柴油机高压共轨与传统燃油系统的比较与研究-开题报告

柴油机高压共轨与传统燃油系统的比较与研究-开题报告
柴油机高压共轨与传统燃油系统的比较与研究-开题报告

毕业论文开题报告课题名称:柴油机高压共轨燃油系统

与传统燃油系统的比较研究专业:

姓名:

班级学号:

指导教师:

二XX年四月三日

上已得到普通应用,如德国戴姆勒-奔驰公司C系列轿车、意大利Alfa Remeo156轿车、德国大众的奥迪3.3L型V8涡轮增压柴油机、美国通用公司与日本五十铃公司合资生产的Duramax6600柴油机及美国康明斯公司的ISBe3.9L和5.9L全电控柴油机等。德尔福与西门子分别在1998年和2000年推出轿车Multec DCR 1400共轨系统,采用径向柱塞转子式供油泵,德尔福公司的喷油器电磁阀设计在喷油器内,使得喷油器体积更小巧;西门子喷油器采用压电执行器,响应时间更短;而日本电装公司在1991年研究开发出的ECD-U2第一代产品,并于1995年匹配Hino的J08C柴油机、五十铃的6HK1柴油机,经过多年的改进与完善,最新产品已用于轿车的ECD-U2P系统。

我国在柴油机高压共轨技术有自己的成绩。我国部分大学、研究所和企业也通过合作或独立自主研发,取得了各具特色的研究成果,并有数十项专利公布。虽然我们的共轨系统相关配套体系还不算健全,单片机芯片、共轨压力传感器还依赖于进口,但是,随着我国科技人员的努力,在未来的发展中,我们一定会拥有自己的燃油系统。

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 一、高压共轨技术简介 我们先来了解下传统柴油发动机燃油喷射系统的局限性: 传统柴油发动机燃油喷射系统的工作过程是:柴油通过高压油泵提高油压后,再按照一定的供油定时和供油量通过喷油器,喷入气缸燃烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物的排放量,油耗也增高。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。 随着发动机自动控制技术的发展和进步,为了解决柴油机燃油压力变化所造成的燃油喷射燃烧缺陷,现代柴油机采用了一种高压共轨电控燃油喷射技术,使柴油机的性能得到了全面提升。 柴油机在机械喷射、增压喷射和普通电喷后,近几年来出现了共轨高压喷射。高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨管、电控喷油器、各种传感器和电控单元ECU 等组成,如图1所示。发动机工作时,高压油泵上自带的齿轮泵通过负压从油箱中吸油,并以一定的压力(约5~7bar)将过滤后燃油送入高压油泵。燃油进入高压柱塞腔后被压缩,通过高压油管进入共轨管形成高压,每缸喷油器通过高压油管与共轨管相连,以实现高压喷射。 2.1.1 高压油泵(High pressure pump) 高压油泵是高压共轨系统中的关键部件之一,它的主要作用是将低压燃油加压成为高压燃油,储存在油轨内等待ECU的喷射指令。高压油泵由齿轮泵、油量计量单元、溢流阀、进出油阀和高压柱塞等部分组成。以Bosch目前广泛应用于中国商用车市场并已开始本地化生产的CPN2.2BL为例,其结构如图2所示[12]。

玉柴高压共轨系统维修柴油机培训材料

共轨系统概述BOSCH高压共轨技术 柴油共轨系统特性 传统柴油喷射系统其压力的产生与喷油量跟凸轮与柱塞联系在一起,喷油的压力随着发动机转速与喷油量的增加而增加。这种柴油系统已经无法满足日益严格的排放法规和降低油耗的愿望。 共轨系统(Common Rail Systems,简称CRS)将燃油在高压下贮存在蓄压器(高压油轨)中,从本质上克服了传统柴油机喷射系统的缺陷,其特性有: 喷油压力的产生不依赖于发动机转速与系统喷油量,可根据发动机不同的工况灵活控制喷射压力和油量,从而实现低转速高喷射压力,达到低速高扭矩,低排放及优化燃油经济性的目的。 通过电子控制单元算出理想的喷油量和喷油时间,再由喷油器精确地喷射,甚至多次喷射。更高的系统压力,更好的排放能力,更低的燃油消耗 柴油共轨系统组成 柴油共轨喷射系统由液力系统和电子控制系统构成。其中液力系统又分低压液力系统和高压液力系统。 液力系统 低压液力系统 —油箱 —输油泵 —燃油滤清器 —低压油管 高压液力系统 —高压泵 —高压油轨 —喷油器 —高压油管 电子控制系统(Electronic Diesel Control,简称EDC)

—传感器 —电控单元(Electronic Control Unit,简称ECU) —执行器,包括带电磁阀的喷油器、压力控制阀、预热塞控制单元、 增压压力调节器、废气循环调节器、节流阀等 —线束 其中,喷油器、高压泵、高压油轨、电控单元为柴油共轨系统四大核心的部件。 轨系统示意图 喷油器 喷油器是将燃油雾化并分布在发动机燃烧室的部件。共轨喷油器的喷油时刻和持续时间均经电控单元精确计算后给出信号,再由电磁阀控制。 高压泵 高压泵的作用是将燃油由低压状态通过柱塞将其压缩成高压状态,以满足系统和发动机对燃油喷射压力和喷油量的要求。 高压油轨 高压油轨的作用是存贮燃油,同时抑制由于高压泵供油和喷油器喷油产生的压力波动,确保系统压力稳定。高压油轨为各缸共同所有,其为共轨系统的标志。 电控单元 电控单元就像发动机的大脑,它收集发动机的运行工况参数,结合已存储的特性图谱进行计算处理,并把信号传递给执行器,实现发动机的运行控制、故障诊断等功能。

