在静载荷作用下,材料抵抗变形和破坏(断裂)的能力成为强度。根据外力的作用方式,有多种强度指标,如抗拉强度,抗弯强度,抗剪强度等。一般情况下多以抗拉强度作为判别金属强度高低的招标。 机械零件在使用时,一般不允许发生塑性变形,所以屈服强度是大多数机械零件设计时选材的主要依据也是评定金属材料承载能力的重要机械性能指标。材料的屈服强度越高,允许的工作应力越高,零件所需的截面尺寸和自身重量就可以较小。 材料发生屈服后,到最高点应力达最大值σb。在这以后,试样产生“缩颈”,迅速伸长, 应力明显下降,最后断裂。试样裂前能够承受的最大应力值σb称为抗拉强度或强度极限。如果单从保证零件不产生断裂的安全角度考虑,可用作为设计依据,但所取的安全系数应该大一些。 材料在外力作用下,产生永久残余变形而不被断裂的能力,称为塑性。塑性指标也主要是通过拉伸试验测得的。工程上常用延伸率和断面收缩率作为材料的塑性指标。屈服强度与抗拉强度的比值σs/σb称为屈强比。屈强小,工程构件的可靠性高,说明即使外载或某些 意义外因素使金属变形,也不至于立即断裂。但屈强比过小,则材料强度有效利用率太低。延伸率和断面收缩率的值越大,表示材料的塑性越好。塑性对材料进行冷塑变形有重要的意义。此外,工件的偶然过载,可因塑性变形而防止突然断裂,工件的应力集中处,也可因塑性变形使应力松弛,从而使工件不至于过早断裂。这就是大多数机械零件除要求一定强度指标外,还要求一定塑性指标的道理。 材料的δ和ψ值越大,塑性越好。两者相比,用ψ表示塑性更接近于材料真实应变。 5.表示脆性材料的力学性能的参量有哪些? 答:弹性模量和脆性断裂强度。 6.工程中测定材料的硬度最常用的方法? 答:测定硬度方法有很多,有压入法,回跳法和刻划法三大类。最常用的是压入法,根据加载速率的不同分为动载入压入法和静载压入法。超声波硬度,肖氏硬度和锤击式布氏硬度属于动载实验法。布氏硬度,洛氏硬度,维氏硬度和显微硬度同于静载压入发。 7.弹性模量的影响因素?材料弹性常数有哪些? 答:1)纯金属的弹性模量:除了过度族金属除外,一般地讲弹性模量E与原子半径r之间

弹塑性断裂力学结课报告.

弹塑性断裂力学 在本文总共分四部分,第一部分断裂力学习题,第二部分为断裂力学在岩石方面的研究及应用,第三部分为断裂力学的学习总结,第四部分为个人总结及建议。 一、断裂力学习题 1、某一合金构件,在275℃回火时,01780MPa σ=,52k K MPa m =,600℃回火时,01500MPa σ=,100Ic K MPa m =,应力强度因子的表达式为 1.1I K a σπ=,裂纹长度a=2mm ,工作应力为00.5σσ=。试按断裂力学的观点评 价两种情况下构件的安全性。(《断裂力学》 徐振兴 湖南大学出版社 P7) 解:由断裂失稳判据K<错误!未找到引用源。c ,临界条件K=错误!未 找到引用源。c 且a=2mm ,工作应力0=0.5σσ错误!未找到引用源。, 1.1I K a σπ=得 在275℃回火时,152Ic K MPa m =,得 111.117800.50.00277.6I Ic K MPa m K π=????=> 在600℃回火时,2100Ic K MPa m =,得 221.115000.50.00265.4I Ic K MPa m K π=????=< 由断裂准则可知,在275℃时K >错误!未找到引用源。c ,即裂纹会发 生失稳破坏;在600℃回火时K<错误!未找到引用源。K c ,即裂纹不会 发生失稳破坏。 2、有一长50cm 、宽25cm 的钢板,中央有长度2a =6cm 的穿透裂纹。已知材料的K Ic =95MPa m ,其屈服强度为ys δ=950MPa 。试求裂纹起裂扩展时的应力。(《工程断裂力学》 郦正能 北京航空航天大学出版社 P51) 解:(1)不考虑塑性区修正,但考虑有限宽度修正

