2014高考调研理科数学课时作业讲解_课时作业4

2014高考调研理科数学课时作业讲解_课时作业4
2014高考调研理科数学课时作业讲解_课时作业4

课时作业(四)

1.下列表格中的x与y能构成函数的是() A.

B.

C.

D.

答案 C

解析A中0既是非负数又是非正数;B中0又是偶数;D中自然数也是整数,也是有理数.

2.下列各对函数中,表示同一函数的是() A.f(x)=lg x2,g(x)=2lg x

B.y=f(x)与y=f(x+1)

C.f(u)=1+u

1-u

,g(v)=

1+v

1-v

D.f(x)=x,g(x)=x2

答案 C

解析在A中,f(x)的定义域{x|x≠0},g(x)的定义域(0,+∞);在B中,对应关系不同;在D中,f(x)的值域为R,g(x)的值域为[0,+∞).

3.已知集合M ={-1,1,2,4},N ={0,1,2},给出下列四个对应法则:①y =x 2,②y =x +1,③y =2x ,④y =log 2|x |,其中能构成从M 到N 的函数的是 ( )

A .①

B .②

C .③

D .④

答案 D

解析 对于①、②,M 中的2,4两元素在N 中找不到象与之对应,对于③,M 中的-1,2,4在N 中没有象与之对应.故选D.

4.(2012·福建)设f (x )=???

1,x >0,

0,x =0,

-1,x <0,

g (x )=?

??

1,x 为有理数,0,x 为无理数,则f (g (π))的

值为

( )

A .1

B .0

C .-1

D .π

答案 B

解析 ∵g (π)=0,∴f (g (π))=f (0)=0.

5.电信资费调整后,市话费标准为:通话时间不超过3 min 收费0.2 元;超过3 min 以后,每增加1 min 收费0.1 元,不足1 min 按1 min 计费,则通话收费S (元)与通话时间t (min)的函数图像可表示为图中

( )

答案 B

6.已知f (x )满足:当x ≥4时,f (x )=(12)x

;当x <4时,f (x )=f (x +1),则f (2+log 23)=

( )

A.124

B.112

C.18

D.38

答案 A

解析 ∵2+log 23<4,∴f (2+log 23) =f (2+log 23+1)=f (3+log 23). 又3+log 23>4,∴f (3+log 23)=

=(12)3·

13=124.

7.图中的图像所表示的函数的解析式为

(

)

A .y =3

2|x -1|(0≤x ≤2) B .y =32-3

2|x -1|(0≤x ≤2) C .y =3

2-|x -1|(0≤x ≤2) D .y =1-|x -1|(0≤x ≤2) 答案 B

解析 当x ∈[0,1]时,y =32x =32-32(1-x )=32-3

2|x -1|;当x ∈[1,2]时,y =

32-01-2(x -2)=-32x +3=32-32(x -1)=32-3

2|x -1|.因此,图中所示的图像所表示的函数的解析式为y =32-3

2|x -1|.

8.设定义在R 上的函数y =f (x )满足f (x )·f (x +2)=12,且f (2 014)=2,则f (0)等于

( )

A .12

B .6

C .3

D .2

答案 B

解析 ∵f (x +2)=

12f (x ),∴f (x +4)=12f (x +2)

=f (x ). ∴f (x )的周期为4,f (2 014)=f (4×503+2)=f (2)=2. 又f (2)=

12f (0)

,∴f (0)=122=6. 9.(2011·福建)已知函数f (x )=???

2x

,x >0,

x +1,x ≤0.

若f (a )+f (1)=0,则实数a 的值

等于

( )

A .-3

B .-1

C .1

D .3

答案 A

解析 方法一 当a >0时,由f (a )+f (1)=0,得2a +2=0,可见不存在实数a 满足条件,当a <0时,由f (a )+f (1)=0,得a +1+2=0,解得a =-3,满足条件,故选A.

方法二 由指数函数的性质可知:2x >0,又因为f (1)=2,所以a <0,所以f (a )=a +1,即a +1+2=0,解得a =-3,故选A.

方法三 验证法,把a =-3代入f (a )=a +1=-2,又因为f (1)=2,所以f (a )+f (1)=0,满足条件,从而选A.

10.(2011·北京)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=?????

c

x ,x

c

A ,x ≥A

(A ,c 为常数).已知工人组装第4件产品用时30

分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是

( )

A .75,25

B .75,16

C .60,25

D .60,16

答案 D

解析 因为组装第A 件产品用时15分钟,所以c

A

=15①,所以必有4

c 4=c

2

=30②,联立①②解得c =60,A =16,故选D.

