柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展
柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展

陈然

摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国内外的研究状况,最后提出了未来的研究目标和发展趋势。

关键词:柴油机;喷射系统;高压共轨;发展趋势

能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个内燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。

1电控高压喷油系统的原理和结构

与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。

高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。

图1 高压共轨喷射系统结构

2 国外主要的高压共轨喷射系统

目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。

2.1 德国Bosch公司的高压共轨系统

目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

系统压力提高至160MPa,采用降噪新技术,主要适用于功率在55 kW/L 以下的发动机[2]。

图2 Bosch公司的高压共轨喷射系统

Bosch公司第三代高压共轨喷射系统的开发重心转移到系统的技术复杂度和精密度上。高压油泵前端的齿轮泵将燃油从油箱抽出,通过滤清器送入具有泵油量调节功能的高压油泵升压,分配单元将进入的燃油分成两路:一路供给泵油元件,另一路用以冷却。高压油泵将燃油压缩至最高压力160MPa,并将其输入共轨。共轨上安装的压力传感器、压力调节器和电控装置形成闭环的压力控制回路。高压燃油经油轨到喷油器。第三代高压共轨喷射系统最大的特点在于采用了一个快速开关的压电直列喷油器,压电执行器内置于喷油器轴体上,相比于传统喷油器减少了约75%的运动件及75%的质量,开关速度也得到很大提高。图3为压电式喷油器。

图3 压电式喷油器

高强度模块式激光焊接油轨为一铸造管,是连接高压油泵和喷油器的桥梁,也是一个蓄压器,见图4。

图4 激光焊接油轨

共轨中压力波动是设计所要考虑的重要参数,为使共轨压力波动和启动油压的建立几乎不受喷油器、高压油泵和调节阀工作的影响,共轨的长度、内径和容积应有一合理的数值。为使其最佳化,Bosch 在设计阶段运用AMESIM程序进行了模拟计算。与迄今最好的电磁或压电控制的喷油系统相比,Bosch第三代高压共轨喷射系统排放物控制效果和燃油的计量精度有明显的提高[3]。

Bosch公司第四代高压共轨喷射系统将会采用最新研制的同轴可变喷嘴及压力扩大器技术,最高喷射压力将会超过200MPa。

2.3 美国德尔福公司的Multec DCR系统

德尔福最具代表性的就是先进的Multec DCR柴油共轨喷射系统。Multec DCR柴油共轨喷射系统的主要部件有共用高压油轨、高压燃油调压器、高压燃油泵、燃油喷油器、电控单元、燃油滤清器和传感器等,如图5所示。

图5 德尔福公司的Multec DCR-1400

跟其他的尖端高压喷射系统一样,Multec DCR柴油共轨喷射系统的喷射压力与发动机转速和负荷无关,即使在低速运行时,系统仍可保持足够压力的高压燃油喷射。可实现多次喷射,相比之下,其喷油器的设计更加独特。

Multec DCR主要采用了带有平衡控制和反馈控制策略的电控电磁阀结构的电液式喷油器[4],它能提供极快的动作响应并精确地进行燃油流量的计量。这种响应迅速、结构紧凑、小巧玲珑的电磁阀控制的喷油器只需常规12V汽车蓄电池驱动就能正常工作,比世界上现有的任何一种柴油机共轨喷射系统都节能,这大大降低了汽车电子系统

设计的系统生产成本和复杂程度。整个系统采用积木式设计,便于应用于不同形式和不同种类的发动机。德尔福公司专门为共轨喷射系统开发了一套以加速度信号处理为基础的喷油控制策略,使Multec DCR 高压共轨系统具有较低的燃烧噪声和排放。

近年来德尔福公司确定了三个研发领域:喷油器和喷油嘴设计参数的最佳化,系统液力稳定性和多次喷射控制策略的最佳化,改善发动机参数的协调性,以满足未来排放法规的要求和降低噪声[5]。德尔福将进一步改进其柴油喷射系统,以满足下一轮全球排放法规。

3国内外研究现状

国外经过多年的发展,已经形成了比较成熟的产品,如Fiat 集团的Unijet系统、电装公司的ECD-U2系统和博世公司的CR系统等。其中,博世公司用压电石英作为执行器代替高速电磁阀,喷射压力已经高达180MPa,针阀运动速度达到1.3 m/s,预喷射油量可控制在1mm3之内。在控制策略上,以经典控制理论和现代控制理论为基础的开环控制和闭环控制在电控高压共轨系统中得到了广泛应用[6]。

国内对电控高压共轨燃油喷射系统的研究起步较晚,目前正处于研制阶段。其中天津大学研制的FIRCRI高压共轨系统正处于硬件在环仿真和实机测试阶段,上海交通大学开发的GD-1型高压共轨工大学、华中理工大学等也正在开发自己的高压共轨系统,无锡威孚集团与博世公司已经联合组建了无锡博世汽车柴油机系统股份有限公司,开始了高压共轨系统的生产。在控制策略上,目前国内主要采用经典PID控制方法,这种方法原理简单,易于实现,稳定性好,但存

在需要在不同工况下反复调节和不能在线调节等缺点。

4 国内外发展趋势

电控高压共轨燃油喷射系统的应用使柴油机的排放、噪声及燃烧性能都得到了很大改善,远远超过了传统内燃机,大大增强了柴油机的竞争力。随着电子技术、材料技术以及控制理论等的不断发展,该技术还具有很大的发展潜力,进一步的研究主要体现以下趋势:

a.设计开发新的执行器,以及通过对高压油泵、喷嘴材料和加工过程的改进进一步提高燃油喷射压力及其精确性,使燃烧更为充分[7]。

b.通过最优控制、自适应控制、预测控制等控制理论的研究,将模糊控制、人工神经网络、基于非线性的滑模控制、基于辨识模型的自适应控制等运用到电控高压共轨燃油喷射系统中,改进其控制策略

