光纤连接器基础知识

光纤连接器基础知识
光纤连接器基础知识

光连接器基础知识

一、基本概念(术语)

1、光纤(活动)连接器:是实现将光纤光缆和光纤光缆之间、光纤光缆和有源器件、

光纤光缆和其它无源器件、光纤光缆和系统与仪表进行活动连接的光无源器件(连

接器的作用)。整套光连接器的组成:插头—适配器—插头。

2、光跳线:两端都装有插头的一段光纤或光缆。

3、光纤:是一种利用光全反射原理传导光信号的玻璃纤维。主要成分:SiO2.光纤由纤

芯、包层和涂敷层构成,纤芯的折射率nl大于包层的折射n2.纤芯的作用是传导光

信号,包层的作用是反射光信号,涂敷层的作用是保护光纤,增加光纤的机械强度

和柔韧性。光纤可分为单模光纤(9/125μ)和多模光纤(50/125或62.5/125)。

4、光缆:光缆由护套、加强构件、紧套(或松套)层和涂敷光纤组成。生产跳线采用

的光缆一般有:φ3.0单芯光缆、φ2.0单芯光缆、φ0.9紧套光缆,双芯平行光缆、防水尾缆、束状光缆和带状光缆等。

5、插入损耗:是指光信号通过光连接器之后,光信号的衰减量。一般用分贝数(dB)

表示。表达式为:

IL=-10LOG(P1/P0)(d B)

其中P0——输入端的光功率

P1——输出端的光功率

6、回波损耗:也称后向反射损耗,是由于光连接处的非涅尔效应而产生的反射信号,

该信号沿光纤原路返回,会对光源和系统产生不良影响。回波损耗的表达式为:

RL=-10LOG(P2/P0)

其中P0—输入端的光功率

P1—后向反射光功率

二、光连接器基本结构原理

图1 光纤连接器精密对中原理

一般均采用精密小孔插芯(Ferrule)和套筒(sleeve)来实现光纤的精确连接。

影响连接器插入损耗的主要因素有:

1、纤芯错位

2、角度偏差

3、连接间隙

4、不同种光纤(数值孔径不同)

三、型号分类

1、按结构形式分:

FC:外型为圆柱形,插芯直径φ2.5mm为由螺纹将其固定在适配器上;

SC:外型为长方形,插芯直径φ2.5mm插拨式连接,操作简便;

ST:外型为圆柱形,插芯直径φ2.5mm卡口式连接;

LC:小型化长方形结构,插芯直径φ1.2mm插拨式自锁式连接,

MU:小型化长方形结构,插芯直径φ1.25mm插拔式连接

MT-RJ:外型为长方体,双芯小型化,MT插芯,一公一母连接

2、按插芯端面形状分

PC (Physical Contact): 插芯端面为球面状,回波损耗指标RL:大于40dB

UPC: 插芯端面也为球面状,RL:大于50dB.。

要提高回损指标,在生产中要确保光纤端面的光洁度更高,端面几何参数,如:曲率半径,光纤凹陷,顶点偏移也更理想。

APC (Angled Physical Contact): 斜球面,8度角。RL:大于60 dB。

3、按光纤传输模式分

有单模和多模两种连接器

四、技术性能指标

1.光学指标Optical Performance

Note: Please see Telcordia GR-326-CORE or IEC standard

3.

五,光纤连接器类型

SC连接器,SC/UPC SC/APC, 可用于3.0,2.0,0.9光缆

FC连接器,FC/UPC FC/APC,可用于3.0,2.0,0.9光缆

ST连接器,ST/UPC FC/APC, 可用于3.0,2.0,0.9光缆

LC连接器,LC/UPC LC/APC,可用于2.0,0.9光缆

MU连接器,MU/UPC MU/APC,可用于2.0,0.9光缆

MT-RJ连接器,MTRJ-MALE MTRJ FEMALE, 可用于2.0双并线

MTP连接器,MTP-MALE MTP-FEMALE,可用于束状光缆,带状光缆

六,使用注意事项

1, 光纤跳线使用过程中要避免踩踏,锐角的弯折。

2, 光纤端面擦拭方法:使用无尘纸沾取少许酒精,将连接器的陶瓷插芯垂直(APC插芯需稍斜8°),贴附在无尘纸较光滑的一面上,保持垂直姿势单方向滑过,反复几次即可擦拭干净。端面的清洁将直接印象跳线的损耗。

3,连接器插入时需尽量对准适配器套筒,以免将端面碰出划痕。

光纤连接器基础知识

光连接器基础知识 一、基本概念(术语) 1、光纤(活动)连接器:是实现将光纤光缆和光纤光缆之间、光纤光缆和有源器件、 光纤光缆和其它无源器件、光纤光缆和系统与仪表进行活动连接的光无源器件(连 接器的作用)。整套光连接器的组成:插头—适配器—插头。 2、光跳线:两端都装有插头的一段光纤或光缆。 3、光纤:是一种利用光全反射原理传导光信号的玻璃纤维。主要成分:SiO2.光纤由纤 芯、包层和涂敷层构成,纤芯的折射率nl大于包层的折射n2.纤芯的作用是传导光 信号,包层的作用是反射光信号,涂敷层的作用是保护光纤,增加光纤的机械强度 和柔韧性。光纤可分为单模光纤(9/125μ)和多模光纤(50/125或62.5/125)。 4、光缆:光缆由护套、加强构件、紧套(或松套)层和涂敷光纤组成。生产跳线采用 的光缆一般有:φ3.0单芯光缆、φ2.0单芯光缆、φ0.9紧套光缆,双芯平行光缆、防水尾缆、束状光缆和带状光缆等。 5、插入损耗:是指光信号通过光连接器之后,光信号的衰减量。一般用分贝数(dB) 表示。表达式为: IL=-10LOG(P1/P0)(d B) 其中P0——输入端的光功率 P1——输出端的光功率 6、回波损耗:也称后向反射损耗,是由于光连接处的非涅尔效应而产生的反射信号, 该信号沿光纤原路返回,会对光源和系统产生不良影响。回波损耗的表达式为: RL=-10LOG(P2/P0) 其中P0—输入端的光功率 P1—后向反射光功率 二、光连接器基本结构原理 图1 光纤连接器精密对中原理 一般均采用精密小孔插芯(Ferrule)和套筒(sleeve)来实现光纤的精确连接。 影响连接器插入损耗的主要因素有: 1、纤芯错位 2、角度偏差 3、连接间隙 4、不同种光纤(数值孔径不同)

