数学分析21.5三重积分(含习题及参考答案)

数学分析21.5三重积分(含习题及参考答案)
数学分析21.5三重积分(含习题及参考答案)

第二十一章 重积分

5三重积分

一、三重积分的概念

引例:设一空间立体V 的密度函数为f(x,y,z),为求V 的质量M , 将V 分割成n 个小块V 1,V 2,…,V n . 每个小块V i 上任取一点(ξi ,ηi ,ζi ), 则 M=i n

i i i i T V f ?∑=→10

),,(lim ζηξ, 其中△V i 是小块V i 的体积, T =}{max 1的直径i n

i V ≤≤.

概念:设f(x,y,z)是定义在三维空间可求体积有界区域V 上的有界函数. 用若干光滑曲面所组成的曲面网T 来分割V ,把V 分成n 个小区域 V 1,V 2,…,V n .记V i 的体积为△V i (i=1,2,…,n),T =}{max 1的直径i n

i V ≤≤.

在每个V i 中任取一点(ξi ,ηi ,ζi ), 作积分和i n

i i i i V f ?∑=1

),,(ζηξ.

定义1:设f(x,y,z)为定义在三维空间可求体积的有界闭区域V 上的函数,J 是一个确定的数. 若对任给的正数ε,总存在某一正数δ,使得对于V 的任何分割T ,只要T <δ,属于分割T 的所有积分和都有

J V f i n

i i

i

i

-?∑=1

),,(ζ

ηξ<ε,则称f(x,y,z)在V 上可积,数J 称为函数f(x,y,z)

在V 上的三重积分,记作J=???V

dV z y x f ),,(或J=???V

dxdydz z y x f ),,(,其中

f(x,y,z)称为被积函数,x, y, z 称为积分变量,V 称为积分区域.

注:当f(x,y,z)=1时,???V

dV 在几何上表示V 的体积.

三积重分的条件与性质:

1、有界闭域V 上的连续函数必可积;

2、如界有界闭区域V 上的有界函数f(x,y,z)的间断点集中在有限多个零体积的曲面上,则f(x,y,z)在V 上必可积.

二、化三重积分为累次积分

定理21.15:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意(x,y)∈D=[a,b]×[c,d], g(x,y)=?h

e dz z y x

f ),,(存在,则积分

??D

dxdy y x g ),(也存在,且???V

dxdydz z y x f ),,(=???D

h

e

dz z y x f dxdy ),,(.

证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ].

设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界,

对任意(ξi ,ηj )∈[x i-1,x i ]×[y j-1,y j ], 有m ijk △z k ≤?-k

k z z j i dz z f 1

),,(ηξ≤M ijk △z k .

现按下标k 相加,有∑?-k

z z j i k

k dz z f 1

),,(ηξ=?h

e j i dz z

f ),,(ηξ=g(ξi ,ηj ),以及

∑???k

j i k j i ijk

z y x m

,,≤j i j

i j i y x g ??∑,),(ηξ≤∑???k

j i k j i ijk z y x M ,,.

两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴g(x,y)在D 上可积,且

???D

h

e

dz z y x f dxdy ),,(=???V

dxdydz z y x f ),,(.

推论:若V={(x,y,z)|(x,y)∈D, z 1(x,y)≤z ≤z 2(x,y)} ?[a,b]×[c,d]×[e,h]时,其中D 为V 在Oxy 平面上的投影,z 1(x,y), z 2(x,y)是D 上的连续函数,

函数f(x,y,z)在V 上的三重积分存在,且对任意(x,y)∈D, G(x,y)=?)

,(),(21

),,(y x z y x z dz z y x f 亦存在,则积分??D

dxdy y x G ),(存在,且

???V

dxdydz z y x f ),,(=??D dxdy y x G ),(=???

D

y x z y x z dz z y x f dxdy )

,()

,(21),,(.

证:记F(x,y,z)=??

?∈∈V V z y x ,

V

z y x ,z y x f \),,(0),,(),,(0 , 其中V 0=[a,b]×[c,d]×[e,h].

对F(x,y,z)应用定理21.15,(如图)则有

???V

dxdydz z y x f ),,(=???0

),,(V dxdydz

z y x F

=????d]

[c,b][a,),,(h

e

dz z y x F dxdy =???

D

y x z y x z dz z y x f dxdy )

,()

,(21),,(.

例1:计算???