[8]。

c.研究新的喷油规律[9]。随着柴油车数量增加,柴油机尾气已经成为大气的主要污染源之一。因此,世界各国都在积极探索新方法和采取有效的技术措施主动减少和控制污染物的排放,欧洲已经制订出严格的欧V、欧VI排放法规,2013年开始实施了欧VI排放法规。因此,必须不断研究满足新的排放标准的喷油规律,进一步降低柴油机的排放。

d.燃油喷射系统的数值模拟技术。通过仿真软件建立电控高压共轨燃油系统的数值模型,分析燃油的喷射过程及系统参数对燃油喷射特性的影响,为燃油系统的优化设计、故障分析提供理论依据,降低产品开发成本,缩短开发周期。

e.解决共轨压力的微小波动造成的喷油量不均匀问题[10]。高压共轨系统的动态压力稳定性直接影响系统理想喷油规律的实现,因此,对高压共轨系统压力波动性的研究已经成为当前的热点之一。

5 总结

目前我国对高压共轨喷油系统的研究与开发尚处于起步阶段,发动机燃油喷射系统由机械式喷射系统向电控式喷射系统过渡还主要依靠国外技术来实现,柴油机高压共轨喷射系统将会有更大的发展空间[11]。为尽快提高我国的自主开发和核心竞争力,应不遗余力地在电控喷油器、液力控制阀、喷油嘴偶件和高速执行器、ECU软硬件等关键零部件的制造以及控制策略和功能、匹配标定技术、提高产品可靠性和安全、降低制造成本等方面开展研究。

参考文献

[1] 王均效,陆家祥,谭丕强,等.柴油机高压共轨燃油喷射系统的发展动态[J].内燃机,2001,

(5):39-40.

[2] 董尧清.德国Bosch最新动态.内燃机燃油喷射和控制〔J〕.2001,(3).

[3] 刘斌彬,李国岫,郑亚银.柴油机高压共轨燃油喷射系统现状与发展趋势.内燃机,2006,

(2).

[4] 范明强.新颖的德尔福共轨喷射系统及其低排放控制策略〔J〕.现代车用动力,2003.

[5] 豪彦.德尔福集团公司燃油共轨喷射技术〔J〕.汽车与配件, 2003,(2).

[6] 陈亮,高献坤,王导南.柴油机电子燃油喷射系统的发展及研究现状[J].内燃机,2008,

(2):1-4.

[7] Narukawa Kyoko, Zhang Feifei,Ito Masanori.A new concept of diesel engine fuel injection

system with DDVC hydraulic actuator[C]. Institute of Electrical and Electronics Engineers Computer Society.2008 International Conference on Control,Automation and Systems. ICCAS 2008, Oct 14-17 2008, Seoul,South Korea:284-289.

[8] Su H F, Zhang Y T, Wang J, et al. Researches of common-rail diesel engine emission control

based on cylinder pressure feedback [C]. 2008 IEEE Vehicle Power and Propulsion Conference, Harbin China, Sep 3-5 2008: 4677652.

[9] Kaw asumi I,Yasui Y.Multi-stage injection control for super ultra low emission

vehicles[C].Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States. Procee- dings of the IEEE International Conference on Industrial Technology, Mumbai India, Dec 15-17 2006:1206-1211.

[10] 梁超.电控柴油机共轨管内压力波动性研究[D].长春:东北林业大学,2006.

[11] 聂建军.柴油机高压共轨燃油系统的现状及发展趋势.内燃机,2009.

柴油机喷油器检修教案(学校材料)

2016-2017学年上学期教学教案 科目《柴油机维修》授课班级:15汽4/6/8/10/12班 任课教师:彭博教案使用时间:第11 周 课题:柴油机喷油器检修课时安排:4 课时 知识与技能目标:1、了解喷油器的作用及类型; 2、掌握柴油机喷油器的构造; 3、能够理解柴油机喷油器的工作原理; 4、掌握喷油器的检修及拆装; 过程与方法目标:通过对喷油器构造工作原理的学习,使学生知道如何拆装及检修喷油器。 情感态度与价值观目标:培养学生学习兴趣,树立自信,培养学生热爱专业服务社会的良好品质。教学重点:柴油机喷油器的结构与检修方法 教学难点:柴油机喷油器的工作原理 教学重点、难点解决办法:首先通过实物讲解喷油器的结构,在通过播放视频使学生理解喷油器的工作原理,最后在要求每个同学实际操作以达到学习目的。 教师教法:讲授法、演示法、分组实践法; 学生学法:小组讨论法、探究法、分组实践法、互帮互助学习; 教具、学具准备:教案、多媒体课件、视频、喷油器4个、梅花扳手开口扳手各4个、一字起4个、喷油器试验台4个; 教学程序设计:复习→新课导入→喷油器的作用→喷油器构造→喷油器的工作原理→喷油器检修方法→实操→小结→教后反思

备课时间:2016年11月5日 专业部 签字:年月日 教师备课纸 教学过程 教学内容教师活动学生活动设计意图一、导入新课 复习:柴油机燃料供给 系统的组成? 提问思考并回答问题巩固所学知识二、新课教授 一、喷油器的作用与类型 1.作用:将喷油泵供给的高压柴油,以一定的压力,呈雾状喷入燃烧室。 2.类型:目前采用的喷油器都是闭式喷油器,有孔式和轴针式两种。 3.对喷油器的要求:提问:我们都知道柴油机 的燃料是柴油那么柴油是 如何进入气缸的呢它是以 什么形式进入的呢? 讲解喷油器的作用。 课件讲解 思考 听、说 教师讲解概念让 学生理解知识

高压共轨喷油器工作原理.