光纤跳线知识汇总

什么叫光纤跳线 光纤跳线用来做从设备到光纤布线链路的跳接线。有较厚的保护层,一般用在光端机和终端盒之间的连接。 光纤主要分为两类: 单模光纤(Single-modeFiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。 多模光纤(Multi-modeFiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。 光纤使用注意 光纤跳线两端的光模块的收发波长必须一致,也就是说光纤的两端必须是相同波长的光模块,简单的区分方法是光模块的颜色 要一致。一般的情况下,短波光模块使用多模光纤(橙色的光纤),长波光模块使用单模光纤(黄色光纤),以保证数据传输的准确性。 光纤在使用中不要过度弯曲和绕环,这样会增加光在传输过程的衰减。 光纤跳线使用后一定要用保护套将光纤接头保护起来,灰尘和油污会损害光纤的耦合。 光纤跳线简介 光纤通道协议一般在两种介质上传输——光缆和铜缆。 从内部可传导光波的不同,光纤分为单模(传导长波长的激光)和多模(传导短波长的激光)两类: 单模光纤(Single-modeFiber):一般光纤跳线用黄色表示,接头和保护套为蓝色;传输距离较长。单模光缆的连接距离可 达10公里, 多模光纤(Multi-modeFiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较 短。多模光缆的连接距离要短的多,是300米或500米(主要看激光的不同,产生短波长激光的光源一般有两种,一种是62.5的, 一种是50的) 另外,光缆的接头部分也有两种,一种SC接口为1GB接口还有一种为LC接口为2GB接口. 光纤跳线的种类有很多,根据接头形状可分为:FC、SC、ST、LC等;根据插芯的类型可分为:PC、UPC、APC等;根据光纤种 类可分为单模、50/125多模、62.5/125多模、保偏等;根据光纤直径可分为:900μm、2mm、3mm等。 产品广泛运用到:通信机房、光纤到户、局域网络、光纤传感器、光纤通信系统、光纤连接传输设备、国防战备等. 光纤跳线连接方式 FC、ST、SC、LC、MTRJ是物理接口连接方式不同。 FC是圆形螺旋口。 ST是圆形45度卡口。 SC是方型插口。

光纤连接器制作与测试实训系统

光纤连接器制作与测试实训系统GCFOP-B 实 验 讲 义 (作业指导书) 武汉光驰科技有限公司 Wuhan Guangchi Technology Co.,LTD

以光纤技术为代表的光电子技术的不断突破,极大地促进了光通讯产业的发展.人们在享受了半个多世纪电子技术带来的物质文明之后,已开始享受光的技术带来的革命和便利.有充分的理由使人们相信,人类已逐步进入由光主宰的技术世界. 但是伴随着技术和应用的高速发展,我们的人才培养大大滞后,其中一个重要原因就是光电子教学实验技术的落后和缺乏,使我们的学生无法切实领会和进入深奥而又和谐美妙的光的世界. 武汉光驰科技有限公司就是在这个时代的需求中应运而生,专业并且专职开发光纤通信、光纤传感和光电信息技术实验教学系列产品.它依托于华中科技大学光电学院,结合着几十年光电子教学和科研的经验,汇集着从硅谷归来的青年才俊以及国内优秀的专家学者,引入充足的风险投资和充满活力的运营机制,在公司建立伊始,就专注于光纤通信技术实验,在公司成立的短短的几年时间里,开发出多项光纤通信、光纤传感和光电信息技术教学实验新产品,在华中科技大学、武汉大学、苏州大学、苏州科技学院、河北大学、山东师范大学、中国海洋大学、青岛科技大学、华侨大学、辽宁石油化工大学等三十多所高校得到应用. 借此我们向所有有志于发展光通讯教学和科研的高校及老师,推荐我们的产品和服务,并欢迎各位老师来我公司参观和开展各项合作.愿我们的产品能为我们的教育事业提供帮助,愿我们的光通讯事业更加蓬勃发展. 武汉光驰科有限公司

目录一.光纤连接器的目前基本状况3 二.光纤连接器的制作示意图3 三.光纤连接器的作业指导书4 穿散件作业指导书4 粘合剂的配制作业指导书4 光纤插入和加热固化作业指导书5 FC研磨作业指导书6 端面检查作业指导书7 二次卡紧FC型组装作业指导书8 插入损耗测试作业指导书9 包装作业指导书10 附表1:用APPROL研磨纸进行研磨11 附表2:施加的压力参考表11 四.实训实验任务11 附录I、光纤连接器的部分基础知识12 附录II、可能用于科研的一点建议17