+V

y x dxdydz

2

2,其中V 为由平面x=1, x=2, z=0, y=x 与z=y 所围区域(如图).

解:设V 在xy 平面上投影为D ,则 V={(x,y,z)|z 1(x,y)≤z ≤z 2(x,y),(x,y)∈D},

其中D={(x,y)|0≤y ≤x,1≤x ≤2}, z 1(x,y)=0, z 2(x,y)=y, 于是

???+V y x dxdydz 22=???+D y y x dz dxdy 022=??+D dxdy y x y 22=??+21022x dy y x y dx

=?212ln 21dx =2ln 2

1

.

例2:计算???++V

dxdydz z y x )(2

2

,其中V 是由???==0x y z 绕z 轴旋转一周而

成的曲面与z=1所围的区域.

解:V={(x,y,z)|22y x +≤z ≤1,(x,y)∈D}, 其中D={(x,y)|x 2+y 2≤1},

???++V

dxdydz z y x )(22=???+++D

y

x dz z y x dxdy 12

22

2)(

=????

???

?+??? ??+-+D

dxdy y x y x 2121)(2222=????????

+??

? ?

?-π

θ201

022

121

rdr

r r d

=?πθ20407d =207π

.

定理21.16:若函数f(x,y,z)在长方体V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对任意x ∈[a,b], 二重积分I(x)=??D

dydz z y x f ),,(存在,则积分

?

??b

a

D

dydz z y x f dx ),,(也存在,且???V

dxdydz z y x f ),,(=???b

a

D

dydz z y x f dx ),,(.

证:用平行于坐标轴的直线作分割T ,把V 分成有限多个小长方体 V ijk =[x i-1,x i ]×[y j-1,y j ]×[z k-1,z k ], 记D jk =[y j-1,y j ]×[z k-1,z k ], 设M ijk , m ijk 分别是f(x,y,z)在V ijk 上的上确界和下确界, 对任意ξi ∈[x i-1,x i ], 有m ijk △D jk ≤??jk

D i dydz z y f ),,(ξ≤M ijk △D jk .

现按下标j,k 相加,有∑??k j D i jk

dydz z y f ,),,(ξ=??D

i dydz z y f ),,(ξ=I(ξi ),以及

∑???k

j i k j i ijk

z y x m

,,≤i i

i x I ?∑)(ξ≤∑???k

j i k j i ijk z y x M ,,.

两边是分割T 的下和与上和. 由f(x,y,z)在V 上可积,当T →0时, 下和与上和具有相同的极限,∴I(x)在D 上可积,且

???b

a

D

dydz z y x f dx ),,(=???V

dxdydz z y x f ),,(.

推论:(如图)若V ?[a,b]×[c,d]×[e,h], 函数f(x,y,z)在V 上的三重积分存在,且对任意固定的z ∈[e,h], 积分φ(z)=??z

D dxdy z y x f ),,(存在,其中D z

是截面{(x,y)|(x,y,z)∈V}, 则?h

e dz z )(?存在,且

???

V

dxdydz z y x f ),,(=?h e

dz z )(?=???h

e

D z

dxdy z y x f dz ),,(.

证:证法与定理21.16证明过程同理.

例3:计算I=??????? ??++V dxdydz c z b y a x 222222, 其中V 是椭球体22

2222c z b y a x ++≤1.

解:I=??????? ??++V dxdydz c z b y a x 222222=???V dxdydz a x 22+???V dxdydz b y 22+???V

dxdydz c z 22

.

其中???V dxdydz a x 22

=???-a a V x

dydz dx a x 22,

V x 表示椭圆面2222c z b y +≤1-22

a

x 或

???

? ?

?-+

???

? ?

?-2

2

22

2

2

22

11a x c z a x

b y ≤1. 它的面积为

π???? ??-???? ?

?-222211a x c a x b =πbc ???

?

??-2

21a x

. ∴???V dxdydz a x 22

=?-???

? ??-a a dx a x a bcx 222

2

1π=154

πabc. 同理可得:???V dxdydz b y 22=???V dxdydz c

z 22

=154πabc.

∴I=3(154πabc)=5

4

πabc.

