非线性系统中的混沌之美

非线性系统中的混沌之美
非线性系统中的混沌之美

非线性科学中的混沌

XXX

中南大学物理与电子学院,湖南长沙,410083

摘要:本文介绍了非线性科学中的混沌概念和混沌发展历史;论述了混沌在科学认识论中的重要地位;同时分析了混沌产生的基本原理及主要特征,指出混沌现象广泛存在于自然界中;最后综述了混沌在科学研究中的广泛应用,并展望了混沌理论未来的发展前景。

关键词:混沌;蝴蝶效应;非线性科学

The chaos theory in nonlinear science

XXX

School of physics and electronics,Central South University,Changsha 410083,China

Abstract: The main conception and development of chaos are introduced in this paper; The important status of chaos in scientific epistemology is discussed.At the same time ,the basic principle of chaos and the main characteristics of chaos are analyzed.It is also pointed that the Chaos is a common phenomenon in the nature. In the end, the extensive application of chaos in scientific research is summarized and the prospect of chaos theory is discussed.

Key words:chaos; Butterfly Effect; nonlinear science

前言

人类在认识自然规律的进程中,最初试图用“确定论”的观点来认识客观世界。但是随着人类的认识深入,发现了现实世界中存在许多不能用“确定论”解释的随机事件。而概率与统计的思想在物理学的引入,迫使人们从决定论的“经典科学缔造的神话”中走了出来,寻找新的观点来描述真实世界。混沌理论基本思想的出现,给人类的研究提供了巨大的帮助,使人们在认识世界方法上得到了突破性的进展,对探索描述及研究客观世界的复杂性发挥了巨大的作用,因此混沌理论被认为是继相对论,量子力学后,人类认识世界和改造世界的最富有创造性科学领域的第三次大革命。

随着现代科学技术的迅猛发展,尤其是在计算机技术出现和普遍应用,混沌科学作为一门新兴交叉学科受到学术界的广泛重视。混沌是一种貌似无规则的运动,是在确定性线性系统中不需附加任何随机因素就可以出现的类似随机的行为。在现代的物质世界中,混沌现象无处不在,存在于大气中,海洋湍流中,野生动植物种群的涨落中,风中飘拂的旗帜中,水流缭乱的旋窝中,心脏的跳动中,摆动的秋千中,气候的变化中等,大至宇宙,小至基本粒子,无不受混沌理论的支配。混沌的研究在数学、物理、化学、生物、哲学、经济学、社会学、音乐、体育中各个学科中均有涉及。因此,在现代科学中普遍存在的混沌现象打破了不同科学间的界限,混沌科学是涉及系统总体本质的一门科学。

1 混沌的发展历史

混沌通常用来描述混乱,乱七八糟,杂乱无章等状态。在我国古代“混沌”也称“浑沌”,表示“世界形成以前的状态”,认为宇宙最初是天地不分、混沌一片,在经过演化逐渐成为现在的样子。正所谓“混沌者,言万物相混而未分离”。同时也表示人类在认识上处于浑浑噩噩的朦脓状态,“未有天地之时,混沌如鸡子,盘古生其中”或者“气似质具而未相离,谓之混沌”等都很好的表明了对混沌的认识。在古希腊中,混沌的英文为“Chaos”,来源于希腊文。是对传说中宇宙形成前模糊一团的景象描述,基本与中国古代对于混沌的认识比较相似。

早在19-20世纪之交,法国数学家庞加莱在研究天体力学中发现:能够解决地球绕太阳公转的二体问题的Newton万有定律在处理三体问题时遇到了困难。他指出三体问题中,其解在一定范围内是随机的。实际上这是一种保守系统中的

混沌。从而他成为世界上最先了解混沌存在可能性的第一人。

1963年,美国数学家E.N.Lorenz在气象预报的研究中,用计算机模拟天气情况发现了天气变化的非周期性和不可预言性之间的联系。同时Lorenz发现了天气演变对初值的敏感依赖性[1]。并提出了一个形象的比喻:“巴西的一只蝴蝶扇动几下翅膀,可能会改变三个月后美国德克萨斯州的气候。”这个比喻称为“蝴蝶效应”,它形象了表示了混动系统中长期行为对初值的敏感依赖性。

