§5-1 角动量与力矩 第五章 角动量变化定理与角动量守恒 Z O

§5-1 角动量与力矩 第五章 角动量变化定理与角动量守恒 Z O
§5-1 角动量与力矩 第五章 角动量变化定理与角动量守恒 Z O

大学物理第5章 角动量守恒定律 刚体的转动

第5章 角动量守恒定律 刚体的转动 5-1 质点的动量守恒与角动量守恒的条件各是什么,质点动量与角动量能否同时守恒?試说明之。 答:质点的动量守恒的条件是: 当0F = 时,p mv == 恒矢量。 质点的角动量守恒的条件是: 当0M = 时,即000,F r θπ?=??=??=?? 时,L = 恒矢量。 可见,当0F = 时,质点动量与角动量能同时守恒。 5-2 质点在有心力场中的运动具有什么性质? 答:质点在有心力场中运动时,0,0F M ≠= ,则角动量守恒,即: 当0M = 时,L = 恒矢量。 又因为有心力是保守力,则机械能守恒,即: 当0ex in nc A A +=时,K P E E E =+=恒量。 5-3 人造地球卫星是沿着一个椭圆轨道运行的,地心O 是这一轨道的一个焦点。卫星经过近地点和远地点时的速率一样吗?卫星在近地点和远地点时的速率与地心到卫星的距离有什么关系? 答:卫星经过近地点和远地点时的速率不一样,由角动量守恒定律得: a a b b r mv r mv = a b b a v r v r ∴= 可见,速率与距离成反比。 5-4 作匀速圆周运动的质点,对于圆周上某一定点,它的角动量是否守恒?对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量是否守恒?对于哪一个定点,它的角动量守恒? 答:作匀速圆周运动的质点,对于圆周上某一定点,它的角动量不守恒;对于通过圆心而与圆面垂直的轴上的任意一点,它的角动量不守恒;对于圆心定点,

它的角动量守恒。 5-5 以初速度0v 将质量为m 的小球斜上抛,抛射角为θ,小球运动过程中, 相对于抛射点的角动量如何变化?小球运动到轨道最高点时,相对于抛射点的角动量为多少? 答:取抛射点为坐标原点,取平面直角坐标系Oxy ,y 轴正方向向上,则质点的运动方程和速度表达式为: 020cos 1sin 2x v t y v t gt θθ=???=-?? , 00c o s s i n x y v v v v gt θθ=??=-? 对于抛射点的角动量: ()() x y y x L r mv xi y j mv i mv j xmv k ymv k =?=+?+=- 将,,,x y x y v v 代入得: 201cos 2 L mgv t k θ=- 当小球到达最高点时,时刻为:0sin v t g θ=,代入上式得: 小球相对于抛射点的角动量为:320sin cos 2mv L k g θθ=- 。 5-6 为什么说刚体平动的讨论可归结为对质点运动的研究? 答:由于刚体平动时,各点的运动状态相同,则可取刚体上任意一点运动代表刚体的运动,所以刚体的平动可用质点运动来描述。 5-7如果刚体所受的合外力为零,其合外力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否一定为零? 答:如果0i i F =∑ ,但力不共轴,则力矩不为零0i i M ≠∑ 。 如果0i i M =∑ ,但力方向相同,则力不为零0i i F ≠∑ 。 5-8 在某一瞬时,如果刚体受到的合外力矩不为零,其角加速度可以为零吗?其角速度可以为零吗? 答:由刚体的转动定理:M J β=