11.(2013·沧州七校联考)已知函数f (x )=???

x +1,x ≤0,

log 2x ,x >0,则函数y =f [f (x )]+

1的零点个数为

( )

A .4

B .3

C .2

D .1

答案 A

解析 作出y =f (x )的图像,如图

令t =f (x ),则由f [f (x )]+1=0, 得f (t )+1=0即f (t )=-1.

作直线y =-1交f (x )图像于A 、B 两点易知A 、B 两点横坐标依次为f 1=-2,f 2=12,

即f (x )=-2或f (x )=1

2

.

再作直线y =-2,y =1

2易知它们与y =f (x )交于不同四点. ∴y =f [f (x )]+1的零点个数为4.

12.如图,函数f (x )的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=________.

答案 2

解析 由图及题中已知可得 f (x )=???

-2(x -2),0≤x ≤2,x -2,2

f (0)=4,f (f (0))=f (4)=2.

13.已知f (x -1x )=x 2

+1x 2,则f (3)=______. 答案 11

解析 ∵f (x -1x )=(x -1

x )2+2,

∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11.

点评 关键是求f (x )的解析式.用配凑法,即x 2+1x 2=(x -1x )2+2.由于x -1

x 可以取到全体实数,∴f (x )的定义域为R .

14.已知函数f (x ),g (x )分别由下表给出

则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________. 答案 1,2

15.(2011·陕西理)设f (x )=????? lg x ,x +??0a 3t 2d t ,

x >0,x ≤0,

若f (f (1))=1,则a =

________.

答案 1

解析 显然f (1)=lg1=0,f (0)=0+??0a 3t 2d t =t 3| a 0=1,得a =1.

16.下图是一个电子元件在处理数据时的流程图:

(1)试确定y 与x 的函数关系式; (2)求f (-3),f (1)的值; (3)若f (x )=16,求x 的值.

答案 (1)y =???

(x +2)2

,x ≥1,

x 2+2,x <1

(2)11,9 (3)2或-14

解析 (1)y =?

??

(x +2)2

,x ≥1,

x 2+2,x <1.

(2)f (-3)=(-3)2+2=11; f (1)=(1+2)2=9.

(3)若x ≥1,则(x +2)2=16. 解得x =2或x =-6(舍去). 若x <1,则x 2+2=16.

解得x =14(舍去)或x =-14. 综上,可得x =2或x =-14.

17.函数f (x )对一切实数x ,y 均有f (x +y )-f (y )=(x +2y +1)x 成立,且f (1)=0.

(1)求f (0)的值; (2)求f (x )的解析式.

答案 (1)-2 (2)f (x )=x 2+x -2 解析 用赋值法

(1)由已知f (x +y )-f (y )=(x +2y +1)x . 令x =1,y =0,得f (1)-f (0)=2. 又∵f (1)=0,∴f (0)=-2. (2)令y =0,得f (x )-f (0)=(x +1)x . ∴f (x )=x 2+x -2.

18.(2013·沧州七校联考)26个英文字母按照字母表顺序排列:a ,b ,c ,…,x ,y ,z .若f (n )表示处于第n 个位置上的字母,如f (1)=a ,f (23)=w 等,定义g (x )=???

26-x ,x >22,

x +4,0≤x ≤22,若f [g (15)],f [g (x 1)],f [g (4)],f [g (11)],f [g (11)],f [g (x 2)]所表示的字母依次排列组成的英文单词为school ,求3x 2-x 1的值.

答案 1

解析 由题意,知c =f (3),l =f (12), ∴g (x 1)=3,g (x 2)=12.

又∵g (x )=???

26-x ,x >22,

x +4,0≤x ≤22,

∴x 1=23,x 2=8.∴3x 2-x 1=1.

1.由映射表示的函数的奇偶性是 ( )

A .奇函数

B .偶函数

C .非奇非偶函数

D .既是奇函数,也是偶函数 答案 B

解析 由以上映射构成的函数的定义域{-1,1},定义域关于原点对称.再由奇偶函数定义判断,

f (1)=1,f (-1)=1,∴f (x )=f (-x ). ∴函数为偶函数,故选B.

2.(2011·浙江)设函数f (x )=???

-x ,x ≤0,

x 2,x >0.若f (a )=4,则实数a = ( )

A .-4或-2

B .-4或2

C .-2或4

D .-2或2

答案 B

解析 当a >0时,有a 2=4,∴a =2;当a ≤0时,有-a =4,∴a =-4,因此a =-4或a =2.

3.已知集合P ={a ,b ,c },Q ={-1,0,1},映射f :P →Q 中满足f (b )=0的映射共有

( )

A .2个

B .4个

C .6个

D .9个

答案 D

解析 由分步计数原理映射f :P →Q 中满足f (b )=0的映射共有1×3×3=9个.

4.若f (lg x )=x +1

x -1

,则f (2)=__________. 答案 101

99

5.设函数f 1(x )=

,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2 013)))=________.