1971年法国物理学家芦厄勒和荷兰数学家塔肯斯为耗散系统引入了“奇异吸引子”这一概念[2],发现了混沌现象,并且提出了一个新的湍流发生机制,以揭示湍流的本质。

1975年美籍华人学者李天岩和美国数学家约克在美国《数学月刊》发表了题为“周期意味着混沌”的著名文章[3],深刻揭示了从有序到混沌的演化过程。从此“混沌”一词便在现代意义下正式出现在科学词汇之中。

1976年美国数学生物学家MayR在《自然》杂志上发表的题为“具有极其复杂的动力学的简单数学模型”文章中,给出了著名的虫口方程Logistic模型[4]。并指出,在生态学中一些非常简单的确定性的数学模型具有极为复杂的动力学行为,提出了有关实际问题,为该领域的深入探索发挥了巨大的作用。

1978年,M.Feigenbaum 通过对R.May和York的Logistic模型的深入研究,发现倍周期分岔的参数值,呈几何级数收敛,从而提出了Feigenbaum 收敛常数和标度常数[5]。M.Feigenbaum的卓越贡献在于他看到并指出了普适性,真正地用标度变换进行计算,使混沌学的研究从此进入蓬勃发展的阶段。

1983年,美国人蔡少堂提出了“蔡氏电路”。该电路结构简单,有丰富的非线性特征,提出后就震动了学术界。

此后,混沌科学得到了迅猛的发展,基于混沌运动是存在于自然界中的一种普遍运动形式,所以对混沌的研究不仅推动了其它科学的发展,而且其它科学的发展又促进了对混沌的深入研究,奠定混沌在现代科学技术中的重要地位。

2 混沌定义

混沌是由非线性确定系统产生的随机行为,混沌现象根源于非线性交叉耦合的耦合作用。1975年,李天岩和约克在“周期意味着混沌”的文章中第一次给出了混沌的一种数学定义[3]:

连续映射或者点映射F :[][]()()λλ,,,,,x F x b a R b a →→?称为混沌的,如果

(1)存在一切周期的周期点:

(2)存在不可数子集[]b a ,S ?,S 不含周期点,使得

()()()()()()为周期点

p S x p F x F y

x S y x x y F y x F y x S y x x y F y x F n n n n n n n n n ,,0,,sup lim ,,,0,,sup lim ,,,0,,inf lim ∈>-≠∈>-≠∈=-∞→∞

→∞

→λλ 则称f 在S 上是混沌的。

根据李约克定义,一个混沌系统应该有三种性质:

(1)存在所有阶的周期轨道;

(2)存在一个不可数集合,此集合只含有混沌轨道,且任意两个轨道既不趋向远离也不趋向接近,而是两种状态交替出现,同时任一轨道不趋于任一周期轨道,即此集合不存在渐进周期轨道。

(3)混沌轨道具有高度的不稳定性。

此外,对混沌的定理还有Sharkovskii 定理,Smale 马蹄,横截同宿点,拓扑混合及符号动力系统等定义[6]。

混沌现象的发现以及对混沌的定义,不仅是人们认识客观事物运动从定常周期或者准周期的运动扩展到了无序的混沌形式。而且还发现了确定论与概率论这两套体系描述之间的由此及彼的桥梁。混沌概念的提出,丰富了人类对远离平衡态现象的认识,使得人们能够将许多复杂现象看作是有目的有结构的行为,而非某种外来的偶然行为。

3 混沌的特征

混沌现象的出现首先得保证这个系统是非线性的,线性系统是不可能发生混沌现象,它主要有以下几个特征:

3.1 混沌对初值条件具有高度敏感性

最著名的理论是Lorenz 蝴蝶效应,它是指事物发展的结果对初始条件具有极为敏感的依赖性。通常用Lyapunov 指数来刻画这种对初值敏感的依赖性,可以说明系统的混沌性。

3.2 有界性

混沌的运动状态并不是没有边界的,其运动路线无论经过多少次迭代,都会固定在某个区域中,不会超出该区域,这个区域就是吸引域。对于混沌系统而言,有界性表现出系统的整体稳定性。

3.3 遍历性

遍历性是指混沌运动轨迹吸引子会遍历系统吸引域的每一个状态点,但是又不会停留在具体的某一个状态点。

3.4 内在的随机性

内在随机性与外在随机性的不同在于,外在随机性是由于外部环境中的某些随机因素对系统造成的影响,而内在随机性是由于系统内部自发生成的,不需要存在随机因素,就会出现类似随机性的行为。