光纤跳线基础知识.doc

光纤跳线是指光纤两端都装上连接器插头,用来实现光路活动连接(一端装有插头的称为尾纤)。光纤跳线用于长途及本地光传输网络、数据传输及专用网络,以及各种测试和自控系统。光纤跳线是通过精密设备经过多道工序精磨而成的,具有插入损耗低、回波损耗高、重:复性好等优点,可广泛应用于各种光纤器件和各种光纤通信系统中。 光纤跳线的种类有很多,根据连接器形状口I分为:FC、SC、ST、LC、MT.RJ、MU等;根据连接器插头从插针体的类型可分为:PC、UPC、APC等;根据光纤种类可分为单模、50/125多模、62.5/125多模、保偏等;根据光纤直径可分为:900pm. 2mm、3mm等。在根据连接器形状划分中,单模光纤可使用的连接器类型有FC, SC, ST, FDDI, SNA, LC, MT-RJ等,多模光纤可使用的连接器类型有FC, SC, ST, FDDI, SMA, LC, MT-RJ, MU 及VF45 等。单模跳线包括SC/PC, SC/APC, FC/PC, FC/APC, ST/PC, LC/PC, LC/APC, MU/PC、MU/APC. MT-RJ;多模跳线包括:SC/PC, FC/PC, ST/PC, LC/PC, MU/PC, MT-RJ O光纤跳线所用光纤一般为G.652光纤,直径一般为63mm,长度一般为5~100m,插入损耗一般小于0.1dB;反射损耗一般要大于45dB。 下面我们简单介绍根据光纤连接器形状常使用的FC, SC, ST, LC, MT-RJ MU 6 W 光纤跳线。注意,光纤跳线的两端连接器插头根据使用情况可以是不相同,如我们常使用的FC/APC-LC/APC,就是一项连接ODF,另一端连接设备的光纤跳线。 1、FC-FC光纤跳线:FC (Ferrule Connector,意为金属连接件)光纤连接器通常是圆形的金属套,紧固方式为螺纹式,主要应用于配线架上。最早,FC类型的连接器,采用的陶瓷插针的对接端面是平面接触方式。此类连接器结构简单,操作方便,制作容易,但光纤端而对微生较为敏感,IL容易产生菲涅尔反射,提高I口I波损耗性能较为困难。后来,对该类型连接器作了改进,采用对接端面呈球面的插针,连接器一般是圆形带螺纹的,而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。如图1所示的就是一条两端都带FC连接器接头的FC-FC光纤跳线。

光纤快速连接器技术

光纤快速连接器技术 模部署,得到了飞速发展。 内的延伸,也带来了工作难度的大幅增加。这里有两个增加:一个是量的增加,一个是难度 加快捷更加方便的新方式来代替热熔。快速连接器恰恰具备这样的优点,目前快速连接器的使用正在给当前光纤接续工作带来革命性的变化。 针对当前FTTH建设终端接续而言,热熔接存在一定的局限性:1、熔接机施工需要操作平台,空间受限;2、熔接机价格贵,施工成本高;3、有源施工,电池续航能力有限;4、热熔设备体积大、携带不便;5、针对FTTH终端多点零散接续耗时长。 特殊要求;3、无源施工;4、工具简单,易携带。 快速连接器针对其特点,目前主要应用有两类:一类是配线光缆与入户皮线光缆接续点(光纤配线箱)内;另一类就是用户家中接入点,主要是光信息面板内将皮线光缆端接形成端口,和多媒体箱内将皮线光缆端接,直接连接家庭终端ONU。 快速连接器分类与剖析 目前包括国外国内,快速连接器生产厂家较多,其结构和材质上也形成了各自的特点。结构上分类:机械接续型和热熔型两大类。机械接续型又分:直通型和预埋型。直通型:光缆开剥、切割后直接从尾端穿到连接器顶端,连接器内部无连接点;预埋型:接头插芯内预埋一段光纤,光缆开剥、切割后与预埋光纤在连接器内部v槽内对接,V槽内填充有匹配液。 直通型结构缺点: 第一:对切割端面依赖性强;因为直通型结构是将光纤从连接器尾部直接穿到连接器顶端,这就意味着光纤切割端面就是连接器端面,如果光纤切割端面不平整,势必会影响连接 是要经过研磨,根据插芯和研磨工艺的不同,对端面进行区分,分为PC、UPC、APC,而直通型结构只是手工切割端面,并无研磨,更谈不上PC、UPC、APC,如果要确保质量,只能依靠操作人员的切割水平,因此其要求操作人员具备较强的光纤施工能力和经验。第二,对陶瓷插芯与光纤直径匹配要求严格;同样的也是由于直通型结构是将光纤从连接器尾部直接穿到连接器顶端,这就要求陶瓷插芯内孔径要大于等于光纤直径,否则穿不进去。但是又不能太大,太大则为导致光纤在陶瓷插芯内晃动,导致偏芯。从而影响连接器性能。第三,对切割长度、夹持件强度要求严格;切割所留光纤如果长了或者短了致使在穿纤的时候穿过头

光纤模块基本知识

光纤模块基本知识 光纤模块基本知识 光纤模块只有短波(SX)、长波(LX)和超长波(ZX)之分,没有单模多模之分!只有光纤才分单模多模! 短波光纤模块:发光口大,传输距离近 长波和超长波光纤模块:发光口小,传输距离远 多模光纤:纤芯直径大,传输距离近 单模光纤:纤芯直径小,传输距离远 短波模块-单模光纤-短波模块:不可行!因为短波模块的发光口大于单模光纤的纤芯直径,部分光信号无法进入光纤 长波模块-多模光纤-长波模块:一般可行,因为长波模块的发光口小于多模光纤的纤芯直径,所有光信号能够进入光纤。但传输距离受多模光纤限制,只有几百米,而且本人见过连通性不稳定甚至连不通的情况! 长波模块-多模光纤-短波模块:不可行!两端波长必须相同! 如果传输距离较远,必须选择长波模块-单模光纤-长波模块! 光纤主要分为两类: 单模光纤(Single-mode Fiber):一般光纤跳线用黄色表示,接头和保护套为