思路 本题是一个三次复合函数求值问题,首先求f 3(2 013),在此基础上求f 2,f 1.

答案 2 013-1

解析 f 1(f 2(f 3(2 013)))=f 1(f 2(2 0132))=f 1((2 0132)-1)==2

013-1.

6.若定义在正整数有序对集合上的二元函数f 满足:

①f (x ,x )=x ,②f (x ,y )=f (y ,x ),③(x +y )·f (x ,y )=y ·f (x ,x +y ),则f (12,16)的值是________.

答案 48

解析 由③(x +y )·f (x ,y )=y ·f (x ,x +y ),易得 f (x ,x +y )=x +y y ·f (x ,y ).结合①②,得 f (12,16)=f (12,12+4)=16

4f (12,4)=4f (4,12) =4f (4,4+8)=4·12

8·f (4,8)=6·f (4,4+4)

=6·84·

f (4,4)=12f (4,4)=12×4=48.

7.已知函数f (x )和g (x )分别由下表给出定义:

若方程f (g (x ))=g (f ( 答案 1或2;3

解析 由于f (g (3))=f (1)=2,g (f (3))=g (3)=1,

显然3不是方程f (g (x ))=g (f (x ))的解; 因为方程f (g (x ))=g (f (x ))的解恰有2个, 则方程f (g (x ))=g (f (x ))的解为x =1或2. 则应有?

??

f (

g (1))=g (f (1)),

f (

g (2))=g (f (2)).

又f (g (1))=f (3)=3,则g (f (1))=g (2)=3. 又f (g (2))=f (3)=3,则g (f (2))=3. 所以f (2)=1或2.

(1)求常数c 的值; (2)解不等式f (x )>2

8+1.

解析 (1)∵0

8, ∴c =12.

(2)由(1)得f (x )=?????

12x +1,0

2-

4x

+1,12≤x <1.

由f (x )>28+1,得当0

2. 当12≤x <1时,解得12≤x <58.

∴f (x )>28+1的解集为?

?????????x |24

2014年浙江省高考数学试卷(理科)

2014年浙江省高考数学试卷(理科) 一、选择题(每小题5分,共50分) 2 2 3.(5分)(2014?浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是() 4.(5分)(2014?浙江)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图 向右平移向左平移个单位 向右平移向左平移个单位 5.(5分)(2014?浙江)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n), 6.(5分)(2014?浙江)已知函数f(x)=x3+ax2+bx+c,其0<f(﹣1)=f(﹣2)=f(﹣3) 7.(5分)(2014?浙江)在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是()

B . . D . 8.(5分)(2014?浙江)记max{x ,y}=,min{x ,y}=,设,为 +||﹣min{|||} min{|+﹣|}min{||||} ||﹣||||max{|||﹣|+||9.(5分)(2014?浙江)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i=1,2)个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为ξi (i=1,2) ; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i=1,2). 10.(5分)(2014?浙江)设函数f 1(x )=x 2 ,f 2(x )=2(x ﹣x 2 ), , ,i=0,1,2,…,99 .记I k =|f k (a 1)﹣f k (a 0)|+|f k (a 2)﹣f k (a 1)丨+…+|f k (a 99) 二、填空题 11.(4分)(2014?浙江)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 .

2014年北京市高考数学试卷(理科)

2014年北京市高考数学试卷(理科) 一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.(5分)(2014?北京)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2} 2.(5分)(2014?北京)下列函数中,在区间(0,+∞)上为增函数的是() A.y=B.y=(x﹣1)2 C.y=2﹣x D.y=log0.5(x+1) 3.(5分)(2014?北京)曲线(θ为参数)的对称中心() A.在直线y=2x上B.在直线y=﹣2x上 C.在直线y=x﹣1上D.在直线y=x+1上 4.(5分)(2014?北京)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为() A.7B.42C.210D.840 5.(5分)(2014?北京)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列” 的() A.充分而不必要条件B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件

6.(5分)(2014?北京)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为() A.2B.﹣2C.D.﹣ 7.(5分)(2014?北京)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C (0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则() A.S1=S2=S3B.S2=S1且S2≠S3 C.S3=S1且S3≠S2D.S3=S2且S3≠S1 8.(5分)(2014?北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人 二、填空题(共6小题,每小题5分,共30分) 9.(5分)(2014?北京)复数()2=. 10.(5分)(2014?北京)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=. 11.(5分)(2014?北京)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则 C的方程为;渐近线方程为. 12.(5分)(2014?北京)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=时,{a n}的前n项和最大. 13.(5分)(2014?北京)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种. 14.(5分)(2014?北京)设函数f(x)=A sin(ωx+φ)(A,ω,φ是常数,A>0,ω>0) 若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.