3.5 自相似性

混沌具有自相似性。所谓的自相似性,就是指把混纯吸引子相图的某一局部放大,放大后的相图与原混纯吸引子的相图是相似的。

4 通往混沌的道路

系统是通过怎样的方式或者途径从规则运动过渡到混沌运动,是混沌研究的重要问题。以下为三种走向混沌的主要途径。

4.1 准周期道路

这是由法国著名科学家D.Rulle和F.Takens在70年代首次提出。混沌可以看作具有无穷多个频率耦合而成的振动现象,其特点是平衡态→周期运动→准周期运动→混沌运动。

4.2 倍周期分叉道路

倍周期分叉道路是由分形理论创始人 B.B.Mandelbrot和P.Myberg以及J.A.Yorke等一大批科学家共同努力而发现的。即从周期不断加倍而产生的混沌。

→ 无限倍周期凝聚点→奇怪吸引其特点为不动点→两周期点→四周期点→

子。

4.3 间歇道路

间歇混沌模型也称为Pomeau-Manneville途径,它是由Pomeau和Man-neville 与1980年所提出的一条途径。这条途径是一种规则的运动状态通过有时规则有

时混乱的间歇状态转变为混沌运动状态的。

5 混沌在自然科学中的应用

5.1 生物医学

随着混沌理论的普及,人们发现人体的心率,脑电波都是混沌的。真正周期的心率或是脑电波则是致病因素。因此,人们开始用混沌理论来研究心脏的动力学问题,试图用混沌控制来减少或者消除心脏的“致命混沌”,控制心律不齐的发生。例如利用混沌系统对初始扰动的敏感性,可以在心脏系统偏离正常状态的初期,只用微小的扰动去控制心脏的混沌状态,就能使偏离正常状态的心脏系统及时地从有害的无节奏状态回复到正常状态。不仅如此,在治疗神经疾病方面,运用混沌控制理论将其所表现的“周期态”变为“混沌态”,进行混沌反控制,从而治疗这种所谓的“动态病”。国内外学者在偏头痛、癫痫、老年性痴呆、帕金森、狂郁症、精神分裂症等方面都有所涉及。随着混沌控制理论在癫痫治疗中不断应用,有人提出研发一种可穿戴式的预警装置,可在癫痫发作前发出预警信号,同时通过预警利用混沌反控制原理刺激中枢神经或外周神经,起到控制和治疗癫发作。而科学家们研究热门是研制一款可植入大脑的小型神经刺激器,在癫痫发作前提前预测,然后通过脉冲给药或者电刺激防止其发作。

5.2气象学

在混沌效应被发现之前,人们都持有这样的观点:天气预报的误差来源只是初始条件的不确定和预报模式的不完善。认为只要初始条件更加精确模式更完善,那么天气预报就会越准。但在理解了天气系统的混沌本质后,我们得以用新的眼光去看待天气预报。初始条件再精确总会有误差,这是由非线性系统的初值敏感性可知,预报的结果在一段时间之后将与真实情况相差万里。美国气象科学家洛伦兹根据大气对流找到了吸引子(attractor),即空间每一条轨道的运动最终必须结束在一个中心点。据此提出在混沌背景下,天有不测风云,长期天气预报注定要失败,世界上最好的长于两三天的天气预报仅仅是推测,超过六天或七天的预测则毫无价值。但是,我们可以根据混乱理论,对于天气系统有一个可预报上限,确定可预报范围及用何种预报方式更优。又如影响全球天气变化的南太平洋海温的非周期振荡,即所谓厄尔尼诺(ElMino)现象,最近几年都有人用“确定论模型”中的混沌加以解释。

5.3 混沌保密通信

随着互联网爆发式的发展,在日常应用中,人们也逐渐倾向于使用图像、声音和视频等多媒体方式,尤其是进入大数据时代,多数情况下都需要通过网络实现数据共享,以便管理人员或者通信双方得到高效快捷的服务。同时宽带网络技术和5G业务的飞速发展,极大地满足用户了多方面的需求。互联网技术给全世界人民都带来极大便利的同时,关于互联网信息安全的问题也日益增多。美国“棱镜”计划曝光之后,网络信息安全已成为学术界、企业界和政府部门所共同关注的热点问题。混沌理论在安全领域的应用发展迅速。混沌信号对初始值非常敏感性以及混沌序列有良好的随机性这两点特性与密码学密钥的不确定性要求相吻合;混纯轨道的混合特性与加密体制中的扩散性相吻合,这些理论特性上的关联性让二者的结合成为必然。因此,量子密码混沌密码已经生物密码在混沌混沌保密通信中成为了学者们探讨和研究的一个重要议题。