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

大学物理角动量小论文

角动量守恒及其应用 ————角动量守恒及其应用 姓名:咫尺天涯学号:0909009 班级:12-1 摘要:角动量及其规律是从牛顿定律基础上派生出来的又一重要结果.角动量定理对质点及质点系都成立。在一些体育运动及猫的下落问题中都会用到角动量守恒来解释相关现象。 一、理论基础 质点的角动量定理为:M= 对其推广到质点系。一质点系由N个质点组成。对质点系中任一个质元J,应用角动量定理得: M是第J个质元受到的合力矩。将每个质元受到的力矩分为外力矩和内力矩,分别记作这样,对第J个质元 将它对N个质元求和得 式中,为质点系所有质点受到和外力矩矢量和,为质点系所有质点受到和内力矩矢量和。可知质点系所有质点受到和外力矩矢量和为零(读者可自行证明,在此不做赘述)。 故对质点系来说 前面证明了角动量定理对质点及质点系都成立。接下来探讨角动量守恒所应该满足的条件: (1)系统不受外力。 (2)系统所受和外力矩为零。 此两种情况下M=0,由角动量定理:M= 得系统角动量变化率为0。即系统角动量为常量,也说明了此时角动量是守恒的。

另外:L= 此时 ,当I 增大时 减小,当I 减小时 增大.利用此性质可以解释一些物理现象。 二、 联系实际: (1) 人体作为一个一个质点系,在运动过程中也应遵循角动 量定理。人体脱离地面和运动器械后。仅受重力作用, 故人体相对质心 角动量守恒。利用 人体形状可变的 性质,应用角动量 守恒定律就可做 出千姿百态的动 作出来。 (2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I 的改变而变,但两者之乘积却保持不变,因而当I 变大时, 变小;I 变小时, 变大。 在花样滑冰中,运动员利用身体的伸缩改变自身的转动惯量,以改变绕自身竖直轴的角速度。 (3) 猫在自由下落中的翻身与角动量守恒 让一只猫四脚朝天的下落,它总能在落地前翻身180度,变成四脚着地的安全姿势着陆。猫在自由下落过程中唯一受到的外力便是重力,而重力对猫的质心没有力矩,故猫在下落的过程中和外力矩为零。那么它如何获得这180度的角位移? 人们很早就意识到猫此时不能当 作一个刚体来其后又出现了双轴转动解释,意为猫先躬身,使前半身和后半身几乎成90角,然后其前半身与后半身分别旋转,但前后身旋转方向相反。猫身体前后两部分角动量大小可以相同,但符号相反。故其和角动量仍能和猫开始下降时一样,都为0。 这样,对于猫整体而言,其角动量仍能保持不变。 后来有人对猫的下落进行高速摄影,发现了双轴转动现象,此解释宣告成功。 (4)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的 特例。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。 条件: 结论: 常量

质点角动量定理附角动量守恒定律

第六章角动量 内容: §6-1 力矩(4课时) §6-2 质点的角动量定理及角动量守恒定律(4课时) 要求: 1.熟练掌握力对点的力矩。 2.理解对点的角动量定理及角动量守恒定律。 重点与难点: 角动量守恒定律。 作业: P219 1,2,3,4, P220 5,6,,

第六章 角动量 §6-1 力矩 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θs i n Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋 法则来判断:把右手拇指伸直,其余四指弯曲,弯曲 的方向由矢径通过小于1800的角度转向力的方向 时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θs i n Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方 向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、单位: m N ? 注意:力矩的单位和功的单位不是一回事,力矩的单位不能写成焦耳。 (1)与转动垂直但通过转轴的力对转动不产生力矩; (2)与转轴平行的力对转轴不产生力矩;