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

《断裂力学》考试题含解析

二 K i ', =dx 0 J(a 2-x 2) 10分 一、 简答题(本大题共5小题,每小题6分,总计30分) 1、 (1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、 有限元法;(3)实验应力分析法:光弹性法.(4)实验标定法:柔度标定法; 2、 假定:(1)裂纹初始扩展沿着周向正应力;一、为最大的方向;(2)当这个方 向上的周向正应力的最大值(;=)max 达到临界时,裂纹开始扩展? S 3、 应变能密度:W ,其中S 为应变能密度因子,表示裂纹尖端附近应力场 r 密度切的强弱程度。 4、 当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、 表观启裂韧度,条件启裂韧度,启裂韧度。 二、 推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的 诸条件。 积分路径:塑性区边界。 AB 上:平行于%,有dx 2 r O’ds r d %兀》s BD 上:平行于 %,有 dx 2 = 0 , ds = d% , T 2 - s J(WdX 2 -T 凹 ds) T 2 竺 dX ! X-I AB r B D A ;「s V B =:;S (V A ' V D ) 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段一集中力qdx — dKi = 2q ; a 2 dx 业(a-x 2 ) 2007断裂力学考试试题 B 卷答案 T 2 土 dx , BD 2 :x , 1 Sv

Z 二.— (sin 2b -sin ( a) 2b 二(a ))2 兀a 2 -(sin 2b ) 31 u J-L u ,cos = 1 2b 2b JE JE JE it 二 sin ——cos 一a cos 一 sin — a 2b 2b 2b Tt .. Tt 二——cos ——a sin 2b 2b ■ . 2 ' - 2 2 二 [sin ( a)] = ( ) cos a 2 —0 时,sin 2b sin =( a)二 2b n a 2b 仝 2b 2b - n n IT 2 cos ——a sin ——a (sin — a) b 2b 2b b.在所有 裂纹 内部 应力 为零.y =0, -a ::: x ::: a, -a _ 2b ::: x ::: a _ 2b 在区间内 C.所有裂纹前端;「y ?匚 单个裂纹时Z - —^Z — Jz 2 —a 2 又Z 应为2b 的周期函数 二 Z 二 J 兀z 2 兀a 2 、(sin —)2 - (sin —)2 Y 2b 2b 采用新坐标:『:=z - a 令 x=acosv= \ a -x = acosv, dx 二 acosrdr 匚 K “ 2q. a :n 1(a1a )咤 d 一 Yu '0 a cos 日 当整个表面受均布载荷时,耳-;a. K i = 2q J^s in 10分 2、 边界条件是周期的: a. Z 、,二y 7 一;「 .兀z 二 sin b 10分 sin A (a /a)

断裂力学试卷2010(可编辑修改word版)

华中科技大学土木工程与力学学院 《断裂力学》考试卷(半开卷) 2010~2011 学年度第一学期成绩 学号专业班级姓名 一二三四五六合计 分数 一、填空题(每空 2 分,共16 分) 1. 在断裂力学中,小范围屈服是指(),当()时,可以采用线弹性断裂力学,且能保证其精确度和有效性;而当塑性区尺寸与裂纹尺寸同数量级时称为(),只能采用()来处理。 2. 复合型裂纹扩展与单纯张开型裂纹扩展的主要不同之处是 ()。 因此,复合型裂纹的研究,除了需要确定临界状态,建立断裂判据外,还要确定()。常用的复合型裂纹脆性断裂理论有()和()等。 二、简答题(24 分) 1. 设有两条Ⅰ型裂纹,其中一条长为4a,另一条长为a。如前者加载到,后者加载到 2。问它们裂纹尖端附近的应力场是否相同?应力强度因子是否相同? 2. 设有无限大平板 I 型裂纹,受轴向拉应力作用,裂纹顶端附近的应力为: =a3 cos (1+ sin sin yy2r 2 2 ) ,其中a 为裂纹尺寸。 2 (1)求应力强度因子K I ; (2)当=0 时,在裂纹顶端和距裂纹顶端很远处, yy 各为多少?与题设条件有无矛盾?如何解释? 三、试用叠加法求图示无穷大板裂纹尖端应力强度因子。(15 分)