蓝色;传输距离较长。 多模光纤(Multi-mode Fiber):一般光纤跳线用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。 光纤使用注意! 光纤跳线两端的光模块的收发波长必须一致,也就是说光纤的两端必须是相同波长的光模块,简单的区分方法是光模块的颜色要一致。 一般的情况下,短波光模块使用多模光纤(橙色的光纤),长波光模块使用单模光纤(黄色光纤),以保证数据传输的准确性。 光纤在使用中不要过度弯曲和绕环,这样会增加光在传输过程的衰减。光纤跳线使用后一定要用保护套将光纤接头保护起来,灰尘和油污会损害光纤的耦合。 单模多模 1. 光纤是如何工作的? 通讯用光纤由外覆塑料保护层的细如毛发的玻璃丝组成。玻璃丝实质上由两部分组成:核心直径为9到62.5μm,外覆直径为125μm的低折射率的玻璃材料。虽然按所用的材料及不同的尺寸而分还有一些其它种类的光纤,但这里提到的是最常见的那几种。光在光纤的芯层部分以“全内反射”方式进行传输,也就是指光线进入光纤的一端后,在芯层和包层界

光纤连接器的基础知识

光纤连接器得基础知识解析 一、光纤连接器得定义 光纤连接器就是连接器得一种,也就是光纤通信系统中各种装置连接所必不可少得器件,主要用于光纤与光纤之间得活动,使光路能按所需得通道进行传输,以实现与完成预定或期望得目得与要求。 二、光纤连接器得工作原理 光纤连接器就就是把光纤得两个端面精密对接起来,以使发射光纤输出得光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成得影响减到最小,这就是光纤连接器得基本要求。在一定程度上,光纤连接器也影响了光传输系统得可靠性与各项性能。 三、光纤连接器得性能 光纤连接器得性能,首先就是光学性能,此外还要考虑光纤连接器得互换性、重复性、抗拉强度、温度与插拔次数等。 (1)光学性能

对于光纤连接器得光性能方面得要求,主要就是插入损耗与回波损耗这两个最基本得参数。 插入损耗(Insertion Loss)即连接损耗,就是指因连接器得导入而引起得链路有效光功率得损耗。插入损耗越小越好,一般要求应不大于0、5dB。 回波损耗(Return Loss, Reflection Loss)就是指连接器对链路光功率反射得抑制能力,其典型值应不小于25dB。实际应用得连接器,插针表面经过了专门得抛光处理,可以使回波损耗更大,一般不低于45dB。 (2)互换性、重复性 光纤连接器就是通用得无源器件,对于同一类型得光纤连接器,一般都可以任意组合使用、并可以重复多次使用,由此而导入得附加损耗一般都在小于0、2dB得范围内。 (3)抗拉强度 对于做好得光纤连接器,一般要求其抗拉强度应不低于90N。 (4)温度 一般要求,光纤连接器必须在40oC ~ +70oC得温度下能够正常使用。 (5)插拔次数 目前使用得光纤连接器一般都可以插拔l000次以上。 四、常见得光纤连接器种类 按照不同得分类方法,光纤连接器可以分为不同得种类,按传输媒介得不同可分为单模光纤连接器与多模光纤连接器;按结构得不同可分为FC、SC、ST、D4、DIN、Biconic、MU、LC、MT等各种型式;按连接器得插针端面可分为FC、PC(UPC)与APC;按光纤芯数分还有单芯、多芯之分。 在实际应用过程中,我们一般按照光纤连接器结构得不同来加以区分。以下简单得介绍一些目前比较常见得光纤连接器: (1)FC型光纤连接器 这种连接器最早就是由日本NTT研制。FC就是Ferrule Connector得缩写,表明其外部

光纤基础知识简介

光纤简介 一、光纤概述 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤一端的发射装臵使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤另一端的接收装臵使用光敏元件检测脉冲。 二、光纤工作波长 光是一种电磁波。可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。 三、光纤分类 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85μm、1.3μm、1.55μm)。 (2)折射率分布:阶跃(SI)型光纤、近阶跃型光纤、渐变(GI)型光纤、其它(如三角型、W型、凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤(如塑料包层、液体纤芯等)、红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。 (5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。

光纤快速连接器技术规范书

光纤快速连接器技术规范书 概述 本技术规范书中规定的产品应满足ITU-T,IEC等相关国际标准的要求,也将满足GB/T 光纤光缆机械式接头、YD/T 1636-2007《光纤到户(FTTH)体系结构和总体要求》的相关规定。结合我省目前使用的实际情况,特制定本光纤快速连接器技术规范书,投标人须按本技术规范书要求进行生产、交付产品,招标人根据本技术规范书验收光纤快速连接器产品。 产品分类 光纤快速连接器:一种高性能、使用简便的机械光纤连接器。可广泛地运用在将皮线入户光缆快速端接和互连的场合。具备与标准SC连接器同等的接续性能,可直接与标准SC法兰相连。 主要技术要求 参考标准的要求 GB/T 光纤光缆机械式接头 器件规格尺寸 SC型机械接续连接插头总长度(含尾套长度)≤ 60mm 外观 形状完整,外观应平滑、洁净、无毛刺、气泡、伤痕和裂纹,一致性好,各零部件组合应平整,插头与对应的适配器插入和拔出应平顺、轻松。涂覆层表面应光洁,色泽均匀,

无流挂,无露底;金属件无毛刺、锈蚀。 适用接续的光缆 皮线入户光缆(3mm*2mm,宽*高);光纤包层直径为:125μm 光学性能 1.5.1光学性能指标 插入损耗: 小于 dB (与标准SC连接器耦合),在1,310 nm & 1,550 nm 回波损耗: 小于-40 dB,(室温23℃) 1.5.2 性能的现场验证 厂方应能提供简便易行的现场测试方法,用于测试现场制作的光纤机械接续连接头的光学性能指标,以便于及时获知连接插头的性能优劣。 1.5.3 各种机械和环境试验后允许的插入损耗及回波损耗变化量 各种机械和环境试验后允许的插入损耗及回波损耗变化量如下表: 单位:dB