角动量定理

角动量守恒 现在我们来讨论物体的转动。有关转动的运动学我们在第一章已经了解得很 清楚了,有趣的是,你发现在转动和线性运动之间几乎每一个量都是相互对应的。 譬如,就象我们讨论位置和速度那样,在转动中可以讨论角位置和角速度。速度 说明物体运动得多快,而角速度则反映了物体转动的快慢,角速度越大,物体转动得越快,角度变化也越快。再继续下去,我们可以把角速度对时间微分,并称2 d dt d dt αω==ΦK K K 2为角加速度,它与通常的加速度相对应。 当然,转动只是一种形式稍微特殊一点的运动,其动力学方程也就无外乎 Newton 定律了。当然,由于这种运动只涉及转动,因此,我们也许可以找到一 些更加适合描述转动的物理量以及相应的作为Newton 第二定律推论的动力学 方。为了将该转动动力学和构成物体的质点动力学规律联系起来,我们首先就应 当求出,当角速度为某一值时,某一特定质点是如何运动的。这一点我们也是已 经知道了的:假如粒子是以一个给定的角速度ωK 转动,我们发现它的速度为 v r ω=×K K K (1) 接下来,为了继续研究转动动力学,就必须引进一个类似于力的新的概念。 我们要考察一下是否能够找到某个量,它对转动的关系就象力对线性运动的关系 那样,我们称它为转矩(转矩的英文名称torque 这个字起源于拉丁文torquere ,即 扭转的意思)。力是线性运动变化所必须的,而要使某一物体的转动发生变化就 需要有一个“旋转力”或“扭转力”,即转矩。定性地说,转矩就是“扭转’;但 定量地说,转矩又应该是什么呢?因为定义力的一个最好的办法是看在力作用下 通过某一给定的位移时,它做了多少功,所以通过研究转动一个物体时做了多少 功就能定量地得出转矩的理论。为了保持线性运动和转动的各个量之间的对应关 系,我们让在力作用下物体转过一个微小距离时所做的功等于转矩与物体转过的 角度的乘积。换句话说,我们是这样来定义转矩,使得功的定理对两者完全相同: 力乘位移是功,转矩乘角位移也是功。这就告诉了我们转矩是什么。如果粒子的 位矢转过一个很小的角度,它做了多少功呢?这很容易。所做的功是

第五节-角动量角动量守恒定理讲解学习

第五节-角动量角动量 守恒定理

第五章角动量角动量守恒定理 本章结构框图 学习指导 本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。还请注意动量守恒在天体问题、粒子问题中的应用。 基本要求 1.理解质点、质点系、定轴刚体的角动量概念。 2.理解定轴刚体的转动惯量概念,会进行简单计算。 3.理解力矩的物理意义, 会进行简单计算。

4.掌握刚体定轴转动定律,熟练进行有关计算。 5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定 理,熟练进行有关计算。 6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。 内容提要 1.基本概念 刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。即: I的大小与刚体总质量、质量分布及转轴位置有关。 质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。表5.1对质点、质点系、定轴刚体的角动量进行了比较。 表5.1质点、质点系和定轴刚体的角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1): 即: 大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

力矩和角动量定理

定义1 向量的向量积 设a和b为两个向量,a与b之间的夹角为θ(0 ≤ θ ≤ π),则存在向量c,满足 (1)向量c的模|c| = |a||b|sinθ; (2)向量c与向量a和b分别垂直,c的方向与a和b的方向按照由a转向b的右手螺旋法则确定(图1.1)。 这样规定的向量c定义为向量a和b的向量积(也称叉积或外积),记为 c = a × b 注意,对于两个向量a和b,与a和b的数量积a ? b不同,a和b的向量积a × b也是一个向量,如果向量a和b不平行,则a × b与向量a和b构成的平面垂直,即a × b与a和b都垂直。 向量a和b的向量积a × b满足以下运算性质: (1)反交换律:a × b = ? b × a;图1.1 向量的向量积 (2)分配律:(a + b) × c = a × c + b × c; (3)数乘结合律:(λa) × b = a ×(λb) = λ(a × b)(λ为任意实数)。 根据向量积的定义和运算性质,容易得到(这里0表示零向量): (1)a × a = 0; (2)设a和b为两个非零向量,则有a × b = 0 ? a∥b。 设i,j,k为空间直角坐标系中的基向量(单位向量),则有 (1)i ? i = j ? j = k ? k = 1,i ? j = j ? k = k ? i = 0; (2)i × i = j × j = k × k = 0; (3)i × j = k,j × k = i,k × i = j,图1.2 基向量之间的关系 j × i = ? k,k × j = ? i,i × k = ? j。 向量积可以根据运算性质计算,设向量a和b在空间直角坐标系中的形式分别为a = axi + ayj + azk = (ax,ay,az),b = bxi + byj + bzk = (bx,by,bz),则(运算过程略) a × b = (axi + ayj + azk) × (bxi + byj + bzk) = (aybz ? azby)i + (azbx ? axbz)j + (axby ? aybx)k = (aybz ? azby,azbx ? axbz,axby ? aybx) 向量积也可以用三阶行列式展开成二阶行列式进行形式上的计算:a × b ==i ?j +k