高等数学(专科)复习试题和答案

高等数学期末试卷 一、填空题(每题2分,共30分) 1.函数1 1 42-+ -= x x y 的定义域是. 解. ),2[]2,(∞+--∞ 。 2.若函数52)1(2 -+=+x x x f ,则=)(x f . 解. 62 -x 3.________________sin lim =-∞→x x x x 答案:1 正确解法:101sin lim 1lim )sin 1(lim sin lim =-=-=-=-∞→∞→∞→∞→x x x x x x x x x x x 4.已知22 lim 2 22=--++→x x b ax x x ,则=a _____,=b _____。 由所给极限存在知, 024=++b a , 得42--=a b , 又由23 4 12lim 2lim 22 22=+=+++=--++→→a x a x x x b ax x x x , 知8,2-==b a 5.已知∞=---→) 1)((lim 0x a x b e x x ,则=a _____,=b _____。 ∞=---→)1)((lim 0x a x b e x x , 即01)1)((lim 0=-=---→b a b e x a x x x , 1,0≠=∴b a 6.函数????? ≥+<=0 1 01sin )(x x x x x x f 的间断点是x =。 解:由)(x f 是分段函数,0=x 是)(x f 的分段点,考虑函数在0=x 处的连续性。 因为 1)0(1)1(lim 01 sin lim 00 ==+=+-→→f x x x x x 所以函数)(x f 在0=x 处是间断的, 又)(x f 在)0,(-∞和),0(+∞都是连续的,故函数)(x f 的间断点是0=x 。 7. 设()()()n x x x x y -??--= 21, 则() =+1n y (1)!n +

2014年上海高考英语试卷word版

2014年全国普通高等学校招生统一考试 上海英语试卷 考生注意: 1.考试时间120分钟,试卷满分150分。 2.本考试设试卷和答题纸两部分。试卷分为第Ⅰ卷(笫1-12页)和第Ⅱ卷(第13页), 全卷共13页。所有答題必须涂(选择题)或写(非选择题)在答题纸上,做在试卷上一律不得分。 3.答題前,务必在答題纸上填写准考证号和姓名,并将核对后的条形码貼在指定位置上, 在答題纸反面清楚地填写姓名。 4.本文档由上海高考基地高考英语命题研究组校对版权归上海考试院所有。 第I卷(共103分) I. Listening Comprehension Section A Directions: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard. 1. A. policewoman. B. A judge. C. A reporter. D. A waitress. 2. A. Confident. B. Puzzled. C. Satisfied. D. Worried. 3. A. At a restaurant. B. At a car rental agency. C. In a bank. D. In a driving school. 4. A. A disaster. B. A new roof. C. A performance. D. A TV station. 5. A. Catch the train. B. Meet Jane. C. Get some stationery. D. Clean the backyard. 6. A. Ask for something cheaper. B. Buy the vase she really likes. C. Protect herself from being hurt. D. Bargain with the shop assistant. 7. A. Use a computer in the lab. B. Take a chemistry course. C. Help him revise his report. D. Gel her computer repaired. 8. A. Amused. B. Embarrassed. C. Shocked. D. Sympathetic. 9. A. She doesn't plan to continue studying next year. B. She has already told the man about her plan. C. She isn’t planning to leave her u niversity. D. She recently visited a different university. 10. A. It spoke highly of the mayor. B. It misinterpreted the mayor’s speech. C. It made the mayor’s view clearer. D. It earned the mayor’s sp eech accurately.

2014年高考浙江理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(浙江卷) 数学(理科) 第Ⅰ卷(选择题 共50分) 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年浙江,理1,5分】设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U A =e( ) (A )? (B ){2} (C ){5} (D ){2,5} 【答案】B 【解析】2{|5}{|A x N x x N x =∈≥=∈,{|2{2}U C A x N x =∈≤=,故选B . 【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题. (2)【2014年浙江,理2,5分】已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2(i)2i a b +=”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A 【解析】当1a b ==时,22(i)(1i)2i a b +=+=,反之,2 (i)2i a b +=,即222i 2i a b ab -+=,则22022 a b ab ?-=?=?, 解得11a b =??=? 或11a b =-??=-?,故选A . 【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题. (3)【2014年浙江,理3,5分】某几何体的三视图(单位:cm )如图所示,则此几何体的表 面积是( ) (A )902cm (B )1292cm (C )1322cm (D )1382cm 【答案】D 【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为: 1 246234363334352341382 S =??+??+?+?+?+?+???=,故选D . 【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的 关键. (4)【2014年浙江,理4,5分】为了得到函数sin 3cos3y x x =+的图像,可以将函数y x 的图像( ) (A )向右平移4π个单位 (B )向左平移4 π个单位 (C )向右平移12π个单位 (D )向左平移12π 个单位 【答案】C 【解析】sin3cos3))]412y x x x x ππ=+=+=+,而)2y x x π=+)]6x π +, 由3()3()612x x ππ+→+,即12x x π→-,故只需将y x =的图象向右平移12 π 个单位,故选C . 【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查. (5)【2014年浙江,理5,5分】在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则 (3,0)(2,1)(1,2)f f f f +++=( ) (A )45 (B )60 (C )120 (D )210 【答案】C 【解析】令x y =,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10 (1)x +展开式中3x 的系数, 故(3,0)(2,1)(1,2)(0,3)f f f f +++=7 10120C =,故选C . 【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力. (6)【2014年浙江,理6,5分】已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) (A )3c ≤ (B )36c <≤ (C )69c <≤ (D )9c >