5.4 经济学

经济系统本身就是由多种因素相互作用的非线性系统,时间上的不可逆性和线路上的多重因果反馈环及不确定性使其具有非常复杂的非线性特征。资本市场作为经济系统的一个重要组成部分,其价格演化过程是由许许多多的经济个体和经济因素共同参与作用决定的。系统受外界影响,作用体相互作用,一个微小的变化经过由众多经济个体所形成的系统的自组织、自加强和自协调作用可能引起质变,价格的变化具有很大的不确定性、不可逆性、多样性和多变性等特征。所以我们可以说,资本市场是一个明显的具有复杂性特征的非线性系统。现在,利用混沌理论研究经济学研究复杂经济系统的非线性预测已取得了重要的成就,许多预测技术得到了实际应用。这其中的非线性预测突破了传统的预测模式,为复杂经济系统的可预测性提供了有启发意义的判据。例如经济混沌预测方法有两种:一是经济系统预测的非线性模型方法,它是建立直接的非线性模型如逻辑斯蒂模型、洛伦兹模型、埃农映射等来刻画吸引子的演化行为;二是逆处理非线性预测的一般技术方法,如神经网络预测、小波网络预测、分式布朗运动预测等。它是从已有的混沌时间序列出发,通过相空间重构吸引子,用逆处理非线性预测方法对系统的未来行为进行预测。

不仅如此,混沌科学在其他方面如交通领域,教育方面,艺术,旅游业,地

理学等艺术等领域都得到了广泛的应用。

6 总结

混沌理论揭示了自然界和人类社会中普遍存在的复杂性,自然地体现了确定性与随机性的统一,有序与无序的统一,以及它们之间的相互转变。混沌理论为人类认识客观世界提供了强大的理论基础。如果说相对论消除了绝对空间与时间的幻象。量子力学则消除了关于可控测量过程的牛顿式的梦。那么混沌则消除了拉普拉斯关于决定论式可预测性的幻想。混沌理论帮助我们打破固有思维,再次深刻认识世界上一切矛盾体之间既对立又统一的辩证关系。它将指导我们在自然科学领域和社会科学领域进行更深入的研究。同时我们也应主动将混沌理论与自身专业领域结合起来,期待有新的发现和新的突破。

参考文献:

[1] 詹姆斯.格莱克著(张严等译), 混沌学一门新科学. 北京:社会科学文献出版社.

[2] D.Rueller,F.Takens. On The Nature of Tubulence. Common Mathematics Physics, 1971: 167-192.

[3] Li, T Y and York,J A. Period three implies chaos. Am. Math, Monthly,1975:985-992.

[4] May R. Simple mathematical models with very complicated dynamics. Nature, 261, 1976.

[5] Feigenbaum N J. Quantitative university for a class of nonlinear transformations, J. Stat, Phys,1978, 19(1).

[6] 吕金虎, 陆军安, 陈士华. 混沌时间系列分析及其应用. 湖北武汉大学出版社.

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验 长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。 【实验目的】 1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。 2.学会测量非线性器件伏安特性的方法。 【实验仪器】 非线性电路混沌实验仪 【实验原理】 图1 非线性电路 图2 三段伏安特性曲线 1.非线性电路与非线性动力学: 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。较理想的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。图1 电路的非线性动力学方程为: 11211Vc g )Vc Vc (G dt dVc C ?--?=L 2122 i )Vc Vc (G dt dVc C +-?=

非线性动力学之一瞥_Lorenz系统

非线性动力学 非线性系统之一瞥——Lorenz系统 2013-01-30

0 前言 0.1非线性系统动力学 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。 非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。 0.2洛伦兹方程 洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。 方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性 1.1 奇点 洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。 下面仅解时的两个非原点奇点。令 方程第一式得,第三式可得,将两式代入第二式得 即,。 1.2 奇点稳定性判别 下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有 将洛伦兹方程 代入上式,可得 变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。 Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。 特征矩阵的行列式(特征方程)为 特征值 显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此 两边同时平方可得 因此