高压共轨喷油器工作原理 2017-06-14 高压共轨喷油器工作原理 2011-03-13 00:09:27| 分类:阅读8 评论0 字号:大中小订阅 喷油时刻和喷油量的调整是通过电子触发的喷油器实现的。这些喷 油器取代了喷油嘴-帽总成(喷油嘴和喷油嘴帽)。 与已经存在的直喷柴油机中的喷油嘴-帽总成相类似的压具同样被应用于气缸顶部用于安装喷油器,也就是说,共轨的喷油器可以在发动机无需变动的情况下,就安装在已存在的直喷柴油机的气缸顶部。喷油器可以被拆分为一系列功能部件:孔式喷油嘴,液压伺服系统和 电磁阀。 燃油来自于高压油路,经通道流向喷油嘴,同时经节流孔流向控制腔,控制腔与燃油回路相连,途径一个受电磁阀控制其开关的泄油孔。泄油孔关闭时,作用于针阀控制活塞的液压力超过了它在喷油嘴针阀承压面的力,结果,针阀被迫进入阀座且将高压通道与燃烧室隔离,密 封。 当喷油器的电磁阀被触发,泄油孔被打开,这引起控制腔的压力下降,结果,活塞上的液压力也随之下降,一旦液压力降至低于作用于喷油嘴针阀承压面上的力,针阀被打开,燃油经喷孔喷入燃烧室。这种对喷油嘴针阀的不直接控制采用了一套液压力放大系统,因为快速打开针阀所需的力不能直接由电磁阀产生,所谓的打开针阀所需的控制作用,是通过电磁阀打开泄油孔使得控制腔压力降低,从而打开针阀。 图8 共轨系统喷油器 1-回油管;2-回位弹簧;3-线圈;4-高压连接; 5-枢轴盘;6-球阀;7-泄油孔;8-控制腔;9-进油 口;10-控制活塞;11-油嘴轴针;12-喷油嘴 图1-喷油器关闭图2-喷油器打开 此外,燃油还在针阀和控制柱塞处产生泄漏,控制和泄漏的燃油,通

柴油机共轨系统

柴油机共轨系统 [来源:本网讯 2006/12/26] (日)伊藤泶次古田克则 【摘要】虽然柴油机热效率高,但排放法规的强度也在逐年增加。为此,近年来,具有高度柔性控制的、能进行超高压喷射的共轨系统已逐渐成为主流。介绍了共轨系统的结构、运行、特性及其主要部件??供油泵和喷油器的技术和未来发展趋势。 1 前言 与汽油机相比,柴油机热效率高,也就是说在燃油耗方面占有优势,因此在热衷环保的欧洲,柴油车占据汽车总产量的40%。另一方面,从防止大气污染的观点出发,颗粒(PM)和NOx的排放法规日趋严格,为了应对严格的排放法规,就必须实现燃油的高压喷射化和高度的喷油控制。 本文介绍在近年来可实现超高压喷射且控制自由度高的共轨喷油系统中供油泵和喷油器的 相关技术及其今后的发展动向。 2 共轨系统的构成、运行及特征 图1以日本DENSO公司第二代共轨系统为例示出了系统构成图,图2为系统构成部件的照片。其主要部件为:供油泵(生成高压燃油)、共轨(蓄积高压燃料)、喷油器(喷射燃油)以及控制这些部件的ECU和检测发动机运行状态的各种传感器。共轨系统是把在供油泵中生成的高压燃油蓄积在共轨中,然后通过喷油器中的执行器决定喷油开始和结束的电控燃油喷射系统。 图1 共轨系统构成 图2 系统构成部件 共轨系统的第一个特征是可以实现高压喷射而与发动机的转速无关,燃油喷雾可实现微粒化,从而促进燃油和空气的混合。因此可以实现更完全的燃烧,降低排气中的PM。为了实现这样的超高压喷射,产生高压的供油泵和蓄压的共轨必不可少。 第二个特征是实现了以往喷油系统不能实现的一个燃烧循环中的多次喷油,也提高了燃烧控制自由度。 第三个特征是由于可以修正喷油量,所以喷油精度高。因为考虑到燃油耗和降低排放,所以提高喷油器的喷油控制精度很重要。最近的研究表明,预喷射的喷油量越小,PM和NOx之间的折衷就越弱,为了实现高精度的多次喷射,装有高速执行器的喷油器不可或缺。 3 共轨系统构成部件 以下详细介绍构成上述共轨系统的基本部件:供油泵和喷油器。 3.1 供油泵 如图3的产品发展历史所示,第一代供油泵为卡车用的、以直列式喷油泵为基础的HP0泵,以及乘用车用的、以分配型喷油泵为基础的HP2泵。乘用车用的HP2泵利用电磁阀实现进油量调整,并采用了在分配型喷油泵上卓有成效的内凸轮。HP2泵最大压力为145 MPa,而比这更高的压力对传统的内凸轮方式而言已达到极限。为此,如图4所示,第二代供油泵把柱塞的驱动结构由滚子机构改为平面滑动机构,降低了驱动部分的面压,以实现180 MPa的超高压喷射。进而,作为对应180 MPa 超高压喷射的另一项技术,在采用上述压力供给机构的同时,在柱塞的滑动面上涂覆陶瓷涂层,进行

玉柴高压共轨系统维修柴油机培训材料

共轨系统概述BOSCH高压共轨技术 柴油共轨系统特性 传统柴油喷射系统其压力的产生与喷油量跟凸轮与柱塞联系在一起,喷油的压力随着发动机转速与喷油量的增加而增加。这种柴油系统已经无法满足日益严格的排放法规和降低油耗的愿望。 共轨系统(Common Rail Systems,简称CRS)将燃油在高压下贮存在蓄压器(高压油轨)中,从本质上克服了传统柴油机喷射系统的缺陷,其特性有: 喷油压力的产生不依赖于发动机转速与系统喷油量,可根据发动机不同的工况灵活控制喷射压力和油量,从而实现低转速高喷射压力,达到低速高扭矩,低排放及优化燃油经济性的目的。 通过电子控制单元算出理想的喷油量和喷油时间,再由喷油器精确地喷射,甚至多次喷射。更高的系统压力,更好的排放能力,更低的燃油消耗 柴油共轨系统组成 柴油共轨喷射系统由液力系统和电子控制系统构成。其中液力系统又分低压液力系统和高压液力系统。 液力系统 低压液力系统 —油箱 —输油泵 —燃油滤清器 —低压油管 高压液力系统 —高压泵 —高压油轨 —喷油器 —高压油管 电子控制系统(Electronic Diesel Control,简称EDC)