电控高压共轨柴油机标定步骤

一、标准学习 GB 17691-2005车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段) 二、柴油机台架标定。 1 外特性工况点油量的初步限制 首先确定机型的外特性曲线,然后对各转速下的外特性工况点进行初步的油量限制,确保柴油机在以后的标定过程中不出现不正常的现象。此时要监控发动机的爆压、涡轮后排温、机油压力、出水温度等参数不得超过柴油机规定的限值。 台架标定相关修改或监控的INCA参数: EngPrt_swtTrq_C = 0 EngPrt_qLim_CUR InjCrv_phiMI1Bas1_MAP Rail_pSetPointBase_MAP InjCtl_qLim CoEng_stCurrLimActive 2 ESC(European steady state cycle欧洲稳态测试循环)的标定 根据外特性曲线定出A、B、C三点的转速和100%的扭矩。在主喷的轨压和提前角的MAP图里面插入这三个转速。可根据需要把这与三个转速加到其他相关的MAP和CUR中,如InjCtl_tiET_MAP,EngPrt_qLim_CUR,EngPrt_TrqLim_CUR等,然后进行13工况各排放点的标定。 在台架标定时,可对标定点附近的主喷轨压和提前角设置成一致,这样可以保证各排放工况点的稳定。记录该排放点在某一主喷轨压和提前角时的各试验参数:大气压力/温度/相对或者绝对湿度、中冷后温度/压力、油耗量、空气流量、NOx的浓度值、爆压、烟度、涡轮后排温等,然后根据相应的NOx的计算公式得到该排放点的NOx值。标定的目标就是在保证各点的NOx在小于5g/前提下,尽可能的使烟度值降低,即保证颗粒的排放也要小。 一般说来主喷的轨压越高(提前角越大),NOx值就会越高,但烟度和油耗会降低。因此要综合权衡NOx和烟度的关系。如果不能达到理想的效果,就要考虑喷油器、燃烧室以及增压器等部件的匹配问题。 由于进行ESC试验时,需要在A和C转速之间的工况点任意加测三个点的排放,因此也需要对A、C区域的其他转速下工况点的轨压和提前角进行标定,使得这些转速下的工况点的NOx和烟度值不能和其相邻四个排放点的NOx和烟度值差别过大。 台架标定时注意轨压在发动机转速100r/min间隔不得高于200bar;喷油量在10mg/cyc间隔的轨压不得高于200bar。 相关修改或监控的INCA参数: InjCrv_phiMI1Bas1_MAP Rail_pSetPointBase_MAP EngPrt_qLim_CUR EngM_nAvrg InjCrv_phiMI1Bas RailCD_pPeak InjCtl_qSetUnBal CoEng_stCurrLimActive 3 ET-MAP的标定: 由于喷油器的加电MAP图是在油泵试验台上得到的,跟喷油器实际工作环境不同,因此需要对从台架得到的加电MAP的数据进行修改,使ECU显示的喷油量跟台架实测的燃油消耗率的结果等效: (mg/cyc*3*60*n)/(1000*P)= g/ 即:mg/cyc =(g/*Trq)/ 1719 SMG remark:设置SV101=BSFC*Torque/1719 该方法只适用于喷油量大于15mg/cyc以上的加电时间的标定,不适合小喷油量对应加电时间的标定,因为此时油耗仪测量的结果不稳,再就是还有部分燃油没有燃烧,因此需要利用碳平衡法(可根据欧III标准编制计算公式)测量尾气中HC、CO、CO2的浓度,计算得到小负荷工况下的油耗率,然后根据上面的公式,对小油量的加电时间进行标定。 标定方法:选择一个固定转速,如B点,然后根据InjVCD_tiET_MAP中x坐标轨压的显示值,确定需要进行标定的轨压,例如下图,可以选择350bar、550bar、750bar、950bar和1300bar作为标定的轨压。把B点的轨压全部设为350bar,根据y轴的喷油量选择需要标定的工况点,监控ECU显示的喷油量和实测油耗率,如果该工况点显