m P 2a t 2a D p 题五图 б2 б1 题三图 四、圆拄形容器有一纵向穿透裂纹。容器的内径D=100㎜,壁厚t=5㎜,最大工作压力 p max =48MPa,材料的断裂韧性K ⅠC =37MPa ,试求临界裂纹长度a c 。(15 分) 题四图 五、如图所示的杆件,若b a ,而且在杆端的位移为,试求恒载荷及恒位移情形下的 应变能释放率G I 及应力强度因子K I 。(15 分) 六、物体内部有一圆盘状深埋裂纹,直径为2.5cm,这一直径比物体的其它尺寸小得多, 若垂直于裂纹面的方向作用拉应力700MPa,材料的屈服极限为930MPa,试计算

损伤与断裂力学读书报告

中国矿业大学 2012 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2012. 12 学生姓名张亚楠 学号ZS12030092 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》读书报告 一.断裂力学 1.基本概念及研究内容 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 随时间和裂纹长度的增长,构件强度从设计的最高强度逐渐地减少。假设在储备强度A点时,只有服役期间偶而出现一次的最大载荷才能使构件发生断裂;在储备强度B点时,只要正常载荷就会发生断裂。因此,从A点到B点这段期间就是危险期,在危险期中随时可能发生断裂。如果安排探伤检查的话,检查周期就不能超过危险期。如下图所示: 问题是储备强度究竟是个什么样的参量?它与表征裂端区应力变场强度的参量有何关系?如何计算它?如何测量它?它随时间变化的规律如何?受到什么因素的影响?这一系列问题如能找到答案的话,则提出的以上五个工程问题就有可能得到解决。断裂力学这门学科就是来解决这些问题的。 1.1影响断裂力学的两大因素 a.荷载大小b.裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。

1.2脆性断裂与韧性断裂 韧度(toughness ):是指材料在断裂前的弹塑性变形中吸收能量的能力。它是个能量的概念。 脆性(brittle )和韧性(ductile ):一般是相对于韧度低或韧度高而言的,而韧度的高低通常用冲击实验测量。 高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。金、银比低强度钢更容易产生塑性变形,但是因为强度太低,因此吸收能量的能力还是不高的。玻璃和粉笔则是低韧度、低塑性材料,断裂前几乎没有变形。 脆性断裂:如下图所示的一个带环形尖锐切口的低碳钢圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的颈缩塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。粉笔、玻璃以及环氧树脂、超高强度合金等的断裂都属于脆性断裂这一类。 韧性断裂:若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(既发生颈缩),段口可能呈锯齿状,这种断裂一般是韧性断裂。前边提到的低强度钢的断裂就属于韧性断裂。 像金、银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。 2.能量守恒与断裂判据 2.1传统强度理论 在现代断裂力学建立以前,机械零构件是根据传统的强度理论进行设计的,不论在机械零构件的哪一部分,设计应力的水平一般都不大于材料的屈服应力,即 n ys σσ≤

断裂力学在混凝土结构中的应用

研究生试卷 2012 年—2013年度第2 学期 评分:________________________ 课程名称:断裂与损伤力学 专业:建筑与土木工程 年级:2012 任课教师姓名:易志坚 研究生姓名:郭延飞 学号:2120970010 注意事项 1.答题必须写清题号; 2.字迹要清楚,保持卷面清洁; 3.试题随试卷交回; 4.考题课俺百分制评分,考查课可按五级分制评分; 5.阅完卷后,授课教师一周内讲成绩在网上登记并打印签名后,送研究生部备案; 6.试题、试卷请授课教师保留三年被查。