光纤跳线电信级和网络级相关知识

在选购光纤跳线时你是否注意到有些产品标注了电信级品质的特点,比如在飞速(FS)平台上出售的跳线产品皆为电信级品质产品,而在市场上与之相对应的是网络级光纤跳线,这两者有 实质上的区别吗?哪一种的品质更好呢?一起通过本文学习一下吧! 什么是电信级光纤跳线? 电信级光纤跳线是跳线中的一种,通常有较厚的保护层,一般用在光端机和终端盒质检连接。在多模电信级跳线中,线芯的直径约和人的头发粗细相当,为15~50μm,而单模电信级光纤跳线直径为8~10μm。芯外包着一层折射率比芯低的玻璃封套,起保护作用,外面为一层薄的塑料封套。 什么是网络级跳线? 网络级跳线要比电信级跳线的衰减大一些,其衰减一般情况下会大于0.2db,有可能在传输上出现数据丢包的情况。 电信级跳线与网络级跳线的区别有哪些? 1、衰减程度 电信级光纤跳线比网络级光纤跳线的衰减少,传输数据更稳定,不容易丢失。 2、研磨次数 电信级光纤跳线的研磨工序一般为5次,网络级光纤跳线为4次。光纤跳线电信级和网络级相关知识

电信级光纤跳线的价格比网络级光纤跳线高一些。 因此电信级跳线的市场需求量是大于网络级跳线的,接下来我们了解一下电信级跳线的应用环境有哪些。 电信级光纤跳线的应用环境 电信级光纤跳线有插损低、重复性好、互换性好、环境适应性好的特点,因此广泛的应用于重要网络环境,如国防战备,数据中心机房、光纤到户、骨干局域网等等。 选择飞速(FS)电信级跳线的理由 电信级跳线的应用市场这么广,我们该通过什么方式选择产品呢?在文章的开头就有提到飞速(FS)可供应电信级跳线产品,是因为它有如下优势: 1、质量有保证。这个质量是通过检测来支撑的,飞速(FS)有专门的质检中心,每一条跳线都经过了严格的质检流程,包括端面、插损&回损和3D干涉仪测试,100%确保产品符合要求。 2、价格优势。价格优势是显而意见的,飞速(FS)平台上的产品都采用明码标价的方式,并且借助互联网模式将成本控制在最低,直接让利给消费者。 3、售后服务完善。可以通过平台的客户反馈了解到飞速(FS)的服务是大家公认的,不管是在售前还是售后都有良好的口碑。 建议您在购买之前先通过电话4008-652-852咨询客服,帮助您挑选合适的产品,也可以前往飞速(FS)官网查询产品详情。

光纤跳线+连接器基础知识

光纤知识 2007年11月26日星期一下午 12:38 现在监控传输、网络传输等越来越多的使用到光纤.但很多工程商对于光纤传输还是存在一定的顾虑,认为光纤传输很神秘很复杂. 看过这篇文章后,一定会让你对光纤及其设备有一点了解... 上图中为光连接器,常见的是FC(俗称圆头)、SC(俗称方头)和LC。 FC型又分为FC/FC和FC/PC(APC)型,前一个FC 是Ferrule Connector 的缩写,表明其外部加强件是采用金属套,紧固方式为螺丝扣;后面的FC 表明接头的对接方式为平面对接,PC 是Physical Connection 的缩写,表明其对接端面是物理接触,即端面呈凸面拱型结构,APC和PC类似,但采用了特殊的研磨方式,PC是球面,APC是斜8度球面,指标要比PC好些。目前电信网常用的是FC/PC型, FC/APC多用于有线电视系统。一般写成FC或PC均是指FC/PC光连接器。 SC型其外壳采用模塑工艺,用铸模玻璃纤维塑料制成,呈矩型;插头套管(也称插针)由精密陶瓷制成,耦合套筒为金属开缝套管结构,其结构尺寸与FC 型相同,端面处理采用PC 或APC 型研磨方式;紧固方式是采用插拔销闩式,不需旋转头。常用于在数据工程中使用。一般SC型均指SC/PC。 LC光纤连接器采用模块化插孔(RJ)机理制成。其所采用的插针和套桶的尺寸是普通SC,FC等尺寸的一半。LC常见于通信设备的高密度的光接口板上。

上图是各种光连接器与之对应的适配器,也称法兰盘,用在ODF架上,供光纤连接。 该图为FC/PC型光纤跳纤(非正规叫法是双头尾纤),英文名为PATCH CORD即两头带光纤连接器的软光纤,用于设备至ODF架的连接以及ODF架之间的跳接。光跳线颜色为黄色,表示单模跳纤。

弱电工程中常用的光纤基础知识

弱电工程中常用的光纤基础知识 前言: 光纤在弱电行业的应用可以说是改变了整个弱电行业,尤其大数据下的弱电行业更需要光纤传输,所以掌握一定的光纤知识显得尤为重要了。今天分享都是光纤的基础知识,你绝对用的到。 正文: 光纤通信的优点 ●通信容量大 ●中继距离长 ●不受电磁干扰 ●资源丰富 ●光纤重量轻、体积小 光纤通信发展简史 2000多年前 烽火台——灯光、旗语

1880年 光电话——无线光通信 1970年 光纤通信 ●1966年“光纤之父”高锟博士首次提出光纤通信的想法。 ●1970年贝尔研究所林严雄在室温下可连续工作的半导体激光器。 ●1970年康宁公司的卡普隆(Kapron) 制作出损耗为20dB/km光纤。 ●1977年芝加哥第一条45Mb/s的商用线路。 电磁波谱 通信波段划分及相应传输媒介 光的基本知识 光通信的发展过程 光纤结构 光纤裸纤一般分为三层: 第一层:中心高折射铝玻璃芯(芯径一般为9-10μm,(单模)50或62.5(多模)。