柴油机的燃油系统

柴油机的燃油系统 1.商用车发动机增压式共轨喷射系统及关键技术的研究 随着未来排放法规(美国2010年及欧6排放标准)在重型商用车柴油机上的实施,以共轨喷射系统替代目前尚在许多场合使用的单体泵或泵喷嘴系统的趋势将进一步加快,而废气再循环(EGR)在所有重要的燃烧过程中的应用推动了共轨喷射系统方案的实施。由此产生的发动机对部分负荷时最高喷油压力的需求只能由带蓄压器的喷射系统采用液力方式才能有效地实现。 Bosch公司的产品系列以共轨系统(CRS)的2种变型来支持高负荷运转工况的燃烧过程设计。CRSN3.3系统提供了可挑选的柔性多次喷射自由度,它可用于采用高增压压力和高EGR率的燃烧过程。目前,喷油压力为220~250 MPa的产品分级可满足匹配特殊发动机的需求。 CRSN4.2增压式共轨喷射系统能提供可选择喷油开始时喷油速率的柔性功能,故能降低对氮氧化物(NOx)敏感的特性曲线场范围内的NOx形成。在与传统共轨喷射系统相同的喷油压力下,增压式共轨喷射系统生成NOx较少有利于降低高负荷运转工况下的燃油耗。此外,还能减少发动机在进气增压和废气流冷却方面的费用。 在发动机采用增压式共轨喷射系统进行全面优化时,实际行驶循环的燃油耗最多能降低3.5%。预测表明,在4年使用期内,欧洲长途运输由此而削减的二氧化碳(CO2)排放高达200 t,并能节省10 000欧元的燃油成本。 (1)系统设计 增压式共轨系统的基本结构具有以下众所周知的共轨系统部件及功能:(1)高压泵供应燃油;(2)共轨储存压力,并将燃油分配到各个气缸;(3)喷油器喷射燃油。 与传统共轨系统的最大区别是系统中产生压力的功能被分成两级:高压泵作为产生压力的第1级,将燃油压缩到25~90 MPa范围;第2级由集成在喷油器中的增压装置,即1个阶梯型柱塞,将燃油增压到额定喷油压力210 MPa,而增压装置由其自身的电磁阀来控制。 这种带增压装置的系统配置对于开发先进的发动机方案具有以下优点:(1)柔性和高液力效率的喷油特性曲线可优化高负荷运转工况的燃油耗;(2)共轨压力≤90 MPa的预喷射和后喷射降低了油束的动量,减小了燃油对气缸工作表面的浸湿及对发动机机油的稀释;(3)将喷油器中少数几个零件上承受最高压力的份额降至最少程度,而高压泵、共轨和高压油管最多只需按90 MPa压力来设计。 避免发动机机油掺入燃油是尽可能延长排气后处理装置使用寿命的重要环节,因此,增压式共轨系统将通常商用车上采用发动机机油润滑的高压泵传动机构改成燃油润滑的传动机构。 共轨选用与重型柴油机一样长度的结构型式,与紧凑型结构相比,它具有许多优点:(1)高压油管的变型数目减少了30%;(2)高压油管结构紧凑;(3)减小了共轨 高压油管 喷油器中的压力波动;(4)因共轨和高压油管的连接刚度好,降低了振动加速度。 (2)增压式共轨系统中的喷油器 由于对其提出的任务和要求不同,商用车发动机用的第4代喷油器与老产品有所不同。这主要体现在功能及设计方面,故在形式上考虑采用增压式喷油器,并缩小了最初采用电执行器行使原来喷射及控制功能的喷油器(包括喷油器中的构件)尺寸,使其只占普通商用车发动机共轨系统喷油器的一小部分,为扩展功能范围提供了空间。

电控高压共轨柴油机标定步骤

电控高压共轨柴油机的标定 一、标准学习 GB 17691-2005车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段) 二、柴油机台架标定。 1 外特性工况点油量的初步限制 首先确定机型的外特性曲线,然后对各转速下的外特性工况点进行初步的油量限制,确保柴油机在以后的标定过程中不出现不正常的现象。此时要监控发动机的爆压、涡轮后排温、机油压力、出水温度等参数不得超过柴油机规定的限值。 台架标定相关修改或监控的INCA参数: EngPrt_swtTrq_C = 0 EngPrt_qLim_CUR InjCrv_phiMI1Bas1_MAP Rail_pSetPointBase_MAP InjCtl_qLim CoEng_stCurrLimActive 2 ESC(European steady state cycle欧洲稳态测试循环)的标定 根据外特性曲线定出A、B、C三点的转速和100%的扭矩。在主喷的轨压和提前角的MAP图里面插入这三个转速。可根据需要把这与三个转速加到其他相关的MAP和CUR中,如InjCtl_tiET_MAP,EngPrt_qLim_CUR,EngPrt_TrqLim_CUR等,然后进行13工况各排放点的标定。 在台架标定时,可对标定点附近的主喷轨压和提前角设置成一致,这样可以保证各排放工况点的稳定。记录该排放点在某一主喷轨压和提前角时的各试验参数:大气压力/温度/相对或者绝对湿度、中冷后温度/压力、油耗量、空气流量、NOx的浓度值、爆压、烟度、涡轮后排温等,然后根据相应的NOx的计算公式得到该排放点的NOx值。标定的目标就是在保证各点的NOx在小于5g/kW.h前提下,尽可能的使烟度值降低,即保证颗粒的排放也要小。 一般说来主喷的轨压越高(提前角越大),NOx值就会越高,但烟度和油耗会降低。因此要综合权衡NOx和烟度的关系。如果不能达到理想的效果,就要考虑喷油器、燃烧室以及增压器等部件的匹配问题。 由于进行ESC试验时,需要在A和C转速之间的工况点任意加测三个点的排放,因此也需要对A、C区域的其他转速下工况点的轨压和提前角进行标定,使得这些转速下的工况点的NOx和烟度值不能和其相邻四个排放点的NOx和烟度值差别过大。 台架标定时注意轨压在发动机转速100r/min间隔不得高于200bar;喷油量在10mg/cyc间隔的轨压不得高于200bar。