—传感器 —电控单元(Electronic Control Unit,简称ECU) —执行器,包括带电磁阀的喷油器、压力控制阀、预热塞控制单元、 增压压力调节器、废气循环调节器、节流阀等 —线束 其中,喷油器、高压泵、高压油轨、电控单元为柴油共轨系统四大核心的部件。 轨系统示意图 喷油器 喷油器是将燃油雾化并分布在发动机燃烧室的部件。共轨喷油器的喷油时刻和持续时间均经电控单元精确计算后给出信号,再由电磁阀控制。 高压泵 高压泵的作用是将燃油由低压状态通过柱塞将其压缩成高压状态,以满足系统和发动机对燃油喷射压力和喷油量的要求。 高压油轨 高压油轨的作用是存贮燃油,同时抑制由于高压泵供油和喷油器喷油产生的压力波动,确保系统压力稳定。高压油轨为各缸共同所有,其为共轨系统的标志。 电控单元 电控单元就像发动机的大脑,它收集发动机的运行工况参数,结合已存储的特性图谱进行计算处理,并把信号传递给执行器,实现发动机的运行控制、故障诊断等功能。

柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展 陈然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国内外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个内燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机喷油器

柴油机喷油器 1、喷油器功用 喷油器是一种向柴油机燃烧室喷射高压燃油的装置。根据不同柴油机要求,将高压油泵来的柴油雾气,以一定的喷油压力、喷雾细度、喷油规律、射程和喷雾锥角喷入燃烧室特定位置,与空气混合燃烧。 2、喷油器构造与工作原理 汽车用柴油机喷油器大多采用孔式喷油器,其基本构造如图1所示。 喷油器主要部件是一对精密偶件,称其为喷油嘴或喷油头,由针阀11和针阀体13组成,用优质轴承钢制造成,其相互配合的滑动圆柱面间隙仅为 0.001mm-0.0025mm ,通过高精密加工或研磨选配而得,不同喷油嘴偶件不可互换。该间隙过大,会使喷油压力下降,喷雾质量变差;间隙过小,针阀容易卡死。针阀中部的环形锥面(承压锥面)位于针阀体的环形油腔12中,其作用是承受由油压产生的轴向推力,使针阀上升。针阀下端的锥面(密封锥面)与针阀体相配合,起密封喷油器内腔的作用。针阀上部有凸肩,当针阀关闭时,凸肩与喷油器体下端面的距离h 为针阀最大升程,其大小决定了喷油量的多少,一般h=0.4mm-0.5mm 。针阀体与喷油 器体的结合处有1-2个定位销8防止针阀体转动,以免进油孔错位。 喷油器工作时,来自喷油泵的高压柴油,经油管接头15进入喷油器体上的进油道14,再进入针阀体中部的环形油腔 12,作用在针阀的承压锥面上,对针阀形成一个向上的轴向推力,此推力一旦大于喷油器调压弹簧16的预压力时,针阀立即上移,打开喷孔10 ,高压柴油随即 图1 孔式喷油器构造

喷入燃烧室中。喷油泵停止供油时,高压油道内压力迅速下降,针阀在调压弹簧作用下及时回位,将喷孔关闭,停止喷油。 进入针阀体环形油腔12的少量柴油,经喷油嘴偶件配合表面之间的间隙流到调压弹簧端,进入回油管,流回滤清器,用来润滑喷油嘴偶件。 针阀的开启压力(喷油压力)的大小取决于调压弹簧的预紧力。不同的发动机有不同的喷油压力要求,可通过调压螺钉17调整,旋入时压力增大,旋出时压力减小。 3、喷油器分类 现代柴油汽车发动机基本采用闭式喷油器,根据喷油嘴结构形式不同,闭式喷油器又分为孔式喷油嘴和轴针式喷油嘴等,分别用于不同的燃烧室。 1.孔式喷油嘴 其特点是喷油嘴偶件中的针阀不直接伸出喷孔,喷油嘴头部的喷孔小且多,一般喷孔1-7个,直径 0.2-0.5mm 。孔式喷油嘴又分为短型和长型两种(图2),长型孔式喷油嘴的针阀导向圆柱面远离燃烧室,减少了针阀受热变形卡死在针阀体中,用于热负荷较高的柴油机中。 闭式 孔式 长型 短型 轴针式 普通型 节流型 分流型 图2 孔式喷油嘴类型 b) a) 图3 轴针式喷油器

柴油机高压共轨电控喷射系统介绍

柴油机高压共轨电控喷射系统介绍 一、共轨技术 在汽车柴油机中,高速运转使柴油喷射过程的时间只有千分之几秒,实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。由于柴油的可压缩性和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。油管内的压力波动有时还会在主喷射之后,使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象,由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,油耗增加。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。为了解决柴油机这个燃油压力变化的缺陷,现代柴油机采用了一种称"共轨"的技术。 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a、共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b、可独立地柔性控制喷油正时,配合高的喷射压力(120Mpa~200MPa),可同时控制NOx和微粒(PM)在较小的数值内,以满足排放要求。 c、柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NO x,又能保证优良的动力性和经济性。 d、由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国BOSCH公司的CR系统、日本电装公司的ECD-U2系统、意大利的FIAT集团的unijet系统、英国的DELPHI DIESEL SYSTEMS公司的LDCR 系统等。 二、高压共轨电控燃油喷射系统及基本单元 高压共轨电控燃油喷射系统主要由电控单元、高压油泵、蓄压器(共轨管)、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨(蓄压器),高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1、高压油泵 高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 浅谈柴油机高压共轨技术 一、高压共轨技术简介我们先来了解下传统柴油发动机燃油喷射 系统的局限性:传统柴油发动机燃油喷射系统的工作过程再按照一定是:柴油通过高压油泵提高油压后,喷入气缸燃的供油定时

和供油量通过喷油器, 烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,油耗于是增加了烟度和碳氢化合物的排放量, 每次喷射循环后高压油管内的残此外,也增高。尤其随之引起不稳定的喷射,压都会发生变化,严重时不仅喷在低转速区域容易产生上述现象,油不均匀,而且会发生间歇性不喷射现象。为随着发动机自动控制技术的发展和进步,了解决柴油机燃油压力变化所造成的燃油喷射现代柴油机采用了一种 高压共轨电控燃烧缺陷,燃油喷射技术,使柴油机的性能得到了全面提升。,柴油机在机械喷射、增压喷射和普通电喷后轨共。射高压喷高共现来几近年出了轨压电喷技术 是指在高压油泵、压力Rail)Common (- 1 - 传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并

可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可 以大幅度减小柴油机供油压力随发动机转 速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨ECU管、电控喷油器、各种传感器和电控单元- 2 -