第二层:中间为低折射率硅玻璃包层(直径一般为125μm)。 第三层:最外是加强用的树脂涂层。 1)纤芯core:折射率较高,用来传送光; 2)包层coating:折射率较低,与纤芯一起形成全反射条件; 3)保护套jacket:强度大,能承受较大冲击,保护光纤。 3mm光缆橘色MM多模 黄色SM单模 光纤的尺寸 外径一般为125um(一根头发平均100um) 内径:单模9um 多模50/62.5um 数值孔径 入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同 光纤的种类 按光在光纤中的传输模式可分为: 多模(Multi-Mode)(简称:MM) 单模(Single-Mode)(简称:SM) 多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离

光纤传输基础知识

光纤传输基础知识 光纤通信的优点 ●通信容量大 ●中继距离长 ●不受电磁干扰 ●资源丰富 ●光纤重量轻、体积小 光通信发展简史 2000多年前 烽火台——灯光、旗语 1880年 光电话——无线光通信 1970年 光纤通信 ●1966年―光纤之父‖高锟博士首次提出光纤通信的想法。 ●1970年贝尔研究所林严雄在室温下可连续工作的半导体激光器。 ●1970年康宁公司的卡普隆(Kapron)作出损耗为20dB/km光纤。 ●1977年芝加哥第一条45Mb/s的商用线路。 电磁波谱

通信波段划分及相应传输媒介

光的折射/反射和全反射 因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。光纤通讯就是基于以上原理而形成的。 反射率分布:表征光学材料的一个重要参数是折射率,用N表示,真空中的光速C与材料中光速V 之比就是材料的折射率。 N=C/V 光纤通信用的石英玻璃的折射率约为1.5 光通信的发展过程 光的基本知识

光纤结构 光纤裸纤一般分为三层: 第一层:中心高折射率玻璃芯(芯径一般为9-10μm,(单模)50或62.5(多模)。第二层:中间为低折射率硅玻璃包层(直径一般为125μm)。 第三层:最外是加强用的树脂涂层。

1)纤芯core:折射率较高,用来传送光; 2)包层coating:折射率较低,与纤芯一起形成全反射条件; 3)保护套jacket:强度大,能承受较大冲击,保护光纤。 3mm光缆橘色MM多模 黄色SM单模 光纤的尺寸 外径一般为125um(一根头发平均100um) 内径:单模9um 多模50/62.5um 数值孔径 入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。这个角度就称为光纤的数值孔径。光纤的数值孔径大些对于光纤的对接是有利的。不同厂家生产的光纤的数值孔径不同

光纤知识汇总

光纤基础知识汇总 关键词: 光纤--光导纤维(OF:Optical Fiber,或简称Fiber) 纤芯直径—描述格式50/125μ,50/125μ红色部份指光纤内径,50/125μ红色部份指光纤外径。 多模光纤--中心玻璃芯较粗(50或62.5μm),内芯径固定,可传多种模式的光。 单模光纤--中心玻璃芯较细(芯径一般为8~10μm),内芯径根据厂家和规格略有差异。 光纤通讯波长—常见波长为850nm(多模常用)、1310nm(多模、单模均可)、1550nm(单模常用)(人肉眼可见光波长为400到700nm之间,但在多模光纤中所用的850nm波长的激光束会含有部份红色光谱,因此可见;而单模光纤采用1310nm和1550nm的波长通讯,所以就不要尝试看单模光纤中的光了,你不是神,看不到的) 1.光纤的类型 项目中常见光纤订货类型:OM1 OM2 OM3 OS1 OS2 OM1普通多模光纤,62.5/125μ,传输距离≈300M(千兆),传输距离≈100M(万兆) OM2 普通多模光纤,50/125μ,传输距离≈550M(注:OM2可以传输万兆,距离远小于OM3光纤,≈80M) OM3 万兆多模光纤,50/125μ,传输距离≈300M(万兆),传输距离≈1000M(千兆) OM4 万兆多模光纤,50/125μ,传输距离≈550M(万兆) OS1/OS2单模光纤(均为G.652光纤,OS1满足G.652的A、B参数,OS2满足G.652的C、D参数),8-10/125μ,传输距离根距传输速度不同可达到10KM~60KM 短距离千兆传输推荐OM2光纤;由于纤芯差别,信号从OM1光纤传入OM2光纤时会产生衰减,因此不建议OM1、OM2光纤混合安装。 短距离万兆传输推荐OM3光纤;OM3光纤向下兼容OM2光纤。 300米-500米距离的万兆传输推荐采用OM4光纤,OM4光纤向下兼容OM3、OM2光纤。

光纤活动连接器技术规范

现场组装式光纤活动连接器技术规范书

Q/BJT 01—2002 2011年11月10日

目次 前言 (6) 1引用标准 (7) 2相关释义 (7) 3.1名词解释 (7) 3.2单位缩写 (9) 4技术要求 (9) 4.1分类和型号 (9) 4.1.1分类 (10) 4.1.2型号 (11) 4.2尺寸要求 (11) 4.3材料要求 (12) 4.4插针体端面几何参数要求 (13) 4.5现场组装要求 (13) 4.5.1平均组装时间 (13) 4.5.2一次组装成功率 (13) 4.6可重复组装性 (14) 4.7温度范围 (14) 4.8光学性能要求 (14) 4.9各种例行试验要求 (14) 5测量和试验 (15) 5.1测量和试验条件 (15) 5.1.1试验环境 (15) 5.1.2试验光源和尾纤 (15) 5.1.3标准连接器 (16) 5.1.4测量前的准备 (16) 5.1.5试样 (16) 5.2现场组装试验 (16) 5.2.1条件 (16)