电控高压共轨柴油发动机原理及特点

电控高压共轨柴油发动机原理及特点

前言 电控柴油发动机进入海气已有十个年头了,我们的汽车维修工还没有正确认识它。目前进入我国燃油喷射系统技术有博世、电装、德尔福等几家柴油机用电控技术来控制供油,并非想象中的那么神秘,它的发动机工作原理是一样的。我们常见电控柴油发动机均采用电控共轨或单体泵技术,其主要差异在于发动机的燃油喷射系统,发动机的外形差异不是很大,电控部分的实现、更加有利于整正性能的优化,减少排放、经济性、动力性、以及整车的舒适性等。 第一章电控发动机与普通发动机的差异 一、技术原理上的差异性。 1、高压共轨与四气门技术结合。 电控发动机目前一般采用高压共轨、四气门和涡轮增压中冷技术相结合,四气门结构(二进、二排)不仅可以提高充气效率,更由于喷油嘴可以居中布置,使多孔油未均匀分布,可为燃油和空气良好混合创造条件,同时可以在四气门缸盖上将进气道设计成两个独立的具有圆形状的结构以实现可变涡流。这些因素的协调配合,可大大提高混合气的形成质量(品质),有效降低碳烟颗粒(HC)碳氢和(NOX)氮氧化物排放,并提高热效率。 2、高压喷油和电控喷射技术。 高压喷射和电控喷射技术的有效采用,可使燃油充分雾化,各缸的燃油和空气混合达到最佳,从而降低排放,提高整车性能。 二、部件构成上的差异。 电控高压共轨技术是指在高压油泵、共轨管、压力传感器和

ECU(电脑控制)组成的闭环系统中,将喷射压力的产生和喷射过程彼此分开的一种技术。由高压油泵把高压燃油输送到共轨管,通过对共轨管内的油压进行闭环控制,喷油压力独立可调。 三、高压共轨系统的特点。 高压共轨系统改变了传统的喷油系统的组成结构,最大的特点就是将燃油压力产生和燃油喷射分离,以此对轨管内的油压实现精确控制。 1、可靠性:对轻型车来说系统零部件成熟且有长期使用考核验证,中型比较成熟。 2、继承性:结构简单,安装方便。 3、灵活性:高压共轨油压独立于发动机转速控制,整车控制功能强。 4、喷油压力:共轨管压力1600bar、普通压力180kgf/cm2。 5、多次喷油:可以实现多次喷射,目前最好的共轨系统可以进行6次喷射,共轨系统的灵活性好。 6、升级潜力:多次喷油特别是后喷能力使得共轨系统特别方便与后处理系统配合。 7、匹配适合性:结构移植方便,适应范围广,与柴油机均能很好匹配。 8、时间控制:时间控制系统抛弃了传统喷油系统的泵、管、嘴、系统,用高速电磁阀直接控制高压燃油的通与断,喷油量由电磁阀开启和切断的时间来确定,时间控制系统结构简单,将喷油量和喷油正时的控制合二为一,控制的自由度更大,同时能较大地

柴油机高压共轨电控燃油喷射技术介绍

柴油机高压共轨电控燃油喷射技术介绍 摘要:传统机械发动机的喷油系统凭借其可靠性、易维护性一直在不断地发展和使用。进入21世纪以来,随着人们对能源、环保的意识和要求日益提高,传统发动机的脉动喷油系统已经不能够满足现代发动机的要求。因此,现代发动机的共轨燃油喷射技术在避免了传统发动机缺点的基础上,得到了快速的发展,已经成为燃油喷射的主要发展趋势。为了更好的对高压共轨电控发动机燃油喷射系统的理解,现对高压共轨电控燃油喷射系统进行系统的介绍。 1 引言 随着世界各国工程机械、运输车辆等数量增加,柴油机排放的尾气已经成为对地球环境的主要污染原因之一,如何采取措施保护人类赖以生存的地球环境已是当务之急。我国从八十年代起相应制订了有关的标准,将环境保护作为大事来抓。与此同时,世界各国也已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制柴油机污染排放的新技术。 2 高压共轨电控燃油喷射技术发展过程 20世纪40年代电控共轨燃油喷射技术首先在航空发动机上应用,20世纪50年代在赛车发动机上广泛应用。20世纪90年代,柴油机的电控供油系统开始在实际应用中大量使用。主要有日本电装公司和丰田汽车公司ECD-U2系统、博世公司和D-C公司电控共轨式燃油喷射系统。 国外在柴油机电控高压共轨燃油喷射系统方面的研究开展得较早而且比较深入,有多种共轨系统已经投产,并与整车进行了匹配应用。日本电装公司的ECD-U2系统是电控高压共轨燃油喷射系统的典型代表,该系统还能实现预喷射和靴型喷射。 共轨喷射的发展大体经历了3个阶段,如表1所示。 从表1中可以看出:共轨喷射的最高喷射压力在不断提高,这样对于喷射品质的提高有着重要的意义。压力越高,燃料雾化越好,颗粒越小越均匀,燃烧越充分,经济性、动力性和排放性均好,但这对喷射系统的要求也越高;喷射的次数不断增加,可以实现满足发动机燃烧和排放的多次喷射,可以控制燃烧的不同阶段喷油量和喷油速率,使燃烧更充分,热效率提高;在最小稳定喷射量上,3个阶段的每次的喷射量在下降,这说明每次喷射时候可以使喷射更均匀、更细密,喷油和断油更干脆,反应灵敏,响应特性好,这样有利于燃烧,减少积炭的产生。

柴油机高压共轨喷油系统的现状及发展

柴油机高压共轨喷油系统的现状及发展 陈然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国内外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个内燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机燃油系统的技术路线

柴油机燃油系统的技术路线 国Ⅳ排放,国内主流厂家比较认可SCR技术路线。预计国Ⅳ时代,高速物流用牵引车会采用SCR技术路线,而对于中短途载货车及自卸车将会采用EGR+DPF技术路线。 汽车排放是指从废气中排出的CO、HC+NOx、PM等有害气体。为了抑制这些有害气体的产生,促使汽车生产厂家改进产品以降低这些有害气体的产生源头。目前世界上排放法规主要有三个体系,即欧洲、美国和日本的排放法规体系,其中欧洲标准是我国借鉴的汽车排放标准,所以下面重点介绍欧洲排放法规的要求。 A、欧洲排放标准