柴油机高压共轨喷油系统的现状与发展

柴油机高压共轨喷油系统的现状及发展 然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机喷油器常见故障及维修要点标准版本

文件编号:RHD-QB-K4024 (操作规程范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 柴油机喷油器常见故障及维修要点标准版本

柴油机喷油器常见故障及维修要点 标准版本 操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 喷油器常见故障及影响 (1)喷油雾化不良 当喷油压力过低、弹簧端面磨损或弹簧弹力下降时,会使喷油器提前开启、延时关闭,并出现喷油雾化不良现象,导致柴油机功率下降、燃烧不充分而排气管冒黑烟。 (2)密封失效、排白烟并伴有放炮声

喷油器工作时,针阀体的密封锥面由于受到针阀频繁的强力冲击和磨料磨损,锥面会逐渐出现划痕或点蚀,配合锥面接触宽度增加,从而造成密封失效,使喷油器滴油。当柴油机温度低时,排气管有冒白烟现象;当柴油机温度高时,排气管除冒黑烟外,还会不时地发出放炮声。这时,若停止向该缸供油,排烟与放炮声则迅速消失。 (3)针阀卡死,无法喷油 柴油中的水分或酸性物质过量时会使针阀因锈蚀而被卡住;当针阀密封锥面受损后,气缸内可燃混合气也会窜入配合面并形成积炭,使针阀被卡住,喷油器无法喷油,致使该缸停止工作。

(4)内漏、喷油时间长、启动困难 当针阀在针阀孔内作频繁的往复运动时,如果柴油中杂质微粒直径过大,则会使针阀孔导向面逐渐磨损,致使喷油器内漏增加、压力下降和喷油时间延长,造成柴油机启动困难,工作时振动增大。 (5)喷油器与缸盖的结合孔漏气、窜油 若喷油器在缸盖上的安装孔内有积炭,铜垫圈不完好、不平整,以石棉板或其他材质代替紫铜材质,或垫圈的厚度不能确保喷油器伸出缸盖平面,都会造成散热不良或起不到密封作用,导致喷油器与缸盖的结合孔处漏气、窜油。

柴油机高压共轨系统

高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 结构及原理 高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油蓄积 起来,并消除燃油中的压力波动,然后再输送给每个喷油器,通过控 制喷油器上的电磁阀实现喷射的开始和终止。 其主要特点可以概括如下: 共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构; 而且共轨腔内是持续高压,高压油泵所需的驱动力矩比传统油泵小得 多。 通过高压油泵上的压力调节电磁阀,可以根据发动机负荷状况 以及经济性和排放性的要求对共轨腔内的油压进行灵活调节,尤其优 化了发动机的低速性能。 通过喷油器上的电磁阀控制喷射定时,喷射油量以及喷射速率,还可以灵活调节不同工况下预喷射和后喷射的喷射油量以及与主喷射的间隔。 高压共轨系统由五个部分组成,即高压油泵、共轨腔及高压油管、喷油器、电控单元、各类传感器和执行器。供油泵从油箱将燃油泵入高压油泵的进油口,由发动机驱动的高压油泵将燃油增压后送入共轨腔内,再由电磁阀控制各缸喷油器在相应时刻喷油。 预喷射在主喷射之前,将小部分燃油喷入气缸,在缸内发生预混合或者部分燃烧,缩短主喷射的着火延迟期。这样缸内压力升高率和峰值压力都会下降,发动机工作比较缓和,同时缸内温度降低使得NOx排放减小。预喷射还可以降低失火的可能性,改善高压共轨系统的冷起动性能。 主喷射初期降低喷射速率,也可以减少着火延迟期内喷入气缸内的油量。提高主喷射中期的喷射速率,可以缩短喷射时间从而缩短缓燃期。 主要生产商 目前世界上主要有三大公司在研发和生产柴油机高压共轨系统,日本电装、德国博世和美国德尔福。共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 由于其强大的技术潜力,今天各制造商已经把目光定在了共轨系统第3代——压电式(piezo)共轨系统,压电执行器代替了电磁阀,于是得到了更加精确的喷射控制。没有了回油管,在结构上更简单。压力从200~2000帕弹性调节。最小喷射量可控制在0.5mm3,减小了烟度和NOX的排放。 应用背景 日趋严重的能源危机,成为全世界内燃机行业关注的焦点,也使柴油机越来越受到用户青睐。与汽油机相比柴油机有很多优势:能减少20%~25%的CO2废气排放,车速较低时的加速性能更有优势,平均燃油消耗低25%~30%,能提供更多的驾驶乐趣。因此,有人大胆对全球汽车产量中柴油机的发展趋势进行了预测,并按区域划分世界汽车产量中的柴油机比例。但是,与汽油机相比,柴油机的排放控制又是一个难点。为满足排放标准,柴油机先进的燃油喷射系统———高压共轨技术成为业内人士关注的焦点。前些年,高压共轨技术是外资一统天下,现在这种局面被打破了。 排放标准的提升必然推动发动机技术的发展 发展前景