断裂力学在混凝土结构中的应用 郭延飞 (建筑与土木工程专业12级5班2120970010)[摘要]断裂力学是在实践的基础上发展起来研究带裂纹材料或结构的强度以及裂纹规律的一门新兴力学学科。本文通过对断裂力学的论述讲解了其在混凝土结构中的应用,以及“阻”、“放”、“抗”裂纹控制思想所取得的成果。 [关键词]断裂力学裂纹控制混凝土结构 1 断裂力学简介 断裂力学是在实践的基础上发展起来的研究带裂纹材料或结构的强度以及裂纹扩展规律的一门新兴力学学科。它能从新的角度进行深层次分析、描述破坏过程及评价损伤状况,运用连续体力学的原理,来研究带有缺陷的均质连续材料制成工程结构构件的强度与断裂条件,建立一套适用于这类构件的理论分析与实验研究的原理与方法,以确保其安全服役。断裂力学的应用可带来土木工程的革新,丰富现有的结构设计理论。 与传统的设计思想不同,断裂力学承认构件或材料不可避免地存在的缺陷和裂纹,并以含有裂纹或缺陷的材料和结构为研究对象,研究含缺陷或者裂纹材料和结构的抗断裂性能,以及在各种工作环境下裂纹的稳定、扩展、失稳及止裂规律的一门学科。它与常规强度理论的差别是: (1)研究对象不同。常规理论研究的对象是不含裂纹的物体,断裂力学则把存在裂纹或者缺陷的物体作为研究对象,为此,断裂力学也称之为裂纹(体)力学。 (2)研究中运用的判据不同。传统强度理论判据结构是否破坏是基于结构中的应力是否超过相应材料的允许应力。但断裂力学理论认为,一旦结构出现裂纹,则裂纹尖端将出现巨大的应力集中,即出现应力的奇异性,带裂纹结构的强度将远远低于相应无裂纹结构的强度。裂纹的扩展受裂纹尖端应力强度因子的控制,一旦应力强度因子K超过其临界值Kc,裂纹将扩展而导致结构的破坏。 线弹性断裂力学的研究对象是带有裂纹的线弹性体,其基础是线弹性理论,目前用于线弹性断裂力学研究的有能量理论和应力强度因子理论;弹塑性理论断裂力学是分析在裂纹端部已有很大塑性区的大范围屈服断裂问题和全面屈服断裂问题。 2 断裂力学在混凝土结构中的应用 钢筋混凝土结构是由混凝土为主体,配设不同形式的抗拉钢筋所构成的组合材料,二者的性能互补,成为迄今结构工程中应用最成功、最广泛的复合材料结构。而其主体材料—混凝土,是一种天生存在诸多缺陷的结构材料,在搅拌和浇注过程中混入的少量空气,经振捣后仍有部分残留在砂浆内部,在混凝土的凝固过程中,由于水分蒸发和水泥砂浆干缩变形等原因,使粗骨料和砂浆界面以及砂浆的内部形成不规则的细长缝隙,此外,还有一些施工和环境因素引起混凝土的非均质性和不等向性。因此,混凝土结构在承受荷载或外应力之前,内部已经存在少量分散的微裂缝或缺陷,混凝土受力之后直到破坏,都是这些裂缝或缺陷的发展、汇集、失稳扩展的过程。 断裂力学认为:混凝土结构能否继续或者更安全的使用最为重要的是确定结构中的微观裂纹和宏观裂纹是否将继续扩展并导致破坏。这种扩展可以缓慢而稳定并且仅在荷载增加时存在,或者,裂纹扩展到一定程度突然变为不稳定扩展或者停止扩展达到稳定状态。断裂力

09年B卷试题及答案哈工大断裂力学考试试题

一、 填空(25分,每空1分) 1. 在断裂力学中,按照裂纹受力情况可将裂纹分为三种基本类型,简述均匀各向同性材料的两种裂纹类型的受力特点: Ⅰ型 受垂直于裂纹面的拉应力作用 Ⅱ型 受平行于裂纹面而垂直于裂纹前缘的剪应力作用 2. 对于有一定塑性的金属材料,应用能量平衡理论时,材料抵抗裂纹扩展能力这个概念,包括两个部分,即 形成裂纹新表面所需的表面能 和 裂纹扩展所需的塑性应变能 ,只有当 应变能释放率 大于代表材料抵抗裂纹扩展能力的常数时,裂纹才失稳扩展。 3. 最大周向应力准则的两个基本假定是:的方向开裂裂纹沿最大周向应力max θσ和 当此方向的周向应力达到临界时,裂纹失稳扩展 。该假定的缺点是 (1)没有综合考虑其它应力分量的作用 (2)不能将广义的平面应变和平面应力两类问题区分开来 4. 常用的计算应力强度因子的方法有 积分变换法 、 有限元法 和普遍形式的复变函数法 。(任意写出三种即可) 5.在复合型断裂准则中,以能量为参数的断裂准则一般包括 应变能密度因子 准则和 应变能释放 准则。 6. 经典J 积分守恒性成立的前提条件包括 应用全量理论和单调加载 、 仅适用于小变形 和 不存在体积力 。(任意写出三个即可) 7. 疲劳破坏过程按其发展过程可分为四个阶段,包括裂纹成核阶段、微观裂纹扩展阶段 、 宏观裂纹扩展阶段 和 断裂阶段 。 8. HRR 理论是Hutchinson 、Rice 和Rosengren 应用 J 积分等恒性 以及 材料的硬化规律 确定应力和应变的幂次。该理论存在一个重要矛盾是: 既然考虑了塑性变形,裂纹尖端的应力就不应该是奇异的 。 9. 可以表征材料断裂韧性度量的力学量主要有IC K 、IC G 和C δ。(任意写出三个即可) 二、 简答题(50分) 1. 简述脆性材料断裂的K 准则IC I K K =的物理含义以及其中各个量的意义,并结合线弹 性断裂力学理论简单讨论K 的适用范围。(15分) 答:物理含义:裂纹尖端应力强度因子I K 达到第一临界值IC K 时,裂纹将失稳扩展。