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

非线性动力学和混沌理论

非线性动力学和混沌理论 非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪 6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何物理系统中所作出的最精确的测量,对大约10位或12位小数来说是正确的。 但拉普拉斯的陈述只有在我们使测量达到无限精度即无限多位小数,当然那是办不到的时才正确。 在拉普拉斯时代,人们就已知道这一测量误差问题,但一般认为,只要作出初始测量,比如小数点后10位,所有相继的预言也将精确到小数点后10位。误差既不消失,也不放大。 不幸的是,误差确实放大,这使我们不能把一系列短期预言串在一起,得到一个长期有效的预言。例如,假设我知道精确到小数点后10位的头3滴水的滴落时刻,那么我可以精确到小数点后9位预言下一滴的滴落时刻,再下一滴精确到8位,以此类推。 误差在每一步将近放大10倍,于是我对进一步的小数位丧失信心。所以,向未来走10步,我对下一滴水的滴落时刻就一无所知

非线性动力学练习题

2013 “非线性振动” 练习题 1、简述绘制相轨线的原理及其作用。 2、用小参数摄动法求 )1(220<<=+εεωx x x x 的一阶近似解。 3、 用多尺度法或均值法求 (第三章16) )1(320<<=+εεωx x x 的一阶近似解。 4、 用多尺度法求周期激励范德波尔方程 0)0(,)0(,cos )1(220220=-+=+-=+x F A x t F x x x x ω ωωεω 的非共振解。 5、 设运动微分方程为 )1(cos 220<<+-=+εωεωt F x x x 试求0ωω≈的主共振解。 6、 简述非线性单自由度保守系统自由振动的主要特点及与线性系 统的区别。 7、 简述非线性单自由度系统在简谐激励下的强迫振动特点。 8、 简述自激振动产生的主要原因及其特点。 9、 以两自由度非线性系统为例,简述非线性多自由度系统振动的 主要特点。 10、 简述分岔和混沌的概念。(考试从中选取5题)

1、简述绘制相轨线的原理及其作用。 答:绘制相轨迹线的原理如下: 将系统的动力学方程... +(x,)=0x f x 转化为以状态变量表示的状态方程组 ..==-(x,y) y x y f (1) 在利用上式消去微分dt,得到y x 和的关系式 ,=-dy f dx y (x y ) (2) 这个式子所确定的平面(x,y )上的各点的向量场,就构成了相轨迹族。 绘制相轨迹线的方法有两种,第一是等倾线法。等倾线法的原理如下,令方程(2)右边等于常数C ,得到(x,y)相平面内以C 为参数的曲线族 (x,y)+Cy=0f (3) (3)称作相轨迹的等倾线族,族内每一曲线上的所有点所对应的由方程(2)确定的向量场都指向同一方向。 第二种方法是李纳法。其原理如下: 适当选择单位使弹簧的系数为1,设单位质量的阻尼力为-(y)?,则有f(x,y)=x+(y)?。相轨迹微分方程为 +(y)=-dy x dx y ? (4) 在平面上做辅助曲线=-(y)x ? 。此辅助曲线即上述零斜率等倾线,过某个相点 P (x,y )作x 轴的平行线与辅助曲线交与R 点,再过R 点作y 轴的平行线与x 轴交于S 点,连接PS ,将向量PS → 逆时针旋转90度后的方向就是方程(4)确定的相轨迹切线方向。 相轨迹线可以帮助我们定性地了解系统在不同初始条件下的运动全貌。当系统是强非线性振动的时候,近似解析法(如小参数摄动法,多尺度法)不再适用,此时可以采用相轨迹法来研究。(相轨迹线的作用) 非线性动力学主要研究非线性振动系统周期振动规律(振幅,频率,相位的变化规律)和周期解的稳定条件。其研究内容主要有:保守系统中的稳定性及轨道扩散问题;振动的定性理论;非线性振动的近似解析方法;非线性振动中混沌的控制和同步问题;随机振动系统和参数振动系统问题等。