欧洲标准是由欧洲经济委员会(ECE)的排放法规和欧共体(EEC,即现在的欧盟EU)的排放指令共同加以实现的。排放法规由ECE 参与国自愿认可,排放指令是EEC或EU参与国强制实施的。汽车排放的欧洲法规(指令)标准1992年前已实施若干阶段,1992年之前为欧0阶段,具体实施时间及排放标准见表1。 欧0阶段:采用纯机械式的供油系统(燃油泵或柴油泵)和自然吸气技术。 欧Ⅰ阶段:在欧0发动机的机械供油系统(燃油泵)基础上,主要辅以废气涡轮增压技术。 欧Ⅱ阶段:在欧Ⅰ发动机平台上适当改进,主要辅以废气涡轮增压(水空)中冷技术或废气涡轮增压(空空)中冷技术,供油系统没有本质变化。 欧Ⅲ阶段:对欧II发动机平台进行重大升级,主要是供油系统发生了本质变化,实现了供油系统由机械式控制向电子控制的转化,主要技术路线包括电控泵喷嘴、电控高压共轨、电控单体泵和电控H泵+EGR。EGR(废气再循环)技术主要是针对有害气体(NOx)设置的排气净化装置,它将一部分排气循入进气管与新鲜空气混合后进入气缸燃烧,以增加混合气的热容量,降低燃烧时的最高温度,抑制NOx的生成。 欧Ⅳ阶段:在该阶段,PM与NOx的排放都做了进一步限制,其技术路线是在欧Ⅲ发动机基础上,供油系统没有本质变化,主要是采取一系列机内净化技术如提高供油系统的控制灵敏性和压力,燃烧室和进气等进一步优化,并综合使用机外净化(后处理)技术。机外净化(后处理)技术目前主要有两条技术路线:一种是SCR(选择性催化还原)技术,通过机内净化PM,机外催化还原;另一种是EGR (废气再循环)+DPF(微粒捕集器)+DOC(氧化催化转换器)技术,通过机内净化降低NOx,机外通过微粒捕捉器过滤PM。 欧Ⅴ阶段:在该阶段,对PM的要求与欧Ⅳ相同,仅对NOx的排放做了进一步限制。其技术路线在欧Ⅳ发动机基础上,根据欧Ⅳ阶段采取的技术路线的不同,进行相应的调整。采用SCR技术的发动机相对容易,只需要进行部分配件和电控参数上的局部调整,而采用EGR 技术的发动机则需要在管路上进行重新设计,改动较大。总之,在每一级的排放技术提升中,整个发动机都需要对进气系统、供油系统和排气后处理系统进行改进和优化。 国内排放实施时间 为了早日与世界接轨,我国正积极地实施更为严格的排放法规,特别是制定了中重型柴油车的排放标准,其实施步骤是: 2007年初引进欧Ⅲ标准,2010年引进欧Ⅳ标准 B、中国国Ⅲ排放技术之争 1. 国Ⅲ排放实施路线 从欧洲的发展看,欧Ⅱ到欧Ⅲ和欧Ⅲ到欧Ⅳ,不是一个量的进步方式,而是质的飞跃。发动机内从机械式喷油变为更加经济和高效率的电子喷油。在尾气处理上增加一些微粒捕集器、催化剂之类,进一步提高排放和燃烧效率。 目前,国内车用柴油机针对国Ⅲ排放标准实施的燃油系统技术路线主要有四种:电控泵喷嘴(EUI)、高压共轨(Common Rail)、电控单体泵(EUP)和电控直列泵(EIL)+EGR。在这四种技术路线中,德尔福在中国市场针对中轻型车推广共轨技术,针对重型车提供泵喷嘴和单体泵技术;博世在中国市场主推高压共轨系统;电装目前正在研发第3代、第4代共轨系统和为中国市场的共轨系统作适应性二次开发;而中国重汽则推出电控直列泵(EIL)+EGR,由于价格便宜(比共轨便宜1.5万元左右),一经推出就受到市场的追捧。但刚开始实行国Ⅲ的时候,市场上几乎一边倒都主推共轨技术,而重汽的电控直列泵(EIL)+EGR则被竞争对手戏称为“假国Ⅲ”。国内外柴油机燃油系统的技术路线之争都已经到了白日化阶段,现对各种路线做一个剖析。 (1)电控泵喷嘴技术(EUI) 在泵喷嘴系统中,电控油泵和喷油嘴之间没有管路连接,做成一体直接安装在气缸盖上,这样不占用更多的空间。每一个油泵都由顶置凸轮轴同时驱动气门和泵喷嘴,顶置凸轮轴必须具有极高的硬度和刚度以承受喷油器产生的高压。同时,凸轮轴的驱动系统也需要专门设计。电控泵喷嘴系统的优势在于系统结构紧凑,喷油嘴孔径非常小,所以燃油喷射压力非常高,形成优良的混合气,确保燃油雾化良好,燃烧效率很高,同时还可以精确控制喷油始点和喷油量,从而提高柴油机的动力性、燃油经济性,降低排放和改善NVH特性。目前,采用该项技术的车用柴油机可满足欧Ⅳ排放标准,峰值压力可达到2000bar。 该技术被沃尔沃、曼、依维柯、东风、陕汽等企业采用,另外,美国康明斯的全电控发动机应用的也是电控泵喷嘴技术,目前采用该技术的发动机全球保有量已经超过40万台,行驶里程达3000亿km,是久经考验的成熟产品。 (2)高压共轨技术(Common Rail) “CRDI”是英文Common Rail Direct Injection的缩写,意为高压共轨柴油直喷系统。该系统主要由高压油泵、喷油管、高压蓄压器(共轨)、喷油器、电控单元、传感器及执行器组成。在高压油泵、压力传感器和ECU组成的闭环系统中,喷射压力的产生和喷射过程彼此完全分开,由高压油泵把高压燃油输送到公共供油管,通过控制高压油泵电磁阀开启持续时间从而对公共供油管内的燃油压力实