力矩与角动量的关系

在里,使物体绕着或转动的趋向,称为力矩(torque)。转动力矩又称为转矩。力矩能够使物体改变其。推挤或拖拉涉及到作用力,而扭转则涉及到力矩。 根据,力矩的单位是。本物理量非能量,因此不能以(J)作单位; 力矩的表示符号是,或。 力矩与三个物理量有关:施加的作用力、从转轴到施力点的位移矢量、两个矢量之间的夹角。力矩以矢量方程表示为 。 力矩的大小为 。 力矩的概念,起源于对的研究。 力矩的定义:力矩等于作用于杠杆的乘以到力的垂直。假设作用力施加于位置为的粒子。选择原点为参考点,力矩以方程定义为 。 力矩大小为 ; 其中,是两个矢量与之间的夹角。 力矩大小也可以表示为 ; 其中,是作用力对于的垂直分量。 任何与粒子的位置矢量平行的作用力不会产生力矩。 从叉积的性质,可以推论,力矩垂直于位置矢量和作用力。力矩的 方向与旋转轴平行,由右手定则决定。 使1牛顿米的力矩,作用1 ,需要恰巧焦耳的能量: 。 其中,是能量,是移动的角度,单位是。 力矩有大小方向是矢量,与动量等道理一样,只是一个力学名称。

角动量在中是与物体到原点的和相关的,在中表示为到原点的和的,通常写做。角动量是。 其中,表示质点到原点的位移,表示角动量。表示动量。而又可写为:其中表示杆状系统的,ω是角速度矢量。 在不受非零合外力矩作用时,角动量是守恒的。需要注意的是,由于成立的 条件不同,角动量是否守恒与是否守恒没有直接的联系。 角动量在中与角度是一对。 若物体(或系统)所受外力矩和为零,则物体(系统)的角动量守恒. 例如静电力或万有 引力均是径向力. 因此不会产生力矩. 行星运动的相互作用力源自于万有引力.故行星运动满足角动量守恒. 所对应的就是开普勒行星运动定律中的第二定律. 需要特别说明的是:动量, 也就是说动量的方向和速度的方向一致. 角动量守恒定律是指系统所受合外为零时系统的保持不变。当右边为零时,可知不随时间变化。 角动量守恒定律是普遍存在的之一,角动量的守恒实质上对应着空间旋转。例如,当考虑到中的受到的万有引力这一时,由于对太阳这个参考点力矩为零,所以他们以太阳为参考点的角动量守恒,这也说明了行星绕太阳单位时间内与太阳连线扫过的面积大小总是恒定值的原因。另外,角动量守恒定律也是的原因。 需要注意的是,由于成立的条件不同,角动量是否守恒与是否守恒没有直接的联系。需要搞懂有心力也就是向心力的作用不能产生力矩。