柴油机的四种供油系统说课讲解

柴油机的四种供油系 统

精品文档 柴油机的四种供油系统 1.直列泵系统 体积较大,每个气缸对应一个分泵,分泵与对应缸之间通过高压油管连接,喷油器利用柴油自身的压力被动喷油。该系统多采用机械离心式调速器,可靠性较好,但精度较差。驾驶员通过油门控制调速器弹簧的预紧力,飞锤离心块产生的离心力与弹簧力相互制约,保持动态平衡。弹簧力将油量控制机构向供油量增加的方向移动,供油量增加使柴油机加速,同时调速器飞锤离心块的离心力也增加,离心力使油量控制机构向减油的方向移动,制约转速的增加,油门位置与调速弹簧预紧力对应,弹簧预紧力与转速相对应,从而达到控制转速的目的。一旦调速器失灵或油量控制机构卡住、断开,极易造成柴油机“飞车”。加速时烟色较深,燃油利用率和尾气排放标准较低。喷油压力为17~19MPa,不利于柴油充分地雾化燃烧。 2.分配泵系统 与直列式相同之处是,采用柱塞式喷油泵和机械离心式调速器,喷油器与喷油泵用油管连接,喷油器为被动式喷油;不同之处是分配泵减少了柱塞泵的数量(只有1个柱塞偶件),通过分配转子按各缸工作顺序将高压柴油送至各缸的喷油器,高压油管在安装时必须按照分配转子的旋转方向和各缸的工作顺序连接。分配泵数量的减少使喷油泵本身体积减小,结构更紧凑,降低了成本。驱动转速的增加使喷油压力更高。分配泵驱动转速可以达到曲轴转速的3倍。在柱塞偶件密封程度不变的前提下,喷油泵驱动转速越高喷油压力越高,分配泵喷油压力可达60~80MPa。高压喷射有利于柴油更充分地雾化燃烧,降低烟度。3.PT供油系统 这是康明斯公司的专利。喷油器为主动式喷油,低压柴油在喷油器中通过摇臂压动喷油器的柱塞产生高压,喷油器也是一种柱塞泵,P和T分别指作用于喷油器油杯计量孔的压力和计量孔的开启时间。当加油门时,油路中的柴油流量增加,油路中的油压也随之增加。在计量孔开启时间不变的前提下,进入油杯中的柴油增多,使柴油机加速,同时喷油器喷油的频率增加,计量孔开启的时间缩短,限制了单次喷油量过多,其控制精度要高于直列泵系统。PT泵的调速器也是机械离心式的,其结构是柱塞在柱塞套内滑动,控制油路的宽窄,离心力推动柱塞向油路变窄的方向移动,减小压力和喷油量,限制转速的增加。弹簧推动柱塞向油路变宽的一侧移动,弹簧力与离心力相互制约,保持动态平衡。该系统的油门和停机电磁阀在油路中串联在调速器之前,所以不会出现“飞车”。其喷射压力可达70~100MPa。PT供油系统在动力性、经济性以及环保方面都优于直列泵系统和分配泵系统。 4.电控系统 有电控调速器系统和电控喷油器系统两大类。电控调速器系统就是将直列泵、分配泵的机械离心式调速器改为电控调速器。这一类柴油机利用各种传感器 将柴油机运转时的转速、气压、油压等工况参数转化成电信号送给处理器,经程序处理后处理器将指令传送到执行机构进行控制,通过不断的反馈修正使柴油机的工况接近于理想状况。控制单元将转速传感器的反馈信号经程序处理后,将控制信号作用于电磁执行机构,利用电磁力控制加油或减油,泵体部分和机械离心式的完全一样。电控系统可以实现喷油率的智能控制。电控直列泵系统同时也加装了“飞车”保护装置。 电控喷油器系统又可分为电控泵喷嘴系统和电控共轨系统。 电控泵喷嘴系统是以PT供油系统为基础的一种改进型,利用喷油器上的电磁阀的开闭控制进入油杯的油量,去掉了调速器。泵油方式仍然是摇臂压动柱塞,与PT供油系统相同。电控共轨系统是在缸盖上安装了一个燃油轨,燃油轨是一个长管状密闭容器,各缸喷油器都安装在容器上,共同使用这一燃油轨,即所谓共轨。燃油泵通过单向阀向共轨内部不断泵入柴油产生高压,类似于制动系统的储气罐。压力传感器将共轨内压力值反馈给控制单元,并通过控制电磁阀的适当开启泄油以调节共轨内的压力。共轨内的压力就是喷油器的喷油压力,可达100~120MPa。油压的产生方式与柱塞泵的完全不同。供油正时由喷油器电磁阀的开启时刻控制,喷油量由电磁阀的持续开启时间控制,所以该系统既不需要提前器也不需要调 收集于网络,如有侵权请联系管理员删除

德尔福柴油机电控高压共轨喷油系统二图

德尔福柴油机电控高压共轨喷油系统(二)(图)

————————————————————————————————作者:————————————————————————————————日期: 2

(接上期) 三、精度更高的控制策略 为了保证精确的喷油控制,使车辆之间的差异最小,在喷油器制造过程中采取了专门的措施:减少制造公差、装配期间的标定、装配线终端记录喷油器特性。 1.喷油器特性 喷油器零件的制造是一个高精度的工艺过程,其中有许多零件100%在线监测,以确保产品质量的一致性,并且最终的喷油器总成要在自动测试线上进行100%的检验。喷油器的一整套喷油量检测须在选定的压力范围内进行,每个喷油器的特性就取决于这套数据,并用一块点阵式代码标牌标示在喷油器体上。在发动机装配时,这种点阵式代码信息用光学法读入汽车的ECU中并进行编程,然后用这些信息来校正每个喷油器的电子驱动喷油脉宽和喷油定时。这项技术德尔福已用于1996年以后的柴油喷射系统中的某些泵喷嘴(EUI)产品中,现在该项技术又被设计成可适用于Multec DCR共轨喷射系统。图7中用矩形来表示喷油脉宽和喷油率曲线,并显示出了“标定喷油器”和另一个与之有差异的喷油器(给定喷油器)的喷油率曲线。假如在相同喷油脉宽下,给定喷油器的喷油量大于标定喷油器的喷油量,图8显示了给定喷油器和作为标定目标的标定喷油器的特性(喷油量曲线)的比较,于是在选定的共轨压力下,测定出两者喷油量的偏差值,并被用来修正每个喷油器的喷油脉宽。图9和图10是用和不用12C法修正的喷油量离散的实例,它们描绘出了500次喷射的喷油量曲线(喷油器脉谱图),可以清楚地看出,用12C法修正标定过的喷油器的喷油量精度大大提高,这将有助于改善发动机的性能、燃油消耗和排放。 图7 标定喷油器与给定喷油器的喷油速率