三、三重积分换元法

规则:设变换T :x=x(u,v,w), y=y(u,v,w), z=z(u,v,w),把uvw 空间中的区域V ’一对一地映成xyz 空间中的区域V ,并设函数x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)及它们的一阶偏导数在V ’内连续且函数行列式

J(u,v,w)=

w

z v z u

z w y

v y u y

w x v x u x ?????????≠0, (u,v,w)∈V ’. 则当f(x,y,z)在V 上可积时,有 ???V

dxdydz z y x f ),,(=???'

V dudvdw w v u J w v u z w v u y w v u x f |),,(|)),,(),,,(),,,((.

常用变换公式: 1、柱面坐标变换:

T :??

???+∞<<∞-=≤≤=+∞

<≤=z z ,z ,r y r ,r x πθθθ20sin 0cos , J(r,θ,z)=1

00cos sin 0

sin cos θθ

θθr r -=r, 即有 ???V

dxdydz z y x f ),,(=???'

V dz rdrd z r r f θθθ),sin , cos (.

V ’为V 在柱面坐标变换下的原象.

注:(1)虽然柱面坐标变换并非是一对一的,且当r=0时,J(r,θ,z)=0,但结论仍成立.

(2)柱面坐标系中r=常数, θ=常数, z=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以z 轴为中心轴的圆柱面,θ=常数是过z 轴的半平面,z 的常数是垂直于z 轴的平面(如图).

例4:计算???+V

dxdydz y x )(22, 其中

V 是曲面2(x 2+y 2)=z 与z=4为界面的区域.

解法一:V={(x,y,z)|2(x 2+y 2)≤z ≤4, (x,y)∈D}, D={(x,y)|x 2+y 2≤2}.

???+V

dxdydz y x )(22=???++4

)

(2222

2

)(y x D

dz

y x dxdy

=??+-+D

dxdy y x y x )](24)[(2

2

2

2

=??-2

02220)24(rdr

r r d πθ

=?-2053)2(4dr r r π=?-2

053)2(4dr r r π=3

8π.

解法二:V 在xy 平面上的投影区域D=x 2+y 2≤2. 按柱坐标变换得 V ’={(r,θ,z)|2r 2≤z ≤4, 0≤r ≤2, 0≤θ≤2π}.

∴???+V dxdydz y x )(22=???'

V dz drd r θ2=???4

2320202

r dz r dr d πθ=3

8π.

2、球坐标变换:T :??

???≤≤=≤≤=+∞

<≤=πθ?π?θ?θ?20cos 0sin sin 0cos sin ,r z ,r y r ,r x ,

J(r,φ,θ)=0

sin cos sin sin cos sin sin sin sin cos cos cos sin ?

?

θ?θ?θ

?θ?θ

?r co r r r r --=r 2

sin φ≥0, 即有

???V

dxdydz z y x f ),,(=???'

V d drd r

r r r f θ???θ?θ?sin )cos ,sin sin , cos sin (2

,

V ’为V 在球坐标变换T 下的原象.

注:(1)球坐标变换并不是一对一的,并且当r=0或φ=0或π时,J=0. 但结论仍成立.

(2)球坐标系中r=常数, φ=常数, θ=常数的平面分割V ’变换到xyz 直角坐标系中,r=常数是以原点为中心的球面, φ=常数是以原点为顶点, z 轴为中心轴的 圆锥面,θ=常数是过z 轴的半平面(如图).

例5:求由圆锥体z ≥22y x +cot β和球体x 2+y 2+(z-a)2≤a 2

所确定的立

体体积,其中β∈??

?

?

?2,0π和a(>0)为常数.

解:球面方程x 2+y 2+(z-a)2=a 2可表示为r=2acos φ, 锥面方程z=22y x +cot β可表示为φ=β. ∴V ’={(r,φ,θ)|0≤r ≤2acos φ, 0≤φ≤β, 0≤θ≤2π}. ∴???V

dV =????

βπ

??θcos 20

2

020sin a dr r d d =

?

β

???π0

3

3

sin cos 3

16d a =3

43

a π(1-cos 4β).

例6:求I=???V

zdxdydz , 其中V 为由22

2222c z b y a x ++≤1与z ≥0所围区域.

解:作广义球坐标变换:T :??

??

?===?θ?θ

?cos sin sin cos sin cr z br y ar x , 则J=abcr 2

sin φ. V 的原象为V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2

π, 0≤θ≤2π} ∴???V

zdxdydz =????1

02

20

20sin cos dr abcr cr d d ???θπ

π

=

?

20

2

2sin 4

π

??πd abc =

4

2

abc π.