角动量定理和角动量守恒定律

第6节 角动量定理和角动量守恒定律 一、 质点对固定点的~ 定义:质点对O 点的角动量(动量矩) L =r ?P L =?sin rP =?sin rmV , 12-s k g m ,12-T ML 定义:力F 对O 点的力矩:M =r ? M =θsin rF F r V m V dt P d r P dt r d P r dt d dt L d ?+?=?+?=?=)( M dt M :元冲量矩 ?21 t t dt M :冲量矩,N m s ,1 2-T ML 如果合外力矩M =0 0=dt L d ?C P r L =?=:角动量守恒定律 例:圆锥摆球在水平面内匀速转动 分别对固定点A 和O ,讨论 小球受到的张力矩,重力矩 合力矩和角动量 对A :T R M T ?==0, G R M G ?=≠0 M =T M +G M ≠0, V m R L A ? =不守恒 对O :T r M T ?=≠0 ,G r M G ?=≠0 M =T M +G M =)(G T r +?=0 V m r L O ?=守恒

例:证明开普勒第二定律 “从恒星到行星的矢径在相同 的时间内扫过相同的面积” 证:合外力矩M =r ?F =0 角动量L =r V m ?=C r V ?=C ' ,?sin rV =C ' dt ,面积?i n 2 121r d s r d h dA == ?s i n 21dt ds r dt dA ==2/sin 2 1C rV '=?:常数 二、质点系对固定点的~ i m :动量:i i i V m P = 角动量i i i P r L ?= 定义:质点系对O 点的角动量 ∑∑?==i i i P r L L ∑∑?+?=dt P d r P dt r d dt L d i i i i ∑∑+?+?=)(i i i i i f F r P V ∑∑?+?=i i i i f r F r 外M F r i i =?∑:合外力矩 ?f r :合内力矩,∑?i i f r =0 如果合外力矩外M =0 0=dt L d ?∑==C L L i :角动量守恒定律 例:两只猴子,质量相同,距地面高度相同 一只猴子向上爬,另一只猴子不爬, 请问,哪只猴子先到达滑轮? 解:角动量守恒:21RmV RmV -=0 21V V =,同时达到滑轮

力矩和角动量定理

定义1 向量的向量积 设a和b为两个向量,a与b之间的夹角为θ(0 ≤θ≤π),则存在向量c,满足(1)向量c的模|c| = |a||b|sinθ; (2)向量c与向量a和b分别垂直,c的方向与a和b的方向按照由a转向b的右手螺旋法则确定(图1.1)。 这样规定的向量c定义为向量a和b的向量积(也称叉积或外积),记为 c = a × b 注意,对于两个向量a和b,与a和b的数量积a ? b不同,a和b的向量积a ×b也是一个向量,如果向量a和b不平行,则a ×b与向量a和b构成的平面垂直,即a ×b 与a和b都垂直。 向量a和b的向量积a ×b满足以下运算性质: (1)反交换律:a ×b = ? b ×a;图1.1 向量的向量积 (2)分配律:(a + b) × c = a ×c + b ×c; (3)数乘结合律:(λa) × b = a ×(λb) = λ(a ×b)(λ为任意实数)。 根据向量积的定义和运算性质,容易得到(这里0表示零向量): (1)a ×a = 0; (2)设a和b为两个非零向量,则有a ×b = 0 ? a∥b。 设i,j,k为空间直角坐标系中的基向量(单位向量),则有 (1)i ? i = j ? j = k ? k = 1,i ? j = j ? k = k ? i = 0; (2)i ×i = j ×j = k ×k = 0; (3)i ×j = k,j ×k = i,k ×i = j,图1.2 基向量之间的关系 j ×i = ? k,k ×j = ? i,i ×k = ? j。 向量积可以根据运算性质计算,设向量a和b在空间直角坐标系中的形式分别为a = axi + ayj + azk = (ax,ay,az),b = bxi + byj + bzk = (bx,by,bz),则(运算过程略) a × b = (axi + ayj + azk) × (bxi + byj + bzk) = (aybz ? azby)i + (azbx ? axbz)j + (axby ? aybx)k = (aybz ? azby,azbx ? axbz,axby ? aybx) 向量积也可以用三阶行列式展开成二阶行列式进行形式上的计算: a × b ==i ?j +k = (aybz ? azby)i ? (axbz ? azbx)j + (axby ? aybx)k 计算时可按第一行展开,先去掉三阶行列式中基向量所在的行和列的元素,把余下的二阶行列式(称为余子式)的元素按对角线的乘积相减,然后把结果写成向量形式。 若三个向量a、b、c分别为a = (ax,ay,az),b = (bx,by,bz),c = (cx,cy,cz),则它们的混合积可以按下式进行计算: (a × b) ? c ==cx ?cy +cz 计算方法和向量积相似,把三阶行列式化为二阶行列式,只需把基向量i、j、k换成向量c 的分量cx、cy、cz即可。 定义2 力矩 在确定的参考系中,设有力F和参考点O,力的作用点A相对于参考点O的位移向量为r(由O指向A的向量),则力F对参考点O的力矩M定义为(图2.1)