柴油机共轨式电控燃油喷射新技术与环境保护

柴油机共轨式电控燃油喷射新技术与环境保护

柴油机共轨式电控燃油喷射新技术与环境保护 作者:佚名文献来源:本站原创点击数:更新时间:2005-10-04 2000-7(145)61,资源环境资源环境 柴油机共轨式电控燃油喷射新技术与环境保护 NewElectronicallyControlledCommonRailFuelI njectionTechnologyforDieselEnginesandEnvir onmentalProtection 施光林1钟廷修2 (上海交通大学机电控制研究所,博士后1;教授2上海200030) 人类虽已跨入了21世纪,但环境问题始终是人们最为忧虑的问题之一。这是因为随着世界范围经济的发展,人们一方面在生产对自身生存与发展有用的东西,而另一方面也在大量排放破坏人类居住环境的有害物质,如有毒的气体、液体和固体物质等。尤其是随着世界各国城市交通运输车辆、船舶的急剧增加,柴油机排放的尾气已经成为对地球环境的主要污染源。 据美国的一份资料报道,现在地球大气中77.3%的一氧化碳(CO)、55.3%的碳氢化物(HC)、50.9%的氮氧化物(NOX)均来自以柴油机为动力的汽车排放。特别是在城市,由于人口密集、缺少绿地,而汽车排气口一般都离地面60~70厘米,低空排放恰好易于各种有害物质经呼吸系统进入人体内部,从而对人体的健康造成极大的危害。 在我国,伴随着经济建设的快速发展,环境问题也日趋严峻。目前在我国许多城市,大气污染已从煤烟型向煤烟—石油混合型或机动车污染型转变,甚至在有些大城市已出现了光化学烟雾。仅以上海为例,据环保部门的监测,现在机动车尾气污染已成为上海地区大气污染的主要来源,其中尾气中的CO、HC、NOX等分别占中心城区污染量的90%、92%和23%。在交通干线附近,行人呼吸到的CO、HC和NOX浓度均超过国家二级大气环境质量标准。上述事实充分说明,人类居住的地球环境已经开始遭到严重破坏,如何采取措施保护人类赖以生存的地球环境已是当务之急。为此,世界各国,如美国、日本和欧共体等国从20世纪60年代就开始相继制订出有关尾气排放法规,对在各种场合使用的柴油机、汽油机的尾气排放加以限制,以减少对大气的污染。这几年又先后有欧洲Ⅱ、欧洲Ⅲ等更加严厉的尾气排放限制法规出台。我国从80年代起也相应制订了有关的标准,将环境保护作为大事来抓。与此同时,世界各国业已开始寻找和探究其他方法和采取其他有效的技术措施主动地减少和控制污染物的排放。柴油机共轨式电控燃油喷射技术正是从众多方法和措施中脱颖而出的一项较为成功的控制污染排放的新技术。 一、共轨式电控燃油喷射技术的原理 熟知柴油机的人都知道,燃烧过程是其工作的“核心”,而喷油系统对燃烧过程及其工作品质,特别是对排放的污染物种类及数量起着重要的作用。因此,对柴油机喷油系统的研究一直成为研究者们的关注热点。一般认为,柴油机喷油技术经历了传统的纯机械操纵式喷油和现代的电控操纵式喷油这两个发展阶段。而现代电控喷油技术的崛起,则应归功于计算机技术和传感检测技术的迅猛发展。目前电控喷油技术已从初期的位置控制型发展到时间控制型。共轨式电控燃油喷射技术正是属于后者。该技术不再采用传统的柱塞泵脉动供油的原理,而是通过共轨直接或间接地形成恒定的高压燃油,分送到每个喷油器,并借助于集成在每个喷油器上的高速电磁开关阀的开启与闭合,定时、定量地控制喷油器喷射至柴油机燃烧室的油量,从而保证柴油机达到最佳的燃烧比和良好的雾化,以及最佳的点火时间、足够的点火能量和最少的污染排放。图1是柴油机共轨式电控燃油喷射系统的原理框图。 这一系统主要由电控输油泵、共轨(恒压蓄油箱)、高速电磁开关阀、喷油器、电子控制装置(ECU)及各类传感器等组成。按照喷油高压形成的不同,目前共轨式电控燃油喷射系统有两种基本形式,即高压