习题

1、计算下列积分:

(1)???+V

dxdydz z xy )(2, 其中V=[-2,5]×[-3,3]×[0,1];

(2)???V

zdxdydz y x cos cos , 其中V=[0,1]×[0,2π]×[0,2

π];

(3)???

+++V

z y x dxdydz

3

)

1(, 其中V 是由x+y+z=1与三个坐标面所围成的区域; (4)???+V

dxdydz z x y )cos(, 其中V 由y=x , y=0, z=0及x+z=2

π所围成.

解:(1)???+V

dV z xy )(2=???+--1023352)(dz z xy dy dx =??--??

?

?

?+335231dy xy dx =?-522dx =14.

(2)???V

zdV y x cos cos =???20201

0cos cos π

πzdz ydy xdx =2

1

.

(3)???

+++V

z y x dxdydz 3)1(=???---+++y x x z y x dz dy dx 103

10

10)1(

=

??-???

???-++x dy y x dx 1021041)

1(121=???? ??-+-+1041211121dx x x =1652ln 21-. (4)???+V

dV z x y )cos(=???-+x

x

dz z x y dy dx 20020)cos(π

π

=??-x

ydy

dx x 020)sin 1(π

=?-20)sin 1(21π

dx x x =2

1

162-π.

2、试改变下列累次积分的顺序: (1)???+-y

x x

dz z y x f dy dx 0

101

0),,(;(2)?

??+2

20

1

10

),,(y x dz z y x f dy dx .

解:(1)积分区域V={(x,y,z)|0≤z ≤x+y, 0≤y ≤1-x, 0≤x ≤1}; ∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1-x, 0≤x ≤1} ∴I=???+-y

x x

dz z y x f dy dx 0

101

0),,(=?

?

?+-y

x y

dz z y x f dx dy 0

10

10

),,(.

∵V 在yz 平面上的投影区域D yz ={(y,z)|0≤y ≤1, 0≤z ≤1} ∴I=???-y

y

dx z y x f dz dy 1001

0),,(+???--y

y z y dx z y x f dz dy 1110),,(

=???--y

y z z

dx z y x f dy dz 101

0),,(+???-y

z dx z y x f dy dz 101

1

0),,(.

∵V 在xz 平面上的投影区域D yz ={(x,z)|0≤x ≤1, 0≤z ≤1} ∴I=???-x

x

dy z y x f dz dx 1001

0),,(+???--x

x z x dy z y x f dz dx 11

1

0),,(

=???--x

x z z

dy z y x f dx dz 101

0),,(+???-x

z dy z y x f dx dz 101

1

0),,(.

(2)积分区域V={(x,y,z)|0≤z ≤x 2+y 2, 0≤y ≤1, 0≤x ≤1};

∵V 在xy 平面上的投影区域D xy ={(x,y)|0≤y ≤1, 0≤x ≤1}; 在yz 平面上的投影区域D yz ={(x,y)|0≤y ≤1, 0≤z ≤1+y 2}; 在xz 平面上的投影区域D yz ={(x,y)|0≤x ≤1, 0≤z ≤1+x 2}; ∴I=???+2

20

1

010),,(y x dz z y x f dy dx =?

??+2

20

1

10

),,(y x dz z y x f dx dy

=???1

001

0),,(2

dx z y x f dz dy y +?

??-+111

02

2

2

),,(y z y y

dx

z y x f dz dy

=???1

01

1

0),,(dx z y x f dy dz z +???--1

11212

),,(y

z z dx z y x f dy dz .

=???1

001

0),,(2

dy z y x f dz dx x +???-+1

11

02

2

2

),,(x z x x dy

z y x f dz dx

=???10110),,(dy z y x f dx dz z +???--1

11212

),,(x z z dy z y x f dx dz .

3、计算下列三重积分与累次积分:

(1)???V

dxdydz z 2, 其中V 由x 2+y 2+z 2≤r 2和x 2+y 2+z 2≤2rz 所确定;

(2)?

??--+-222

2

2

2210

1

0y x y

x x dz z dy dx .

解:(1) 由x 2+y 2+z 2≤2rz, 得S: x 2+y 2≤2rz-z 2, 0≤z ≤2

r , 又由x 2+y 2+z 2≤r 2, 得Q: x 2+y 2≤r 2-z 2,

2

r

≤z ≤r ∴???V

dxdydz z 2=???S

r dxdy z dz 220

+???Q

r

r dxdy

z dz 22

=?