2014年北京市高考数学试卷(理科)答案与解析

2014年北京市高考数学试卷(理科) 参考答案与试题解析 一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 2 y= 3.(5分)(2014?北京)曲线(θ为参数)的对称中心() ( (

4.(5分)(2014?北京)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为() 1>

6.(5分)(2014?北京)若x,y满足且z=y﹣x的最小值为﹣4,则k的值为 作出可行域如图, (﹣ (﹣ ﹣

7.(5分)(2014?北京)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C (0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx , = 8.(5分)(2014?北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语

二、填空题(共6小题,每小题5分,共30分) 9.(5分)(2014?北京)复数()2=﹣1. ) 10.(5分)(2014?北京)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|= . =.由于向量,|,且+( = ,满足||=1=+=( 故答案为:

11.(5分)(2014?北京)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则 C的方程为;渐近线方程为y=±2x. ﹣具有相同渐近线的双曲线方程可设为 , ﹣, 故答案为:, 12.(5分)(2014?北京)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大. 13.(5分)(2014?北京)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种.

(完整word版)大一高数练习题

1.填空题 1、当0→x 时,x cos 1-与2x 相比较是 同阶 无穷小。 2、=→2 203sin lim x x x 1/3 3、曲线(1cos ),sin x t t y t =-=在t π=处的切线斜率为 -1/2 4、当k 满足条件__x>2_________时,积分?+∞-1 1k x dx 收敛 5、曲线||x y =的极值点是 x=0 6 、设函数y =则dy = 2xdx 7、若()lim(1)x x t f t x →∞ =+,则=')(t f e t 8、?-=22 35sin cos π πxdx x 0 9、若?=t xdx t f 12ln )(,则=')(t f ln 2 t 10、微分方程0cos 2=-y dx x dy 的通解为siny=x 2__________ 1、当0→x 时,x cos 1-与22x 相比较是 无穷小. 2、设函数?????=≠=0001sin )(3x x x x x f 当当,则=')0(f . 3、设)4)(2)(3)(5()(--++=x x x x x f ,则方程0)(='x f 有 个实根. 4、当k 满足条件___________时,积分1 2k dx x +∞+?收敛. 5、设函数21x y -=,则dy = . 6、函数)2(-=x x y 的极值点是 . 7、=≠∞→)0(sin lim a x a x x . 8、若?=t x dx e t f 02 )(,则=')(t f .

9、?-=π πxdx x 32sin . 10、微分方程 0cos 2=-x dy y dx 的通解为___________. 一、 单项选择题(每小题2分,共10分) 1、函数x x y -=3ln 的定义域为(B ) A ),0(+∞ B ]3,(-∞ C )3,0( D ]3,0( 2、函数()f x 在0x 处)0()0(00+=-x f x f 是()f x 在0x 处连续的( B ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 无关条件 3、函数93)(+=x x f 在0=x 处(C ) A 不连续 ; B 可导; C 连续但不可导; D 无定义 4、下列式子中,正确的是(B ) A. ()()f x dx f x '=? B. 22()()d f x dx f x dx =? C. ()()f x dx f x =? D.?=)()(x f dx x f d 5、设()x f x e -=,则(ln )f x dx x =? _C______. A . 1C x + B. ln x C + C. 1C x -+ D. ln x C -+ 二、单项选择题(每小题2分,共10分) 1.函数241)(x x x f -+=的定义域为( C ). A .]2,2[-; B. )2,2(-; C. ]2,0()0,2[ -; D. ),2[+∞. 2、若)(x f 在0x 的邻域内有定义,且)0()0(00+=-x f x f ,则(B ). A )(x f 在0x 处有极限,但不连续; B )(x f 在0x 处有极限,但不一定连续;

2014年上海市高考数学试卷(理科)