船用柴油机主要系统介绍-燃油,滑油,冷却

第五章柴油机系统 第一节燃油系统 一、作用和组成 燃油系统是柴油机重要的动力系统之一,其作用是把符合使用要求的燃油畅通无阻地输送到喷油泵入口端。该系统通常由五个基本环节组成:加装和测量、贮存、驳运、净化处理、供给。 燃油的加装是通过船上甲板两舷装设的燃油注入法兰接头进行的。这样,从两舷均可将轻、重燃油直接注入油舱。注入管应有防止超压设施。如安全阀作为防止超压设备,则该阀的溢油应排至溢油舱或其他安全处所。注入接头必须高出甲板平面,并加盖板密封,以防风浪天甲板上浪时海水灌入油舱。燃油的测量可以通过各燃油舱柜的测量孔进行,若燃油舱柜装有测深仪表的话,也可以通过测深仪表,然后对照舱容表进行。 加装的燃油贮存在燃油舱柜中。对于重油舱,一般还装设加热盘管,以加热重油,保持其流动性,便于驳油。 燃油系统中还装设有调驳阀箱和驳运泵,用于各油舱柜间驳油。 从油舱柜中驳出的燃油在进机使用前必须经过净化系统净化。燃油净化系统包括燃油的加热、沉淀、过滤和离心分离。图5-1示出了目前大多数船舶使用的重质燃油净化系统。 图5-1 重质燃油净化系统 1-调驳阀箱;2-沉淀油柜燃油进口;3-高位报警;3-低位报警;4-温度传感器;5-沉淀油柜;6、16-水位传感器;7-供油泵; 8-滤器;9-气动恒压阀;9’-流量调节器;10-温度控制器;11、12-分油机;13-连接管;14-日用柜溢油管;15-日用油柜从图可以看出,通过调驳阀箱1,燃油被驳运泵从油舱送入沉淀油柜5,每次补油量限制在液位传感器3与3之间,自动调节蒸汽流量的加温系统加速油的沉淀分离并且可使沉淀油柜提供给供油泵7的油温变化幅度很小。供油泵后设气动恒压阀9和流量控制阀9’,以确保平稳地向分油机输送燃油,有利于提高净化质量。燃油进入分油机前,通过分油机加热器加温,加热温度由温度控制器10控制,使进入分油机的燃油温度几乎保持恒定。系统设有既能与主分油机串联也能并联的备用分油机,还设有备用供油泵,提高了系统的可靠性。分油机所分的净油进入日用油柜15,日用油柜设溢流管。在船舶正常航行的情况下,分油机的分油量将比柴油机的消耗量大一些,故在吸入口接近日用油柜低部设有溢流管,可使日用油柜低部温度较低、杂质和水含量较多的燃油引回沉淀柜,既实现循环分离提高分离效果,又使分油机起停次数减少,延长分油机使用寿命。沉淀柜和日用柜都设有水位传感器6、16,以提醒及时放残。 燃油经净化后,便可通过燃油供给系统送给船舶柴油机。近年来由于高粘度劣质燃油的

浅谈柴油机高压共轨技术

浅谈柴油机高压共轨技术 浅谈柴油机高压共轨技术 一、高压共轨技术简介我们先来了解下传统柴油发动机燃油喷射 系统的局限性:传统柴油发动机燃油喷射系统的工作过程再按照一定是:柴油通过高压油泵提高油压后,喷入气缸燃的供油定时

和供油量通过喷油器, 烧室。在燃油喷射过程中,由于压力波动,存在二次喷油现象。由于二次喷油不可能完全燃烧,油耗于是增加了烟度和碳氢化合物的排放量, 每次喷射循环后高压油管内的残此外,也增高。尤其随之引起不稳定的喷射,压都会发生变化,严重时不仅喷在低转速区域容易产生上述现象,油不均匀,而且会发生间歇性不喷射现象。为随着发动机自动控制技术的发展和进步,了解决柴油机燃油压力变化所造成的燃油喷射现代柴油机采用了一种 高压共轨电控燃烧缺陷,燃油喷射技术,使柴油机的性能得到了全面提升。,柴油机在机械喷射、增压喷射和普通电喷后轨共。射高压喷高共现来几近年出了轨压电喷技术 是指在高压油泵、压力Rail)Common (- 1 - 传感器和电子控制单元(ECU)组成的闭环系统中,相比于一般的喷油系统,它的压力建立、喷射压力控制和喷油过程相互独立,并

可以灵活地控制。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可 以大幅度减小柴油机供油压力随发动机转 速变化的程度。 另外,共轨喷油系统的高精度零部件的表面加工质量要求高,几何精度高,特殊要求多,其加工都是微米、亚纳米级的精度,代表了目前机械制造行业的最高加工水平。 二、高压共轨系统的组成和工作原理 2.1、高压共轨喷射系统组成 高压共轨喷射系统主要由高压油泵、共轨ECU管、电控喷油器、各种传感器和电控单元- 2 -

详谈柴油机高压共轨电喷技术

详谈柴油机高压共轨电喷技术高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度. 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。 共轨系统将燃油压力产生和燃油喷射分离开来,如果把单体泵柴油喷射技术比做柴油技术的革命的话,那共轨就可以称作反叛了,因为它背离了传统的柴油系统而近似于顺序汽油喷射系统。共轨系统开辟了降低柴油发动机排放和噪音的新途径。 欧洲可以说是柴油车的天堂,在德国柴油轿车占了39%。柴油轿车已有了近70年的历史,而最近10年可以说柴油发动机有了突飞猛进的发展。在1997年,博世与奔驰公司联合开发了共轨柴油喷射系统(Common Rail System)。今天在欧洲,众多品牌的轿车都配有共轨柴油发动机,如标致公司就有HDI共轨