-20

2

2

)2(r dz z rz z π+?-r

r dz z r z 2

2

2

2

)(π=480595

r π. (2)应用柱坐标变换:V ’={(r,θ,z)|r ≤z ≤22r -, 0≤r ≤1, 0≤θ≤2

π

}, ∴?

??--+-222

2

2

22

101

0y x y

x x dz z dy dx =?

??-2

221

020

r r

dz z rdr d π

θ=

?---1

322]2)2[(6dr r r r r π

.

=

?

---10322]2)2[(6dr r r r r π

=

)122(15

.

4、利用适当的坐标变换,计算下列各曲面所围成的体积. (1)z=x 2+y 2, z=2(x 2+y 2), y=x, y=x 2;

(2)2

??? ??+b y a x +2

??

? ??c z =1 (x ≥0, y ≥0, z ≥0, a>0, b>0, c>0). 解:(1)V={(x,y,z)|x 2+y 2≤z ≤2(x 2+y 2), (x,y)∈D}, 其中D={(x,y)|0≤x ≤1, x 2≤y ≤x }. ∴???V dxdydz =??+D

dxdy y x )(22=??+x

x dy

y x dx 2

)(2210

=??

?

????-+-1

0632

23)()(dx x x x x x =353. (2)令x=arsin 2φcos θ, y=brcos 2φcos θ, z=crsin θ, 则

J=0

cos sin cos cos sin 2sin cos cos cos cos cos sin 2sin sin cos sin 2222θ

θ

θ??θ

??θ?θ

?cr c br br b ar ar a ---=2abcr 2

cos φsin φcos θ,

又V ’={(r,φ,θ)|0≤r ≤1, 0≤φ≤2π, 0≤θ≤2

π}. ∴???V

dxdydz =???1

022020sin cos cos 2dr r d d abc π

π???θθ=

3

abc

.

5、设球体x 2+y 2+z 2≤2x 上各点的密度等于该点到坐标原点的距离,求这球体的质量.

解:依题意,球体的质量M=

???

≤++++x

z y x dV z y x 2222222,

应用球面变换得V ’={(r,θ,φ)|-2

π≤θ≤2

π, 0≤φ≤π, 0≤r ≤2sin φcos θ}. ∴M=???-θ

?ππ

π??θcos sin 20

3

022

sin dr r d d =??-π

π

π??θθ0

522

4sin cos 4d d =

5

8π.

6、证明定理21.16及其推论. 证:证明过程见定理21.16及其推论.

7、设V=?

?????≤++1),,(22

2222c z b y a x z y x , 计算下列积分:

(1)???---

V

dxdydz c z b y a x 22

22221;(2)???++V

c z b

y a

x dxdydz e 2

22

22

2.

解:应用球面变换得V ’={(r,θ,φ)| 0≤θ≤2π, 0≤φ≤π, 0≤r ≤1}. (1)???

---V

dV c

z b y a x 2222221=???-102

20201sin dr r abcr d d ??θππ =42πabc . (2)???+

+V

c z b y a

x dV e

2

22

22

2

=???1

20

20

sin dr e abcr d d r ??θππ=

)2(4-e abc π.

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

高数不定积分例题

不定积分例题 例1、设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A 、x e 2- B 、2-x e 2- C 、4-x e 2- D 、4x e 2- 分析:因为)(x f 的一个原函数是x e 2- 所以)(x f ='=-)(2x e 2-x e 2- 答案:B 例2、已知?+=c x dx x xf sin )(,则=)(x f ( ) A 、x x sin B 、x x sin C 、x x cos D 、x x cos 分析:对?+=c x dx x xf sin )(两边求导。 得x x xf cos )(=,所以= )(x f x x cos 答案:C 例3、计算下列不定积分 1、dx x x 23)1(+ ? 2、dx x e e x x x )sin 3(2-+? 分析:利用基本积分公式积分运算性质进行积分,注意在计算时,对被积函数要进行适当的变形 解:1、dx x x 23)1 (+?dx x x x )12(3++ =? c x x x dx x dx x xdx +-+=++=? ??22321ln 22112 2、dx x e e x x x )sin 3(2-+?dx x dx e x ??+=2sin 1)3(c x e x +-+=cot 3ln 1)3( 例4、计算下列积分