上海乌托邦教育 2014年上海市高考数学试卷(理科) 一、填空题(共14题,满分56分) 1.(4分)(2014?上海)函数y=1﹣2cos2(2x)的最小正周期是_________. 2.(4分)(2014?上海)若复数z=1+2i,其中i是虚数单位,则(z+)?=_________. 3.(4分)(2014?上海)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则该抛物线的准线方程为 _________. 4.(4分)(2014?上海)设f(x)=,若f(2)=4,则a的取值范围为_________.5.(4分)(2014?上海)若实数x,y满足xy=1,则x2+2y2的最小值为_________. 6.(4分)(2014?上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为_________(结果用反三角函数值表示). 7.(4分)(2014?上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是 _________. 8.(4分)(2014?上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q=_________.9.(4分)(2014?上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是_________. 10.(4分)(2014?上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_________(结果用最简分数表示). 11.(4分)(2014?上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=_________. 12.(4分)(2014?上海)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3= _________. 13.(4分)(2014?上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为_________. 14.(4分)(2014?上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上 的Q使得+=,则m的取值范围为_________. 二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分

2014年北京市高考理科数学试卷及答案解析(word版)

2014年北京高考数学(理科)试题 一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( ) .{0}A .{0,1}B .{0,2}C .{0,1,2}D 2.下列函数中,在区间(0,)+∞上为增函数的是( ) .A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+ 3.曲线1cos 2sin x y θθ =-+??=+?(θ为参数)的对称中心( ) .A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上 4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ) .7A .42B .210C .840D 5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ) .A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 6.若,x y 满足20200x y kx y y +-≥?? -+≥??≥? 且z y x =-的最小值为-4,则k 的值为( )

.2A .2B - 1.2C 1 .2 D - 7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( ) (A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( ) (A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分) 9.复数2 11i i +?? = ?-?? ________. 10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则 λ=________. 11.设双曲线C 经过点()2,2,且与2 214 y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________. 12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 14. 设函数)sin()(?ω+=x x f ,0,0>>ωA ,若)(x f 在区间]2 ,6[π π上具有单调性,且 ?? ? ??-=??? ??=??? ??6322πππf f f ,则)(x f 的最小正周期为________.

2014年上海市高考数学试卷(理科)

2014年上海市高考数学试卷(理科) 一、填空题(共14题,满分56分) 1.(4分)(2014?上海)函数y=1﹣2cos2(2x)的最小正周期是. 2.(4分)(2014?上海)若复数z=1+2i,其中i是虚数单位,则(z+)?=.3.(4分)(2014?上海)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程. 4.(4分)(2014?上海)设f(x)=,若f(2)=4,则a的取值范围 为. 5.(4分)(2014?上海)若实数x,y满足xy=1,则x2+2y2的最小值为. 6.(4分)(2014?上海)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示). 7.(4分)(2014?上海)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是. 8.(4分)(2014?上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q =. 9.(4分)(2014?上海)若f(x)=﹣,则满足f(x)<0的x的取值范围是.10.(4分)(2014?上海)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).11.(4分)(2014?上海)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b =. 12.(4分)(2014?上海)设常数a使方程sin x+cos x=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=. 13.(4分)(2014?上海)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E(ξ)=4.2,则小白得5分的概率至少为. 14.(4分)(2014?上海)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为.

2014北京市高考理科数学(理)试题真题及答案

2014年北京市高考数学(理科)试题及答案 一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =( ) .{0}A .{0,1} B .{0,2} C .{0,1,2} D 2.下列函数中,在区间(0,)+∞上为增函数的是( ) .A y = 2.(1)B y x =- .2x C y -= 0.5.l o g (1)D y x =+ 3.曲线1cos 2sin x y θθ =-+??=+?(θ为参数)的对称中心( ) .A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上 4.当m=7,n=3时,执行如图所示的程序框图,输出的S 值为( ) .7A .42B .210C .840D 5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ) .A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 6.若,x y 满足20200x y kx y y +-≥??-+≥??≥? 且z y x =-的最小值为-4,则k 的值为( ) .2A .2B - 1.2C 1.2 D - 7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( ) (A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,学科 网且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( ) (A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分) 9.复数211i i +??= ?-?? ________. 10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________. 11.设双曲线C 经过点()2,2,且与2 214 y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.