柴油发动机,菲亚特公司的JTD发动机,而德尔福则开发了Multec DCR柴油共轨系统。 共轨系统与柴油喷射系统的区别 共轨系统与之前以凸轮轴驱动的柴油喷射系统不同,共轨式柴油喷射系统将喷射压力的产生和喷射过程彼此完全分开。电磁阀控制的喷油器替代了传统的机械式喷油器,燃油轨中的燃油压力由一个径向柱塞式高压泵产生,压力大小与发动机的转速无关,可在一定范围内自由设定。共轨中的燃油压力由一个电磁压力调节阀控制,根据发动机的工作需要进行连续压力调节。电控单元作用于喷油器电磁阀上的脉冲信号控制燃油的喷射过程。喷油量的大小取决于燃油轨中的油压和电磁阀开启时间的长短,及喷油嘴液体流动特性。 燃油喷射压力是柴油发动机的重要指标,因为它联系着发动机的动力、油耗、排放等。共轨柴油喷射系统已将燃油喷射压力提高到1800巴 近年发展 最近2年,匹配直喷柴油发动机的轿车在欧洲得到了显著发展,有着高效和出色的燃油经济性,并降低了发动机噪音。直喷柴油发动机使用的是泵喷嘴系统,国内生产的1.9TDI宝来就应用这一系统,最高喷射压力可达到1800巴。泵喷嘴直喷系统好虽好,但燃油压力不能保持恒定,随着排放控制的更加苛刻,就需要更高及恒定的柴油喷射压力和更完善的电子控制,于是众多制造商们就把优点更多的柴油共轨系统作为柴油发动机的发展方向。这一系统有很高的燃油压力,并能提供弹性燃油分配控制,通过ECU灵活地控制燃油分配、燃油喷射时间、

柴油机高压共轨喷油系统的现状与发展

柴油机高压共轨喷油系统的现状及发展 然 摘要:随着排放法规的日益严格和柴油机电控技术的不断进步,高压共轨喷油系统作为一种高度柔性控制的燃油喷射系统,以其显著的优越性,已经成为现代柴油机技术的主要发展方向之一。本文介绍了电控高压共轨喷油系统的组成、工作原理和特点,概括了国外的研究状况,最后提出了未来的研究目标和发展趋势。 关键词:柴油机;喷射系统;高压共轨;发展趋势 能源危机和环境污染问题以及世界各国日益严格的排放法规促使人们进一步改善柴油机的燃烧过程,而影响燃烧过程的关键是燃油喷射系统的性能。电控高压共轨喷油系统通过各种传感器检测出发动机的实际运行状况,由计算机计算和处理,可以精确、柔性地控制柴油机喷油量、喷油定时和喷射压力,与传统的喷射技术相比,进一步降低了燃油消耗和排放,增强了动力性能,实现了柴油机综合性能的又一次飞跃。柴油机高压共轨系统在整个燃机行业被公认为20世纪三大突破之一[1],是21世纪柴油喷射系统的主流。 1电控高压喷油系统的原理和结构 与前两代喷油系统相比,电控共轨燃油喷射系统克服了燃油压力受柴油机转速的影响,不再采用传统的柱塞泵脉动供油原理,而采用了公共控制油道——共轨管,高压油泵只是向公共油道供油以保持所需的共轨压力,通过连续调节共轨压力来控制喷射压力,使其达到与工况相适应的最优数值,而且还使得喷油压力和喷油速率的控制成为

可能,且系统的控制自由度及精度得到了大幅度提高。 高压共轨喷油系统的结构见图1,为典型的电控高压共轨喷射系统,主要由高压泵、带调压阀的共轨管、带电磁阀的喷油器、各种传感器和电控单元(ECU)组成。 图1 高压共轨喷射系统结构 2 国外主要的高压共轨喷射系统 目前,国外在柴油机电控共轨喷射系统方面的研究进展很快,并有多种共轨喷射系统设计并投产。德国Bosch公司、意大利菲亚特集团、英国LUCAS、日本电装公司、美国德尔福公司等世界著名油泵油嘴制造商相继开发了高压共轨系统。 2.1 德国Bosch公司的高压共轨系统 目前为止,Bosch公司总共规划和设计了3代高压共轨系统。如图2所示为Bosch公司的高压共轨喷射系统。第一代已经上世纪批量投放市场,主要应用于轿车,喷射压力达135MPa。第二代于2000年开始批量生产,开始使用具有油量调节功能的高压泵和经改进的电磁阀喷油器,喷射循环由预喷射、主喷射和多级喷射等多次喷射组成,最大

柴油机高压共轨电控喷射系统介绍

柴油机高压共轨电控喷射系统介绍 一、共轨技术 在汽车柴油机中,高速运转使柴油喷射过程的时间只有千分之几秒,实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。由于柴油的可压缩性和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。油管内的压力波动有时还会在主喷射之后,使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象,由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,油耗增加。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。为了解决柴油机这个燃油压力变化的缺陷,现代柴油机采用了一种称"共轨"的技术。 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a、共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b、可独立地柔性控制喷油正时,配合高的喷射压力(120Mpa~200MPa),可同时控制NOx和微粒(PM)在较小的数值内,以满足排放要求。 c、柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NO x,又能保证优良的动力性和经济性。 d、由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国BOSCH公司的CR系统、日本电装公司的ECD-U2系统、意大利的FIAT集团的unijet系统、英国的DELPHI DIESEL SYSTEMS公司的LDCR 系统等。 二、高压共轨电控燃油喷射系统及基本单元 高压共轨电控燃油喷射系统主要由电控单元、高压油泵、蓄压器(共轨管)、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨(蓄压器),高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1、高压油泵 高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。

相关文档
最新文档