5.2.2程序 (16) 5.2.3平均组装时间 (17) 5.2.4组装成功率 (17) 5.2.5试验结果 (17) 5.3外观和尺寸检查 (17) 5.4插入损耗测量 (18) 5.5回波损耗测量 (19) 5.6高温试验 (19) 5.7低温试验 (20) 5.8温度循环试验 (20) 5.9湿热试验 (21) 5.10浸水试验(可选) (22) 5.11可重复组装性试验 (22) 5.12振动(正弦) 试验 (23) 5.13跌落试验 (23) 5.14重复性试验 (24) 5.15机械耐久性试验 (25) 5.16抗拉试验 (25) 5.17扭转试验 (26) 6质量评定程序 (27) 6.1质量评定程序分类 (27) 6.2鉴定批准程序 (27) 6.2.1初始制造阶段 (27) 6.2.2结构类似元器件 (27) 6.2.3鉴定批准要求 (28) 6.2.4批准程序 (28) 6.3质量一致性检验 (30) 6.3.1逐批检验 (30) 6.3.2周期检验 (30)

光纤连接器的基础知识

光纤连接器的基础知识解析 一.光纤连接器的定义 光纤连接器是连接器的一种,也是光纤通信系统中各种装置连接所必不可少的器件,主要用于光纤与光纤之间的活动,使光路能按所需的通道进行传输,以实现和完成预定或期望的目的和要求。 二.光纤连接器的工作原理 光纤连接器就是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项性能。

三.光纤连接器的性能 光纤连接器的性能,首先是光学性能,此外还要考虑光纤连接器的互换性、重复性、抗拉强度、温度和插拔次数等。 (1)光学性能 对于光纤连接器的光性能方面的要求,主要是插入损耗和回波损耗这两个最基本的参数。 插入损耗(Insertion Loss)即连接损耗,是指因连接器的导入而引起的链路有效光功率的损耗。插入损耗越小越好,一般要求应不大于0.5dB。 回波损耗(Return Loss, Reflection Loss)是指连接器对链路光功率反射的抑制能力,其典型值应不小于25dB。实际应用的连接器,插针表面经过了专门的抛光处理,可以使回波损耗更大,一般不低于45dB。 (2)互换性、重复性 光纤连接器是通用的无源器件,对于同一类型的光纤连接器,一般都可以任意组合使用、并可以重复多次使用,由此而导入的附加损耗一般都在小于0.2dB的范围内。

(3)抗拉强度 对于做好的光纤连接器,一般要求其抗拉强度应不低于90N。 (4)温度 一般要求,光纤连接器必须在-40oC ~ +70oC的温度下能够正常使用。 (5)插拔次数 目前使用的光纤连接器一般都可以插拔l000次以上。 四.常见的光纤连接器种类 按照不同的分类方法,光纤连接器可以分为不同的种类,按传输媒介的不同可分为单模光纤连接器和多模光纤连接器;按结构的不同可分为FC、SC、ST、D4、DIN、Biconic、MU、LC、MT等各种型式;按连接器的插针端面可分为FC、PC(UPC)和APC;按光纤芯数分还有单芯、多芯之分。 在实际应用过程中,我们一般按照光纤连接器结构的不同来加以区分。以下简单的介绍一些目前比较常见的光纤连接器: (1)FC型光纤连接器 这种连接器最早是由日本NTT研制。FC是Ferrule Connector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,采用的陶瓷插针的对接端面是平面接触方式(FC)。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。 (2)SC型光纤连接器 这是一种由日本NTT公司开发的光纤连接器。其外壳呈矩形,所采用的插针与耦合

光纤组网基础知识

光纤组网基础知识 以下是有关光纤的一些小常识 光纤的构造 通讯用光纤是由通过内部全反射来传输光信号的玻璃构成的。玻璃光纤的标准直径为125微米(0.125毫米),表面覆盖有直径250微米或900微米的树脂保护涂敷层。玻璃光纤的传送光的中心部分称为“纤芯”,其周围的包层的折射率比纤芯低,从而限制了光的流失。 石英玻璃非常脆弱,因此覆有保护涂层。通常有三种典型的光纤涂敷层。 一次涂敷光纤 覆有直径为0.25毫米紫外线固化丙烯酸树脂涂敷层的光纤。其直径非常小,增加了光缆内可容纳光纤的密度,使用非常普遍。 二次涂敷光纤 亦称为紧包缓冲层光纤或半紧包缓冲层光纤。光纤表面覆有直径为0.9毫米的热塑性树脂。与0.25毫米的光纤相比,其具有更坚固,易操作的优点。广泛应用于局域网布线及光纤数量较少的光缆。 带状光纤 带状光纤提高了连接器组装的效率,有利于多芯融接,从而提高了作业效率。 带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂敷层,方便多芯融接或取出单个光纤。使用多芯融接机,带状光纤可一次性融接,在光纤数量多的光缆中能轻易识别出来。

光纤种类 以下是对最常用的通信光纤种类的描述。 MMF(多模光纤) - OM1光纤或多模光纤(62.5?125) - OM2?OM3光纤(G.651光纤或多模光纤(50?125)) SMF(单模光纤) - G.652(色散非位移单模光纤) - G.653(色散位移光纤) - G.654(截止波长位移光纤) - G.655(非零色散位移光纤) - G.656(低斜率非零色散位移光纤) - G.657(耐弯光纤) 只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx技术最常用的光纤为G.652和G.657。 G.651(多模光纤) G.651主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。 ITU-T G.651光纤即OM2?OM3光纤或多模光纤(50?125)。ITU-T推荐光纤中并没有OM1光纤或多模光(62.5?125),但它们在美国的使用仍非常普遍。 多模光纤(50?125)纤芯的反射率从中心到包层逐渐改变,使得多路光传输可以在同一速度下进行。