混沌经济学

混沌经济学,也称为非线性经济学(nonlinear economics),是20世纪80年代兴起的一门新兴的学科,是指应用非线性混沌理论解释现实经济现象,在经济建模中充分考虑经济活动的非线性相互作用,在模型的分析上充分利用非线性动力学的分叉、分形和混沌等理论与方法,分析经济系统的动态行为,以期产生新的经济概念、新的经济思想、新的经济分析方法,得到新的经济规律的一门新兴交叉科学。 传统经济学自亚当·斯密1776年《国富论》问世以来,已逐步在西方经济学中确立统治地位。“完全竞争”市场的自动调节机制在瓦尔拉斯一般均衡理论和马歇尔的“均衡价格论”体系上取得规范的形式,并在经典科学的基础上建立了一整套分析方法。实际上,传统经济学所构建的经济分析框架,是牛顿力学的绝对时空观(即均衡流逝的绝对时间和恒等且不动的绝对空间)和皮埃尔-西蒙·拉普拉斯决定的可预测宇宙观(即一个单一的公式可以解释所有的现象并结束不确定性)在经济领域的重现。而从现状经济角度看,由于种种意外因素的存在和人类所面临的不确定性。不确定性是现实经济运行过程中最主要的特征之一。自然地,混沌学作为一种科学范式也就成为经济学家们研究经济系统的复杂性、不确定性和非线性的有力工具,成为社会、经济、技术预测的有力工具。混沌经济学(或非线性经济学)已经成为当代经济学研究的前沿领域,并取得迅速的进展。 在研究对象和研究方法上,混沌经济学与传统经济学都是利用提出假设,利用数学工具通过规范推演和实证检验来揭示社会经济现象的客观规律;但是由于客观地认识到经济系统的非均衡、非线性、非理性、时间不可逆、多重解和复杂性等特点,混沌经济学在研究和解决问题的具体思维方式和假设前提上以及确切的方法论上,与传统经济学存在显著差异。 混沌经济学假设关系是非线性的,认为经济系统所呈现的短期不规则涨落并非外部随机冲击的结果,而是系统内部的机制所引起的。经济系统中时间不可逆、多重因果反馈环及不确定性的存在使经济系统本身处于一个不均匀的时空中,具有极为复杂的非线性特征。非对称的供给需求、非对称的经济周期波动(现已证明:经济周期波动呈“泊松分布”而非“正态分布”)非对称的信息、货币的对称破缺(符号经济与实物经济的非一一对应)、经济变量迭代过程中的时滞、人的行为的“有限理性”等正是这种非线性特征的表现。 混沌经济学的方法论是集体(整体)主义,即“理论必须根植于不可再分的个人集团的行为”。在混沌经济学看来,经济系统由数以百万计的个体和组织的相互作用所决定,而每一个个体和组织又涉及到数以千计的商品和数以万计的生产过程,因此,个体行为并非是一种孤立的存

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

非线性力学和混沌简介

非线性力学和混沌简介 非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 一线性与非线性的意义 线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。 线性与非线性的区别 定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。 线性与非线性现象的区别一般还有以下特征: (1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可 用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变; (2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。 非线性问题研究的历史概况

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象 ,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于 1963年洛伦兹(E.Lorenz )研究天气预报时用到的三个动力学方程 ,后 来又从数学和实验上得到证实。无论是复杂系统 ,如气象系统、太阳系,还是简单系统,如钟 摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、 但实际是非周期有序运动,即混沌 现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同 步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授 1985年提 出的著名的蔡氏电路(Chua ' s Circuit )。就实验而言,可用示波器观察到电路混沌产生的全 过程,并能得 到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、 LC 振荡器和RC 移相器三部分;采用 物理实验方法研究 LC 振荡器产生的正弦波与经过 RC 移相器移相的正弦波合成的相图(李萨 如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象; 测量非线性单元电路的电流一电压特性; 了解非 线性电路混沌现象的本质; 学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量 非线性器件伏安特性的方法。 【实验原理】 1. 非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件 R ,它是一个有源非线性负阻器件。 电感器L 和电容C 2组成一个损耗可以忽略的谐振回路; 可变电阻R V 和电容器C 串联将振荡 器产生的正弦信号移相输出。 本实验中所用的非线性元件 R 是一个三段分段线性元件。 图2 所示的是该电阻的伏安特性曲线, 从特性曲线显示中加在此非线性元件上电压与通过它的电 流极性是相反的。由于加在此元件上的电压增加时, 通过它的电流却减小, 因而将此元件称 为非线性负阻元件。 图1电路的非线性动力学方程为: C 2 dU C L 二 G (U C 1 -U C 21)I L (1) dt 1 21 C 1 du e ’ dt =G (U C 2 -Uq) _g Uq Ld L