1、dx x x ?-21 2、dx e e x x ?+2) 1( 分析:注意到这几个被积函数都是复合函数,对于复合函数的积分问题一般是利用凑微分法,在计算中要明确被积函数中的中间变量)(x u ?=,设法将对x 求积分转化为对)(x u ?=求积分。 解:1、dx x x ?-21c x x d x +--=---=?2221)1(1121 2、dx e e x x ?+2) 1(c e e d e x x x ++-=++=?11)1()1(12 例5、计算?+xdx x sin )1( 分析:注意到这些积分都不能用换元积分法,所以要考虑分部积分,对于分部积分法适用的函数及u ,v '的选择可以参照下列步骤①凑微分,从被积函数中选择恰当的部分作为dx v ',即dv dx v =',使积分变为?udv ;②代公式,?udv ?-=vdu uv ,计算出dx u du '=;③计算积分?vdu 解:?+xdx x sin )1(???--=+=x x xd xdx xdx x cos cos sin sin ?+-+-=---=c x x x x x xdx x x cos sin cos cos )cos cos (

完整word版,高等数学考研辅导练习题不定积分定积分及常微分方程

《高等数学》考研辅导练习4 不定积分 1. 求()x f x e -=在R 上的一个原函数。 2. 已知2 2 2 (sin )cos tan f x x x '=+,求()01f x x <<。 3. 设 2 ()f x dx x C =+?,则2(1)xf x dx -=? 。 4. 计算 3。 5。 计算。 6. 计算 71 (2) dx x x +?。 7。 计算。 8. 计算 21 13sin dx x +?。 9。 计算172 2 1sin cos dx x x ? 。 10. 计算 () 2 2 sin cos x dx x x x +?。 11. 计算 ()()2 ln ()ln ()()()()f x f x f x f x f x dx ''''++?。 12. 设()arcsin xf x dx x C =+? ,则 1 () dx f x =? 。 13. 设2 2 2(1)ln 2 x f x x -=-,且(())ln f x x ?=,求()x dx ??。 14. 计算arctan 23/2(1)x xe dx x +?。 15. 计算x 。 16. 计算 1sin 22sin dx x x +?。 17. 计算ln t tdt α ? 。 18. 计算()ln n x dx ?。 《高等数学》考研辅导练习5 定积分 1.设02 ()2 l kx x f x l c x l ? ≤≤??=??<≤??,求0 ()()x x f t dt Φ=?。 2. 设1 ()2()f x x f x dx =+? ,则()f x = 。 3. 计算 {}2 23 min 2,x dx -? 。 4. 已知()f x 连续,且满足()()1f x f x -=,则 2 2cos 1()x dx f x π π-+?= 。

数学分析专题研究试题及参考答案

数学分析专题研究试题及参考答案 一、填空题(每小题3分,共18分) 1.集合X 中的关系R 同时为反身的,对称的,传递的,则该关系R 为 . 2.设E 是非空数集,若存在实数β,满足1)E x ∈?,有β≥x ;2) ,则称β是数集E 的下确界。 3.函数)(x f y =在点0x 的某个邻域内有定义,若 存在,则称函数)(x f 在点 0x 可导。 4.若)(x f y =是对数函数,则)(x f 满足函数方程=)(xy f 。 5.若非零连续函数)(x f 满足方程)()()(y f x f y x f +=+,则函数)(x f 是 函数。 6.设函数)(x f 定义在区间),(b a 上,对于任意的),(,21b a x x ∈,)1,0(∈?α,有 成 立,则称)(x f 在),(b a 上为下凸函数。 二、单项选择题(每小题3分,共18分) 1.设f :Y X →,X A ??,则A ( )))((1 A f f - A. = B. ≠ C. ? D. ? 2.已知函数)(x f y =在区间),(b a 上可导,),(b a x ∈?,有1)(0<)(x ?' D. 前三个结论都不对 4.已知???∈∈=]2,1(2]1,0[1)(t t t f ,对于]2,0[∈x ,定义?=x t t f x F 0d )()(,则)(x F 在区 间[0,2]上( )。 A. 连续 B. 不连续 C. 可导 D. 前三个结论都不对 5.已知)(x f 是区间],[b a 上的严格下凸函数,则( )。