物理竞赛:角动量

物理竞赛:角动量

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的 角速度.力矩的大小不仅与力的大小和方向有关,而且 与力的作用点有关.当力的作用线在垂直于轴的平面 (π) 上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离 ρ成正比,与力在垂直于ρ 方向上的分量Fφ成正比,因为力在ρ方向上的分量F ρ 对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正 方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρ sinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将 和垂直于轴的分量F⊥ 力F分解为平行于轴的分量F ∥ 两部分,其中F//对物体绕轴转动不起作用,而F⊥ 就是在垂直于轴的平面(π) 上的投影,故这时F对轴的力矩可写成 τ=ρF⊥sinθ (5. 1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2).

2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选定的参照系中,从参考点0 指向力的作用点P 的矢量r 与作用力F 的矢积称为作用力对于参考点0的力矩,即 Τ=r ×F (5-1-2) r 也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r 就是力的作用点的位矢.根据矢积的意义,力矩的大小等于以r 和F 两矢量为邻边所构成的平行四边形的面积,方向与r 、F 所在平面垂直并与r 、F 成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m 受力F 作用时,F 对参考点〇的力矩即为质点受到的力矩,这时力矩表达式(5.1-2)中的r 就是参考点指质点的矢量,当参考点为坐标原点时,r 就是质点的位矢.当质点受F 1、F 2、…、F N N 个力同时作用时,诸力对某参考点的力矩的矢量和等 于合力F=F 1+F 2+…+F N 对同一参考点的力矩,即 r ×F 1+r ×F 2+…+r×F N =r×(F 1+F 2+…+F N )=r×F (5. 1-3) 2. 作用于质点系的力矩 力矩概念也可应用于作用于质点系上的作用力.一般讲来,质点系内各质点受到的作用力有外力和内力的区别,因此应分别考察外力的力矩和内力的力矩 (1)外力的力矩 当质点系受多个外力作用时,若第i 个质点受到的合外力为F i ,该质点相对某一给定参考点的位矢为r i ,则其力矩为τi 外= r i ×F i ,各质点所受力矩的矢量和,即质点系所受的总力矩为∑∑?==i i i i i F r 外外ττ (5.1-4) 由于各外力作用在不同质点上,各质 点的位矢r i 各不相同,因而外力对质点系的总力矩一般不能通过外力矢量和的力矩来计算. 但当质点系处在重力场中时,各质点所受重力与质点的质量成正比,方向又都相同,因而作用于质点系的重力相对某一参考点的力矩,根据(5.1-4)式为 ∑∑?=?=?=i i C i i i i Mg r g r m g m r )(重力τ (5. 1-5)