非线性动力学混沌理论方法及其意义_吴彤

非线性动力学混沌 理论方法及其意义 吴 彤 (清华大学 科学技术与社会研究所,北京 100084) 摘 要:本文考察了非线性混沌的各类描述定义,研究了混沌的细致分类,讨论和研究了混沌特性以及判别混沌、寻找混沌征兆的方法,区别了混沌与噪声;对混沌理论的认识论和方法论意义进行了四方面的研究:混沌研究对复杂性研究的非线性方法论的意义,混沌和决定论与可预测性的关系,混沌边缘研究意义,建设和避免混沌的关系。 关键词:非线性;混沌;方法;可预测性 中图分类号:F224.0 文献标识码:A 文章编号:1000-0062(2000)03—0072-08 如果仔细考察人类在自己的生命演化过程中的关注,似乎有两个问题最重要,第一,如何预测未 来,第二,是否能够预测未来,因果关系等问题均在此列。第一个问题是实用性的,而第二个问题则是理论性的,它关系到一种原则和生活的意义。20世纪中叶以后,当气象学家洛伦兹提出“蝴蝶效应”时,人们了解到,就是完全确定性的动力学方程,也仍然会出现随机性演化。那么,如何预测未来呢?预测还可能吗?人们现在更害怕混沌理论打破他们对未来可预测性的幻想。但是这种幻想实在是一种幻象。其实,从休谟起,科学哲学对归纳问题本质的揭示已经对单一的决定论因果观念给出了不可能的回答。有哪一个人知道自己的生命和生命之途将如何走向呢?哪一个生命的道路不是在生命演化过程中逐渐完成的呢?其实,宿命论与线性决定论的联系比与随机论的联系更强。另一方面,也出现了相反的误读和误解。人们以为,混沌理论如果正确,那么世界将完全不可预测。似乎混沌理论助长了悲观主义。其实,混沌理论的出现,一方面揭示了自然界和社会客观存在混 沌,谁都无法避免;另一方面,混沌理论对混沌动力学系统的研究,恰恰帮助人们了解混沌现象,对“混沌”不混沌,才能处事(处世)不惊、不乱。混沌理论在一定意上更支持了决定论,因为它把原来属于随机性的、偶然性的领域,也纳入到决定论的管辖范围内。所以,在一定意义上,混沌理论是预测混沌的,是认识和控制混沌的工具和方法。而且后面我们将看到,混沌强弱不同时,系统演化行为的预测完全是不同的。 一、关于非线性动力学 混沌的各种定义 普通意义上,混沌只是意味着混乱、无秩序,而在非线性动力学系统中,混沌一词则有更精细的十分不同的意义。为了区别,把前一种混沌称为线性平衡态热力学混沌,后一种混沌称为非线性动力学混沌。关于混沌在古代、经典科学的不同含义,以往许多文献讨论的比较充分,这里不再赘述。本文只研究非线性动力学混沌的定义、方法和意义。 收稿日期:2000-02-23 作者简介:吴 彤(1954- ),男,清华大学科学技术与社会研究所教授,硕士.   2000年第3期第15卷 清华大学学报(哲学社会科学版)JOU RNA L O F T SING HUA UN IV ERSIT Y (Philosophy and Social Sciences )   N o .3 2000Vol .15 DOI :10.13613/j .cn ki .qh dz .000757

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

单自由度非线性系统的混沌振动

考虑由非线性弹簧和线性阻尼组成的质量-弹簧系统在简谐激振力作用下的受迫振动,动力学方程为: 30mx cx kx F cos t ++=ω 30mx cx kx F cos t '''++=ω 取参数值:m=1.0,c=0.05,k=1.0,F 0=7.5,ω=1.0,以及初始条件:()()11x 0 3.0,x 0 4.0== 求解:令()()()()12 u t x t u t x t =??'=?,则原方程变换为: ()()()()()()()()()121123022121212u t u t f t,u ,u F c k u t cos t-u t u t f t,u ,u m m m u 0 3.0u 0 4.0 '==???'=ω-=???=?=?? 根据Runge-Kutta 方法构造如下数值迭代计算公式: [][]1,i 11,i 111213142,i 12,i 21222324h u u k 2k 2k k 6h u u k 2k 2k k 6++?=++++????=++++?? 其中 ()() 111i 1,i 2,i 121i 1,i 112,i 21131i 1,i 122,i 22141i 1,i 132,i 23k f x ,u ,u h h h k f x ,u k ,u k 222h h h k f x ,u k ,u k 222k f x h,u hk ,u hk ?=????=+++ ???????? ?=+++ ?????=+++??