光纤跳线接口-详细图解

光纤跳线接口-详细图解 作者:管理员发布于:2013-06-19 03:20:49 文字:【大】【中】【小】 摘要:本文介绍:光纤跳线接口类型,接口图片等知识 光纤跳线就是两头有连接器的光纤,它的作用是做为从设备到光纤布线链路的路接线,一般在光端机,光模块,光纤收发器等设备和终端盒之间的连接。而尾纤是只有一头有连接器的光纤,下面对网络工程中几种常用的光纤连接器进行详细的说明: 光纤跳线的接口类型常见的有FC、SC、ST、PC、APC、LC这几种,FC接头的光纤跳线多用于配线架上,而SC接头的光纤跳线多用于路由器交换机上。另外还有MTRJ、MPO、MU、SMA、FDDI、E2000、D4等各种形式的光纤接口类型。常见的几种光纤跳线接口类型含义如下: FC 圆型带螺纹常用于光端机等设备 ST 卡接式圆型常用于终端盒设备 SC 卡接式方型常用于光纤收发器 PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 光纤跳线接口图解:

光纤跳线接头是用户在选购光纤跳线时必要考虑的一个问题,弄明白各种光纤跳线接头的含义能帮助用户更快的找到自己想要的产品。 ①FC型光纤跳线:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ②SC型光纤跳线:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ST型光纤跳线:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④LC型光纤跳线:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤MT-RJ型光纤跳线:收发一体的方形光纤连接器,一头双纤收发一体 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。MTRJ型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。 光纤模块:一般都支持热插拔,GBIC使用的光纤接口多为SC或ST型;SFP,即:小型封装GBIC,使用的光纤为LC型。

光纤连接器插头的制作技术

本技术公开了一种光纤连接器插头,包括光纤接触件、后套,光纤接触件包括插针、与插针的后部连接的法兰盘、套设在法兰盘上的弹簧、活动套及光缆,活动套位于弹簧的后侧且可沿法兰盘在一定范围内轴向移动,弹簧的前端顶紧在法兰盘上、后端顶紧在活动套上,光缆的缆套通过压接套固定在法兰盘的后部,光缆的光纤穿过法兰盘并连接在插针的后端,后套内设有在光纤接触件轴向装入后对活动套进行定位以防其脱出的定位弹簧。不管本技术的插头适配紧套光缆或是松套光缆,插针回退都会和光纤/光缆同步,不会出现光纤损坏情况,因本技术光纤连接器插头能很好的匹配紧套光缆和松套光缆。 技术要求 1.光纤连接器插头,包括光纤接触件、前套、后套,其特征在于:光纤接触件包括插针、与插针的后部连接的法兰盘、套设在法兰盘上的弹簧、活动套及光缆,活动套位于弹簧的后侧且可沿法兰盘在一定范围内轴向移动,弹簧的前端顶紧在法兰盘上、后端顶紧在活动套上,光缆的缆套通过压接套固定在法兰盘的后部,光缆的光纤穿过法兰盘并连接在插针的后端,后套内设有在光纤接触件轴向装入后对活动套进行定位以防其脱出的定位弹簧,所述前套包括套体,套体为阶梯轴状,其内孔为台阶孔,内孔由大径孔和小径孔构成,套体的大径孔内设置有环形安装槽,环形安装槽内安装有胶垫,光纤接触件从该胶垫中部穿过,胶垫位于法兰盘的前端并与法兰盘前端定位键的前端面顶压配合,在光纤连接器插头与插座插接时,胶垫与插座壳体前端挤压配合形成界面密封。 2.根据权利要求1所述的光纤连接器插头,其特征在于:所述法兰盘上设有对活动套前端的向前移动极限位置进行限位的活动套限位台阶,所述法兰盘上还设有对活动套的后端进行轴向限位的活动套挡止结构。 3.根据权利要求1或2所述的光纤连接器插头,其特征在于:所述前套包括套体、通过固定结构固定在套体外侧的用于与相对应的插座壳体导向止转的键块,套体内设有用于与法兰盘导向止转的防转槽。 4.根据权利要求3所述的光纤连接器插头,其特征在于:所述套体上设有对所述键块在套体外周上的安装位置进行定位的定位键槽,所述键块位于所述定位键槽内。 5.根据权利要求4所述的光纤连接器插头,其特征在于:所述键块的一端设有套设在所述套体上的安装套,所述固定结构由所述的安装套形成,所述安装套与所述套体过盈配合。 技术说明书 一种光纤连接器插头 技术领域 本技术涉及光纤连接器领域,特别是涉及一种光纤连接器插头。 背景技术

光纤跳线种类及适用范围

本文主要向大家介绍了几种常见光纤连接器即:FC型光纤跳线、SC型光纤跳线、ST型光纤跳线、LC型光纤跳线和MT-RJ型光纤跳线,希望这些基础的知识能够帮助大家更深入的了解光纤连接器。 光纤跳线的分类和概述如下: 光纤跳线(又称光纤连接器),也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。SFP模块接LC光纤连接器,而GBIC接的是SC光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明: ①FC型光纤跳线:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ②SC型光纤跳线:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ST型光纤跳线:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F 连接来说,连接器通常是ST类型。常用于光纤配线架) ④LC型光纤跳线:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤MT-RJ型光纤跳线:收发一体的方形光纤连接器,一头双纤收发一体 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。MTRJ型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。 光纤模块:一般都支持热插拔,GBIC使用的光纤接口多为SC或ST型;SFP,即:小型封装GBIC,使用的光纤为LC型。 使用的光纤: 单模:L波长1310单模长距LH波长1310,1550

相关文档
最新文档