高压共轨喷油器工作原理

高压共轨喷油器工作原理 高压共轨喷油器工作原理 xx-03-1300:09:27|分类:阅读8评论0字号:大中小订阅喷油时刻和喷油量的调整是通过电子触发的喷油器实现的。这些 喷 油器取代了喷油嘴-帽总成(喷油嘴和喷油嘴帽)。 与已经存在的直喷柴油机中的喷油嘴-帽总成相类似的压具同样 被应用于气缸顶部用于安装喷油器,也就是说,共轨的喷油器可以在发动机无需变动的情况下,就安装在已存在的直喷柴油机的气缸顶部。喷油器可以被拆分为一系列功能部件:孔式喷油嘴,液压伺服系统和电磁阀。 燃油于高压油路,经通道流向喷油嘴,同时经节流孔流向控制腔,控制腔与燃油回路相连,途径一个受电磁阀控制其开关的泄油孔。泄油孔关闭时,作用于针阀控制活塞的液压力超过了它在喷油嘴针阀承压面的力,结果,针阀被迫进入阀座且将高压通道与燃烧室隔离,密封。 当喷油器的电磁阀被触发,泄油孔被打开,这引起控制腔的压力 下降,结果,活塞上的液压力也随之下降,一旦液压力降至低于作用于喷油嘴针阀承压面上的力,针阀被打开,燃油经喷孔喷入燃烧室。这种对喷油嘴针阀的不直接控制采用了一套液压力放大系统,因为快速打开针阀所需的力不能直接由电磁阀产生,所谓的打开针阀所需的

控制作用,是通过电磁阀打开泄油孔使得控制腔压力降低,从而打开针阀。 图8共轨系统喷油器 1-回油管;2-回位弹簧;3-线圈;4-高压连接; 5-枢轴盘;6-球阀;7-泄油孔;8-控制腔;9-进油 口;10-控制活塞;11-油嘴轴针;12-喷油嘴 图1-喷油器关闭图2-喷油器打开 此外,燃油还在针阀和控制柱塞处产生泄漏,控制和泄漏的燃油,通 过回油管,会同高压泵和压力控制阀的回油流回油箱。 在发动机的运转和高压泵的产生压力状态下,将喷油器的工作过程划 分为四个阶段: -喷油器关闭(有高压时); -喷油器打开(开始喷射); -喷油器完全打开; -喷油器关闭(喷射结束)。 这些工作阶段是由于作用于喷油器各零部件的分配力所导致的。发动 机停机时,共轨中没有压力时,喷油嘴弹簧使喷油器关闭。喷油器关闭(自由状态):在自由状态,电磁阀没有通电,所以它是关着的。

高压共轨喷油器工作原理

高压共轨喷油器工作原理 2011-03-13 00:09:27| 分类:战友汽车理论阅读8 评论0 字号:大中小订阅喷油时刻和喷油量的调整是通过电子触发的喷油器实现的。这些喷油器取代了喷油嘴-帽总成(喷油嘴和喷油嘴帽)。 与已经存在的直喷柴油机中的喷油嘴-帽总成相类似的压具同样被应用于气缸顶部用于安装喷油器,也就是说,共轨的喷油器可以在发动机无需变动的情况下,就安装在已存在的直喷柴油机的气缸顶部。喷油器可以被拆分为一系列功能部件:孔式喷油嘴,液压伺服系统和 电磁阀。 燃油来自于高压油路,经通道流向喷油嘴,同时经节流孔流向控制腔,控制腔与燃油回路相连,途径一个受电磁阀控制其开关的泄油孔。泄油孔关闭时,作用于针阀控制活塞的液压力超过了它在喷油嘴针阀承压面的力,结果,针阀被迫进入阀座且将高压通道与燃烧室隔离,密 封。 当喷油器的电磁阀被触发,泄油孔被打开,这引起控制腔的压力下降,结果,活塞上的液压力也随之下降,一旦液压力降至低于作用于喷油嘴针阀承压面上的力,针阀被打开,燃油经喷孔喷入燃烧室。这种对喷油嘴针阀的不直接控制采用了一套液压力放大系统,因为快速打开针阀所需的力不能直接由电磁阀产生,所谓的打开针阀所需的控制作用,是通过电磁阀打开泄油孔使得控制腔压力降低,从而打开针阀。

图8 共轨系统喷油器 1-回油管;2-回位弹簧;3-线圈;4-高压连接;5-枢轴盘;6-球阀;7-泄油孔;8-控制腔;9-进油口;10-控制活塞;11-油嘴轴针;12-喷油嘴图1-喷油器关闭图2-喷油器打开

此外,燃油还在针阀和控制柱塞处产生泄漏,控制和泄漏的燃油,通过回油管,会同高压泵和压力控制阀的回油流回油箱。 在发动机的运转和高压泵的产生压力状态下,将喷油器的工作过程划 分为四个阶段: -喷油器关闭(有高压时); -喷油器打开(开始喷射); -喷油器完全打开; -喷油器关闭(喷射结束)。 这些工作阶段是由于作用于喷油器各零部件的分配力所导致的。发动机停机时,共轨中没有压力时,喷油嘴弹簧使喷油器关闭。 喷油器关闭(自由状态):在自由状态,电磁阀没有通电,所以它是

柴油机电控共轨技术

第二节柴油机电控共轨技术 一、柴油机电控共轨系统简介 图8-44是博世公司生产的第一代高压电控共轨燃油系统。 图8-4 BOSCH 第一代高压电控共轨燃油系统 该系统的主要特点: 共轨压力为135 MPa;2、可实现预喷射;3、可实现闭环控制; 4、可用于3-8缸轿车柴油机; 5、排放可达欧3排放标准。 图8-45是日本电装公司开发的适用于轿车柴油机的高压电控共轨系统。 第一代电控共轨系统基本上是采用高速电磁阀作为执行器,承受的最高油压及系统的效率受到了限制,为了解决这一难题,许多公司正在开发采用压电晶体的电控共轨燃油系统。 图8-46是ECD-U2共轨系统在汽车上的实际布置图