() () 212i 1,i 2,i 222i 1,i 112,i 21232i 1,i 122,i 22242i 1,i 132,i 23k f x ,u ,u h h h k f x ,u k ,u k 222h h h k f x ,u k ,u k 222k f x h,u hk ,u hk ?=?? ? ?=+++ ??????? ? ?=+++ ???? ?=+++?? 020406080100120140160 1 2 3 4 -4-3 -2 -1 1 2 3 4

经济混沌和经济波动的非线性动力学理论

No. C2000015
2000-10
经济混沌和经济波动的 非线性动力学理论
陈平
北大中国经济研究中心 美国得克萨斯大学
普利高津统计力学和复杂系统研究中心 NO.C2000015 2000 年 10 月
1

经济混沌和经济波动的非线性动力学理论
陈平
北大中国经济研究中心 中国北京大学北大中国经济研究中心,100871
Email: pchen@https://www.360docs.net/doc/4a15136083.html,
美国得克萨斯大学 普利高津统计力学和复杂系统研究中心
I.为什么要研究经济混沌
(1.1)什么是决定论混沌? 在研究经济混沌之前,先得了解什么是决定论混沌
(deterministic chaos 简称为混沌)。读者可参考理论物理所的郝柏林 教授编的权威文集: 混沌 II (Hao 1990).
牛顿力学对动力学机制的研究主要基于线性谐振子模型,其主 要的运动特征是产生等幅的周期振荡。周期运动的研究在科学和 工程上获得广泛的应用。分析周期运动的主要方法是频譜分析。
统计物理和信息论对随机过程的研究发展了线性白噪声模型, 其主要的特征是产生振幅无规则,时间序列不相关的无序扰动。对 短程相关的色噪声可以用线性迭加的白噪声信号来描写。例如, 经济学家常用的色噪声模型是线性随机的自回归(AR)模型。分析 随机运动的主要方法是相关分析,噪声运动的研究在工程和经济 学中有重要的应用。
人们一度以为,只有随机过程才能产生不规则运动,但廿十世 纪七、八十年代间对决定论混沌的突破性研究发现:非线性的低
2

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

考察典型非线性系统通向混沌的途径

考察典型非线性系统通向混沌的途径 一混沌简介 混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。 在非线性科学中,混沌现象指的是一种确定的但不可预测的运动状态。它的外在表现和纯粹的随机运动很相似,即都不可预测。但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是来源于运动的不稳定性。或者说混沌系统对无限小的初值变动和微绕也具于敏感性,无论多小的扰动在长时间以后,也会使系统彻底偏离原来的演化方向。 二通向混沌的途径 可由非线性动力学方程求解通向考察混沌的道路,或者由非线性时间序列相空间重建方法通向考察混沌道路。具体方法如下: 1 倍周期分岔进入混沌是一种典型的混沌产生途径。系统运动变化的周期行为是一种有序行为,但在一定的条件下,系统经过周期加倍,会逐步丧失周期行为而进入混沌。设系统有参数 u,只考虑单参数并不失一般性。当系统有多个参数时,可以设定其余参数而让其中一个变化。如果 u= u0时系统的稳态运动有周期T,随着u 变化,到u=u1 时,稳态运动的周期变为2T,这种运动性质的突然改变称为倍周期分叉。一般的,u = u m时稳态运动的周期为2m ?T,则u=u m+1时发生倍周期分叉使系统稳定运动变为周期2m+1?Y 。由于周期不断加倍,最后变为周期无穷大的运动,也就是非周期运动。从庞加莱映射可观察到:1个点变为2个点,2个点变为4个点等等,随着倍周期分又的不断进行,最终变为无穷点集,周期运动相应地转化为混沌运动。值得注意的是,倍周期分叉值u 所构成无穷序列{ui}的差商极限是一个常数,而且多种不同的系统可能有相同的常数,因而被称作普适常数。普适常数的存在反映了倍周期分叉产生混沌途径的特点。 2阵发性是又一种典型的混沌产生途径。这里的阵发性是指系统较长时间尺度的规则运动和较短时间尺度的无规则运动的随机交替变化现象。若振动系统在特定参数下呈现阵发性,

非线性动力学与混沌理论

非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 *混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。 *混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 # 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何

相关文档
最新文档