河南理工大学材料物理性能试卷08-3班0

一、名词解释(每题3分,共7小题) 1.高温蠕变及影响蠕变的因素 答:高温蠕变:在高温条件下,借助于外应力和热激活的作用,形变的一些障碍得以克服,材料内部质点发生了不可逆的微观过程影响蠕变的因素:温度、应力、晶体的组成、显微结构 2.磁光效应 光属于电磁波,其电场、磁场和传播方向相互垂直,因此在光通过透明的铁磁性材料时,由于光与自发磁化相互作用,会出现特异的光学现象,称此现象为磁光效应。 3.顺磁性 在外加磁场的作用下,这些磁矩沿磁场方向排列,物质显示积弱的磁性,这种现象叫顺磁性。完全反磁性:在某些物质中完全不能进入磁通量,称这一性质为完全反磁性。 4.晶态固体热容的经验定律和经典理论 ①元素的热容定律--杜隆-珀替定律:恒压下元素的原子热容等于25J/(K·mol)。 ②化合物的热容定律--柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 5.蠕变断裂 多晶材料在高温时,在恒定应力作用下由于形变不断增加导致断裂的现象称为蠕变断裂。

6.滞弹性 弹性模量随时间的现象称为滞弹性。 7.铁电性 电偶极子由于它们的相互作用而产生的自发平行排列的现象。 8.折射定律 ①折射光线在入射面内。②入射角和折射角的正弦之比为一常数,用n21表示,即式中n21称为第二介质对第一介质的相对折射率。 1.塑性形变:塑性形变是在超过材料的屈服应力作用下,产生变形,当外力移去 后不能恢复的形变。 2.滑移系统:滑移面和滑移方向组成晶体的滑移系统。 3.静态疲劳:裂纹除了快速失稳外,还会在使用应力下,随着时间的推移而缓慢 展,这种缓慢扩展称为亚临界扩展,或者静态疲劳。 4.抗热震断裂性:在热冲击作用下,材料发生瞬时断裂,对这类破坏的抵抗称抗 热震断裂性。 5.双碱效应:指当玻璃中金属离子浓度较大时,在碱金属离子总浓度相同的情况 下,含有两种碱金属离子比含有一种碱金属离子的玻璃的电导率要小。 6.电化学老化:指在电场作用下,由于化学变化引起材料的电性能不断恶化的现 象。 7.折射定律:光从一种透明均匀物质斜射到另一种透明物质中时,传播方向发生 改变,折射角与入射角之比为一常数,这就是折射定律。 8.完全反磁性:在某些物质中完全不能进入磁通量,称这一性质为完全反磁性。 9.介电损耗:电介质在外电场的作用下,在单位时间内因发热而消耗的能量称为 电介质的损耗功率或介电损耗。 10.松弛极化:当材料中存在着弱联系的电子、离子和偶极子等质点时,热运动使 之分布混乱,电场力图使之按电场规律分布,最后在一定温度下发生极化,称之为松弛极化。 1 结合能: 把晶体分离为自由原子所需的能量。 2 滞弹性:弹性模量依赖于时间的现象。 3 动态疲劳:材料在循环应力作用下的破坏。

相关文档
最新文档