高等数学练习题(附答案)

------------------------------------------------------------------------------------------------------------------------《高等数学》 专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数. ( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导. ( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线. ( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微. ( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则 )0(f 为)(x f 的一个极小值. 二、填空题.(每题2分,共20分) 1. 设2 )1(x x f =-,则=+)1(x f . 2. 若1 212)(11+-= x x x f ,则=+→0 lim x . 3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则

上海市虹口区2014年高考数学(理)(二模)

上海市虹口区2014届高三4月高考模拟(二模) 数学试卷(理科) (时间120分钟,满分150分) 一、填空题(每小题4分,满分56分) 1、已知集合{}12A x x =-<,{}2B 4x x =<,则A B ?= . 2、函数2()41f x x x =-++([]1, 1x ∈-)的最大值等于 . 3、在ABC ?中,已知sin :sin :sin A B C =,则最大角等于 . 4、已知函数()y f x =是函数x y a =(0a >且1a ≠)的反函数,其图像过点2(,)a a ,则 ()f x = . 5、复数z 满足11z i i i =+,则复数z 的模等于_______________. 6、已知tan 2α=,tan()1αβ+=-,则tan β= . 7、抛物线2 8y x =-的焦点与双曲线2 221x y a -=的左焦点重合,则双曲线的两条渐近线的夹角为 . 8、某校一天要上语文、数学、外语、历史、政治、体育六节课,在所有可能的安排中, 数学不排在最后一节,体育不排在第一节的概率.. 是 . 9、已知(12)n x -关于x 的展开式中,只有第4项的二项式系数最大,则展开式的系数之和 为 . 10、等差数列{}n a 的通项公式为28n a n =-,下列四个命题.1α:数列{}n a 是递增数列;2α:数列{}n na 是递增数列;3α:数列n a n ??? ??? 是递增数列;4α:数列{}2n a 是递增数列.其中真命题的是 . 11、椭圆cos sin x a y b ??=??=? (0a b >>,参数?的范围是02?π≤<个焦点为1F 、2F ,以12F F 为边作正三角形,若椭圆恰好平分正三角 形的另两条边,且124FF =,则a 等于 . 12、设A B C D 、、、是半径为1的球面上的四个不同点,且满0AB AC ?=,0AC AD ?=,0AD AB ?=,用123S S S 、、

2014全国统一高考数学真题及逐题详细解析(文科)—北京卷

2014年普通高等学校招生全国统一考试北京卷 文科数学 本试卷共6页,150分。考试时长120分钟,。考生务必将答案答在答题卡上,在试卷上作答无效。 考试结束后,将本试卷和答题卡一并交回。 第一部分(选择题 共40分) 一、选择题共8小题,每小题5分,共40分。在每小题列出的4个选项中,选出符合题目要求的一项。 1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =( ) A.{}0,1,2,3,4 B.{}0,4 C.{}1,2 D.{}3 2.下列函数中,定义域是R 且为增函数的是( ) A.x y e -= B.y x = C.ln y x = D.y x = 3.已知向量()2,4a =,()1,1b =-,则2a b -=( ) A.()5,7 B.()5,9 C.()3,7 D.()3,9 4.执行如图所示的程序框图,输出的S 值为( ) A.1 D.15 输出 5.设a 、b 是实数,则“a b >”是“2 2 a b >”的( ) A.充分而不必要条件 B.必要而不必要条件 C.充分必要条件 D.既不充分不必要条件 6.已知函数()26 log f x x x = -,在下列区间中,包含()f x 零点的区间是( ) A.()0,1 B.()1,2 C.()2,4 D.()4,+∞ 7.已知圆()()2 2 :341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点 P ,使得90APB ∠=,则m 的最大值为( ) A.7 B.6 C.5 D.4 8.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.咋特定条件下,可食用率 p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a 、b 、c 是常数),下图 记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟

(完整)高等数学练习题(附答案)

《高等数学》 专业 年级 学号 姓名 一、判断题. 将√或×填入相应的括号内.(每题2分,共20分) ( )1. 收敛的数列必有界. ( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数. ( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导. ( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线. ( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微. ( )9. 微分方程的含有任意常数的解是该微分方程的通解. ( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则 )0(f 为)(x f 的一个极小值. 二、填空题.(每题2分,共20分) 1. 设2 )1(x x f =-,则=+)1(x f . 2. 若1 212)(11+-= x x x f ,则=+→0 lim x . 3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则 =')3(g . 4. 设y x xy u + =, 则=du .

5. 曲线3 26y y x -=在)2,2(-点切线的斜率为 . 6. 设)(x f 为可导函数,)()1()(,1)1(2 x f x f x F f +==',则=')1(F . 7. 若 ),1(2)(0 2x x dt t x f +=? 则=)2(f . 8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分 =-+∞? dx e x 20 . 10. 设D 为圆形区域=+≤+??dxdy x y y x D 5 2 2 1, 1 . 三、计算题(每题5分,共40分) 1. 计算)) 2(1 )1(11(lim 222n n n n ++++∞→Λ. 2. 求10 3 2 )10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数. 3. 求不定积分 dx x x ? -) 1(1. 4. 计算定积分 dx x x ? -π 53sin sin . 5. 求函数2 2 3 24),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y == ,围成,计算dxdy y y D ?? sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积. 8. 求微分方程y x y y 2- ='的通解. 四、证明题(每题10分,共20分) 1. 证明:tan arc x = )(+∞<<-∞x .