角动量定理及角动量守恒定律

精品文档,知识共享!!! 角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

力矩角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1): 即: 大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。 对于力矩的概念应该注意明确以下问题: ?明确质点系内力矩的矢量和恒为零:由于内力总是成对出现,作用力和反作用力等大、反向、在同 一直线上,所以对任何参考点内力矩的矢量和恒为零。当然,对任意轴,内力矩的代数和也恒为零。 ?明确质点系的合外力矩不等于其外力矢量和的力矩:合外力矩为各外力对同一参考点的力矩的矢量 和,即:。由于一般情况下,各外力的作用点的位矢各不相同,所以不能先求合力 ,再求合力的力矩。但是存在特例:在求重力矩时,可以把系内各质点所受重力平移到质心C, 先求出其合力,再由得到重力的合力矩。 由此还可以得到:作用于系统的合外力为零时,合外力矩不一定为零(图5.2);系统的合外力矩为零时,其合外力也不一定为零(图5.3)。 ?明确有心力对其力心的力矩恒为零:力的作用线始终通过某定点的力称为有心力。该定点称为力心。显然,有心力对其力心的力臂为零。所以,有心力对其力心的力矩恒为零。 力矩的角冲量(冲量矩):见表5.2 表5.2力矩的角冲量

2.基本规律 角动量定理:质点和质点系角动量定理的微分、积分形式如表5.3所示。请注意刚体定轴转动定律不过是质点系角动量定理在定轴方向上的分量式而已。 表5.3 质点和质点系的角动量定理 角动量守恒定律:当质点系所受对某参考点(轴)的合外力矩为零时,质点系对该参考点(轴)的总角动量不随时间变化(表5.4)。角动量守恒定律反映了空间的旋转对称性(见第7章),是自然界普遍适用的基本定律之一,在生活、技术及科学研究中有非常广泛的应用。 表5.4 角动量守恒定律

力矩和角动量定理

定义1 向量的向量积 设a 和b 为两个向量,a 与b 之间的夹角为θ(0 ≤ θ ≤ π),则存在向量c ,满足 (1)向量c 的模|c | = |a ||b |sin θ; (2)向量c 与向量a 和b 分别垂直,c 的方向与a 和b 的方向按照由a 转向b 的右手螺旋法则确定(图1.1)。 这样规定的向量c 定义为向量a 和b 的向量积(也称叉积或外积),记为 c = a × b 注意,对于两个向量a 和b ,与a 和b 的数量积a ? b 不同, a 和 b 的向量积a × b 也是一个向量,如果向量a 和b 不平行,则 a × b 与向量a 和b 构成的平面垂直,即a × b 与a 和b 都垂直。 向量a 和b 的向量积a × b 满足以下运算性质: (1)反交换律:a × b = ? b × a ; 图1.1 向量的向量积 (2)分配律:(a + b ) × c = a × c + b × c ; (3)数乘结合律:(λa ) × b = a ×(λb ) = λ(a × b )(λ为任意实数)。 根据向量积的定义和运算性质,容易得到(这里0表示零向量): (1)a × a = 0; (2)设a 和b 为两个非零向量,则有a × b = 0 ? a ∥b 。 设i ,j ,k 为空间直角坐标系中的基向量(单位向量),则有 (1)i ? i = j ? j = k ? k = 1,i ? j = j ? k = k ? i = 0; (2)i × i = j × j = k × k = 0; (3)i × j = k ,j × k = i ,k × i = j , 图1.2 基向量之间的关系 j × i = ? k ,k × j = ? i ,i × k = ? j 。 向量积可以根据运算性质计算,设向量a 和b 在空间直角坐标系中的形式分别为a = a x i + a y j + a z k = (a x ,a y ,a z ),b = b x i + b y j + b z k = (b x ,b y ,b z ),则(运算过程略) a × b = (a x i + a y j + a z k ) × (b x i + b y j + b z k ) = (a y b z ? a z b y )i + (a z b x ? a x b z )j + (a x b y ? a y b x )k = (a y b z ? a z b y ,a z b x ? a x b z ,a x b y ? a y b x ) 向量积也可以用三阶行列式展开成二阶行列式进行形式上的计算: a × b =???? ??i j k a x a y a z b x b y b z =????a y a z b y b z i ?????a x b z a x b z j +????a x a y b x b y k = (a y b z ? a z b y )i ? (a x b z ? a z b x )j + (a x b y ? a y b x )k

相关文档
最新文档