高等数学不定积分习题

第四章 不 定 积 分 § 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。 2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为 dx x x d 2 11)(arcsin -= ,所以arcsinx 是______的一个原函数。 4.若曲线y=?(x)上点(x,y)的切线斜率与3 x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。 二.是非判断题 1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3. ()()()??'='dx x f dx x f . [ ] 4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5. =y ()ax ln 与x y ln =是同一函数的原函数. [ ] 三.单项选择题 1.c 为任意常数,且)('x F =f(x),下式成立的有 。 (A )?=dx x F )('f(x)+c; (B )?dx x f )(=F(x)+c; (C )? =dx x F )()('x F +c; (D) ?dx x f )('=F(x)+c. 2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。 (A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ?=c. 3.下列各式中 是| |sin )(x x f =的原函数。 (A) ||cos x y -= ; (B) y=-|cosx|; (c)y={ ;0,2cos , 0,cos <-≥-x x x x (D) y={ . 0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。 4.)()(x f x F =',f(x) 为可导函数,且f(0)=1,又2 )()(x x xf x F +=,则f(x)=______.

(完整版)定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数 dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ))(2 122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、3 23xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 23xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π ? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、1 2 二、填空 (2小题,共5分) 得分 阅卷人

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ) )(2122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 2 3xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 2 3xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、 1 2

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 学院 班级 学号(后两位) 姓名 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为 ()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????=dx x g dx x f dx x g x f ( ). 3. 若()? +∞ a dx x f 绝对收敛,()?+∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必 然条件收敛( ). 4. 若()? +∞ 1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散于 正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ).

二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑ ∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B. 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛;

《高等数学》不定积分课后习题详解Word版

不定积分内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解:53 22 2 3 x dx x C -- ==-+ ? ★ (2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:114 111 333 222 3 ()2 4 dx x x dx x dx x dx x x C -- -=-=-=-+ ???? ★(3)2 2x x dx + ?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:223 21 22 ln23 x x x x dx dx x dx x C +=+=++ ??? ( ) ★(4)3) x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 2222 2 3)32 5 x dx x dx x dx x x C -=-=-+ ??

★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?? ???34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++?? ★★(9) 思路=11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134( -+-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12) 3x x e dx ?

(完整word版)高等数学第四章不定积分习题,DOC

第四章不定积分 §4–1不定积分的概念与性质 一.填空题 1.若在区间上)( ',则F(x)叫做)(x f在该区间上的一个,)(x f的 F= x f )(x A(1,6)和B(2,- .[] 三.单项选择题 1.c为任意常数,且) F=f(x),下式成立的有。 ('x (A)?= =F(x)+c; ('f(x)+c;(B)?dx x F) dx ( f) x (C)?=dx x F)()('x F+c;(D)?dx ('=F(x)+c. x f) 2.F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有。

48 (A )F(x)=cG(x);(B )F(x)=G(x)+c; (C )F(x)+G(x)=c;(D))()(x G x F ?=c. 3.下列各式中是||sin )(x x f =的原函数。 (A)||cos x y -=;(B)y=-|cosx|; (c)y={ ;0,2cos , 0,cos <-≥-x x x x (D)y={. 0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。 dx x -2 x 2sin 9.dx x x 2 )2sin 2(cos -?10.? ++dx x x 2cos 1cos 12 11.?dx x x x 2 2 cos sin 2cos 12.?++-dx x x x 3322332 13.dx x x )12 13( 22?--+14.?-dx x x x )tan (sec sec

15.?- dx x x x )1 1(216.dx x x ? -+11 五.应用题 1.一曲线通过点(2e ,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该 曲线的方程. 2.一物体由静止开始运动,经t 秒后的速度是32t (米/秒),问: ? 15.= -? dx x x 1 12 = -? dx x x 2 2)1 (11=-? 2 )1(11x x d _________ 16.若??≠=++=)0________()(,)()(a dx b ax f c x F dx x f 则 二.是非判断题 1. ??+?=??? ??=c x x d x dx x x 21 2111ln .[]

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分 内容概要 课后习题全解 习题4-1

1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 1 1x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★(9) 思路=?11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+?? ★★(10) 221(1)dx x x +? 思路:裂项分项积分。

数学分析_各校考研试题及答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值范围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感谢小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤? 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

高等数学第四章不定积分课后习题详解

第4章不定积分 内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析: 利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解: 53 2 2 2 3 x dx x C -- ==-+ ? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质, 将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +? 思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将

相关文档
最新文档