电控共轨系统的特点可以概括如下: (1)自由调节喷油压力(共轨压力):利用共轨压力传感器测量共轨内的燃油压力,从而调整供油泵的供油量。 (2)自由调节喷油量:以发动机的转速及油门开度信息等为基础,由计算机计算出最佳喷油量,通过控制喷油器电磁阀的通电、断电时刻及通电时间长短,直接控制喷油参数。 (3)自由调节喷油率形状:根据发动机用途的需要,设置并控制喷油率形状:预喷射、后喷射、多段喷射等。 (4)自由调节喷油时间:根据发动机的转速和负荷等参数,计算出最佳喷油时间,并控制电控喷油器在适当的时刻开启,在适当的时刻关闭等,从而准确控制喷油时间。 在电控共轨系统中,由各种传感器——发动机转速传感器、油门开度传感器、温度传感器等,实时检测出发动机的实际运行状态,由ECU根据预先设计的计算程序进行计算后,定出适合于该运行状态的喷油量、喷油时间、喷油率等参数,使发动机始终都能在最佳状态下工作。 德国博世公司和日本电装公司的研究结果均表明:在直喷式柴油机中,采用电控共轨式燃油系统与采用普通凸轮驱动的泵管嘴系统相比,电控共轨系统与发动机匹配时更加方便灵活。其突出优点可以归纳如下: (1)广阔的应用领域(用于轿车和轻型载货车,每缸功率可达30kW,用于重型载货车以及机车和船舶用柴油机,每缸功率约可达200kW左右)。 (2)更高的喷油压力,目前可达140 MPa,不久的将来计划达到180Mpa。 (3)喷油始点、喷油终点可以方便地改变。 (4)可以实现预喷射、主喷射和后喷射,可以根据排放等要求实现多段喷射。

详谈柴油机高压共轨电喷技术

详谈柴油机高压共轨电喷技术高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。 共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 欧洲可以说是柴油车的天堂,在德国柴油轿车占了39%。柴油轿车已有了近70年的历史,而最近10年可以说柴油发动机有了突飞猛进的发展。在1997年,博世与奔驰公司联合开发了共轨柴油喷射系统(Common Rail System)。今天在欧洲,众多品牌的轿车都配有共轨柴油发动机,如标致公司就有HDI共轨

柴油发动机,菲亚特公司的JTD发动机,而德尔福则开发了Multec DCR柴油共轨系统。 共轨系统与柴油喷射系统的区别 共轨系统与之前以凸轮轴驱动的柴油喷射系统不同,共轨式柴油喷射系统将喷射压力的产生和喷射过程彼此完全分开。电磁阀控制的喷油器替代了传统的机械式喷油器,燃油轨中的燃油压力由一个径向柱塞式高压泵产生,压力大小与发动机的转速无关,可在一定范围内自由设定。共轨中的燃油压力由一个电磁压力调节阀控制,根据发动机的工作需要进行连续压力调节。电控单元作用于喷油器电磁阀上的脉冲信号控制燃油的喷射过程。喷油量的大小取决于燃油轨中的油压和电磁阀开启时间的长短,及喷油嘴液体流动特性。 燃油喷射压力是柴油发动机的重要指标,因为它联系着发动机的动力、油耗、排放等。共轨柴油喷射系统已将燃油喷射压力提高到1800巴 近年发展 最近2年,匹配直喷柴油发动机的轿车在欧洲得到了显著发展,有着高效和出色的燃油经济性,并降低了发动机噪音。直喷柴油发动机使用的是泵喷嘴系统,国内生产的1.9TDI宝来就应用这一系统,最高喷射压力可达到1800巴。泵喷嘴直喷系统好虽好,但燃油压力不能保持恒定,随着排放控制的更加苛刻,就需要更高及恒定的柴油喷射压力和更完善的电子控制,于是众多制造商们就把优点更多的柴油共轨系统作为柴油发动机的发展方向。这一系统有很高的燃油压力,并能提供弹性燃油分配控制,通过ECU灵活地控制燃油分配、燃油喷射时间、

高压共轨燃油喷射系统的组成与工作原理

高压共轨燃油喷射系统的组成与工作原理 (3)断路(开路)检测方法 如图3-74所示的配线有断路故障,可用“检查导通性”或“测量电压”的方法来确定断路的部位。 图3-74 断路检测 ①“检查导通性”方法 a. 脱开连接器A和C,测量它们之间的电阻值,如图3-75所示。若连接器A的端子1与连接器C的端子1之间的电阻值为∞,则它们之间不导通(断路);若连接器A的端子2与连接器C的端子2之间的电阻值为0Ω,则它们之间导通(无断路)。 图3-75 导通检测 b.脱开连接器B,测量连接器A与B、B与C之间的电阻值。若连接器A的端子1与连接器B的端子1之间的电阻值为0Ω,而连接器B的端子1与连接器C的端子1之间的电阻为∞,则连接器A的端子l与连接器B的端子l之间导通,而连接器B的端子1与连接器C 的端子1之间有断路故障存在。 ②“测量电压”方法。 在ECU连接器端子加有电压的电路中,可以用“测量电压”的方法来检查断路故障。如图3-76所示)。

图3-76 电压检测 在各连接器接通的情况下,ECU输出端子电压为5 V的电路中,如果依次测量连接器A 的端子1、连接器B的端子1和连接器C的端子1与车身(搭铁)之间的电压时,测得的电压值分别为5 V、5 V和0 V,则可判定:在连接器B的端子1与连接器C的端子1之间的配线有断路故障存在。 (4)短路检查方法 如果配线短路搭铁,可通过检查配线与车身(搭铁)是否导通来判断短路部位。如图3-77所示。 图3-77 短路检测 ①脱开连接器A和C,测量连接器A的端子1和端子2与车身之间的电阻值。如果测得的电阻值分别为0 Ω和∞,则连接器A的端子1与连接器C的端子1的配线与车身之间有搭铁短路故障。 ②脱开连接器B,分别测量连接器A的端子1和连接器C的端子1与车身之间的电阻值。如果测得的电阻值分别为∞和0Ω,则可以判定:连接器B的端子1与连接器C的端子1之间的配线与车身之间有搭铁短路故障。 九、信号检测线 信号检测线的作用是在进行发动机 ECU 端子的检测时,为防止接头破损,需连接信号检查线束,并将测试棒抵住信号检查线束的接触箱进行检测。 1.信号检测线的连接使用方法 (1)将起动器钥匙置于「OFF」(锁定),从发动机 ECU 上取下接头。注意接头不可使锁定部位的锁扣弯折。 (2)将信号检查线束连接在发动机 ECU 以及机械线束上。 (3)将测试棒抵住信号检测线的信号检测接头测量。 (4)信号检测线为共轨式燃料喷射系统专用。如图3-78所示。

相关文档
最新文档