2014年浙江省高考数学试卷及答案(文科)

绝密★考试结束前 2014年普通高等学校招生全国统一考试(浙江卷) 数学(文科) 本试题卷分选择题和非选择题两部分。全卷共5页,选择题部分1至3页,非选择题部分4至5页。满分150分,考试时间120分钟。 请考生按规定用笔将所有试题的答案涂、写在答题纸上。 选择题部分(共50分) 注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。不能答在试题卷上。 参考公式 台体的体积公式 11221 ()3 V h S S S S =++ 其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高 柱体体积公式V Sh = 其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式1 3 V Sh = 其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式 24S R π= 球的体积公式 34 3 V R π= 其中R 表示球的半径 如果事件,A B 互斥 ,那么 ()()()P A B P A P B +=+

一 、选择题: 本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1. 设集合}5|{},2|{≤=≥=x x T x x S ,则=T S A. ]5,(-∞ B.),2[+∞ C. )5,2( D. ]5,2[ 2. 设四边形ABCD 的两条对角线为AC 、BD 。则“四边形ABCD 为菱形”是“A C ⊥BD ”的 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 3. 某几何体的三视图(单位:cm )如图所示,则该几何体的体积是 A .72cm 3 B . 90 cm 3 C .108 cm 3 D . 138 cm 3 4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像 A .向右平移 12π个单位 B .向右平移4π 个单位 C .向左平移12π个单位 D .向左平移4 π 个单位 5. 已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值是 A .2- B .4- C .6- D .8- 6. 设m 、n 是两条不同的直线,α、β是两个不同的平面 A .若m ⊥n ,n ∥α则m ⊥α B .若m ∥β,β⊥α,则m ⊥α C .若m ⊥β,n ⊥β, n ⊥α则m ⊥α D .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α 7. 已知函数c bx ax x x f +++=23)(,且3)3()2()1(0≤-=-=-c 8. 在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是

高等数学练习题及答案

一、单项选择题1.0 lim ()x x f x A →=,则必有( ).(A )()f x 在0x 点的某个去心邻域内有界. (B) ()f x 在0x 点的任一去心邻域内有界. (C) ()f x 在0x 点的某个去心邻域内无界. (D) ()f x 在0x 点的任一去心邻域内无界. 2.函数???≥+<=0 )(x x a x e x f x ,要使()f x 在0x =处连续,则a =( ).(A) 2. (B) 1. (C) 0. (D) -1. 3.若()()F x f x '= ,则()dF x =?( ).(A )()f x . (B) ()F x . (C) ()f x C +. (D) ()F x C + 4.方程 4 10x x --=至少有一根的区间是( ).(A ) 10,2?? ???. (B )1,12?? ??? . (C )(2,3). (D )(1,2). 二、填空题1. 设 ()f x 在0x x =处可导,则0 lim x x y →?= . 2. 某需求曲线为1002000Q P =-+,则当10P =时的弹性为 . 3. 曲线3267y x x =+-在0x =处的法线方程为 .4. 2 sin 2x t d e dt dx ?= . 三、求下列极限(1)2211lim 21x x x x →---.(2)1lim(1)2x x x →∞-.(3) 0sin 2lim ln(1)x x x →+. 四、求下列导数和微分(1)已知3cos x y x =, 求dy . (2)求由方程l n2xy y e =+所确定的函数()y f x =的导数dy dx . 五、求下列积分(1) 2 21(sec )1x dx x ++? .(2 )20 ? . (3) sin ?. 六、求函数()x f x xe -=的单调区间和极值. 七、 求由直线2y x =和抛物线2y x =所围成的平面图形的面积. 八、证明:当0x >时,(1)l n (1)x x x ++>. 九、某种商品的成本函数2 3()200030.010.0002c x x x x =+++(单位:元) ,求生产100件产品时的平均成本和边际成本. 一、 A . B . D . D . 二、(1)0. (2)-1. (3)0x =. (4)] 2 sin cos x e x ?. 三、求极限(1)解:原式=11(1)(1)12lim lim (21)(1)213 x x x x x x x x →→-++==+-+ (2)解:原式= 111 222220011lim[(1)][lim(1)]22x x x x e x x -----→→-=-= (3)解:这是未定型,由洛必达法则原式=00cos 22 lim lim2(1)cos 221 1 x x x x x x →→?=+=+ 四、求导数和微分(1)解:2 3l n3c os 3sin (c os )x x x x y x +'= ,2 3ln3cos 3sin (cos ) x x x x dy dx x += (2)解:方程两边对x 求导,()xy y e y xy ''=+, 1xy xy ye y xe '= - 五、积分1.原式=2 21sec xdx dx +??=tan arctan x x c ++ 2.原式 =2 20118(4)x --=-=?

相关文档
最新文档