“网络协同制造和智能工厂”重点专项2018年度项目申报指南

“网络协同制造和智能工厂”重点专项2018年度项目申报指南
“网络协同制造和智能工厂”重点专项2018年度项目申报指南

附件5

“网络协同制造和智能工厂”重点专项

2018年度项目申报指南

为落实《国家中长期科学和技术发展规划纲要(2006-2020年)》《国家创新驱动发展战略纲要》《“十三五”国家科技创新规划》《中国制造2025》和《国务院关于积极推进“互联网+”行动的指导意见》等提出的要求,国家重点研发计划启动实施“网络协同制造和智能工厂”重点专项。根据本重点专项实施方案的部署,现发布2018年度项目申报指南。

本重点专项总体目标是:针对我国网络协同制造和智能工厂发展模式创新不足、技术能力尚未形成、融合新生态发展不足、核心技术/软件支撑能力薄弱等问题,基于“互联网+”思维,以实现制造业创新发展与转型升级为主题,以推进工业化与信息化、制造业与互联网、制造业与服务业融合发展为主线,以“创模式、强能力、促生态、夯基础”以及重塑制造业技术体系、生产模式、产业形态和价值链为目标,坚持有所为、有所不为,推动科技创新与制度创新、管理创新、商业模式创新、业态创新相结合,探索引领智能制造发展的制造与服务新模式,突破网络协同制造和智能工厂的基础理论与关键技术,研发网络协同制造核心软件,

—1—

建立技术标准,创建网络协同制造支撑平台,培育示范效应强的智慧企业。

本重点专项设立基础前沿与关键技术、装备/系统与平台、集成技术与应用示范3类任务以及基础前沿技术、研发设计技术、智能生产技术、制造服务技术、集成平台与系统5个方向。专项实施周期为5年(2018-2022年)。

2018年,拟在5个方向,按照基础研究类、共性关键技术类、应用示范类3个层次,启动不少于35个项目,拟安排国拨经费总概算约7.6亿元。应用示范类项目鼓励充分发挥地方和市场作用,强化产学研用紧密结合,配套经费与国拨经费比例不低于2:1。共性关键技术类项目,配套经费与国拨经费比例不低于1:1。

项目申报统一按指南二级标题(如1.1)的研究方向进行。除特殊说明外,拟支持项目数均为1~2项。项目实施周期不超过4年。申报项目的研究内容须涵盖该二级标题下指南所列的全部考核指标。项目下设课题数不超过5个,每个课题参研单位不超过5个,每个项目的参研单位总数不超过15个。项目设1名项目负责人,项目中每个课题设1名课题负责人。

指南中“拟支持项目数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持这2个项目。2个项目将采取分两个阶段支

—2—

持的方式。第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。

1.基础前沿与关键技术

1.1智能工厂工业互联网系统理论与技术(基础前沿类)

研究内容:针对工业互联网系统结构复杂性问题,研究建立工业互联网系统理论体系。建立互联网与智能工厂控制网络融合的体系架构,构建由现场总线、控制网络以及互联网组成的复杂大系统,支持网络资源配置和多网络集成。研究智能工厂工业互联网复杂大系统理论,给出由离散、连续和随机变量构成的工业互联网混杂系统模型。研究工业互联网系统的质量指标,建立在多种网路、多分辨率采样周期和网络时延、抖动、丢包等情况下工业网络系统控制稳定性和系统质量的评价方法。研究工业互联网复杂大系统的优化设计技术,研发智能工厂工业互联网系统验证平台,包括:制造执行、系统控制、设备监控和网络感知等。形成由工业互联网构建的典型行业解决方案,实现对工业互联网复杂大系统理论验证。

考核指标:实现互联网与IEC61158定义的20种主流工业以太网和现场总线网络融合的体系架构,建立覆盖现场总线、控制网络和互联网组成的复杂大系统模型,提出工业互联网系统的质量指标、评价方法、优化设计方法。研发由制造执行、系统控制、

—3—

设备监控和网络感知等组成的工业互联网验证平台。针对典型行业,形成以工业互联网系统组成的行业解决方案,对网络系统进行理论分析和质量评价。出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准,发表SCI/EI检索的高质量学术论文不少于10篇。

1.2工业互联网边缘计算节点设计方法与技术(基础前沿类)

研究内容:针对工业环境智能感知、工业数据边缘处理、工业实时控制和工业应用服务一体化设计的问题,研究工业互联网边缘计算节点设计方法,包括:数据驱动的高效自适应边缘计算方法、可编程边缘计算模型的构建方法、智能算法功能块规范、控制网络智能互联方法等。研发支持功能块规范的嵌入式系统程序运行环境,开发智能感知、边缘计算、实时控制和应用服务等功能的功能块程序集。研发边缘计算节点原理样机,支持多种工业网络智能互联和边缘计算功能。构建多种工业异构网络互联系统,提供离散行业解决方案。

考核指标:实现数据驱动的高效自适应边缘计算方法,可编程边缘计算模型的构建方法,以及控制网络智能互联方法。制定智能感知、边缘计算、实时控制和应用服务等功能块规范,开发开放的功能块可编程程序运行环境,支持30种以上智能算法功能块,实现IEC61158定义的20种以上主流工业以太网或现场总线

—4—

网络智能互联。研制工业互联网边缘运算节点原理样机,基于WEB技术解决20种主流工业网络与互联网互联互通和数据共享问题,原理样机与现场设备之间的通信周期小于10ms。构建由边缘计算节点组成的工业互联网系统验证平台,包括现场总线、控制总线以及互联网等网络体系,提供离散行业解决方案。出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准,发表SCI/EI检索的高质量学术论文不少于10篇。

1.3制造企业制造大数据分析方法与系统(基础前沿类)

研究内容:为了满足个性化定制、智能化生产、网络化协同和服务延伸等新型业务模式需求,研究智慧企业设计资源、管理流程、制造过程、制造服务的大数据分析方法与关联挖掘方法,形成制造企业跨时空尺度制造数据耦合与分析机制。研制全类型制造大数据智能分析算法,开发面向个性化、服务化和智能化等模式的企业制造大数据分析算法库。研制制造大数据的设计、制造、服务和管理的可视化分析系统。构建流程行业和离散行业的典型数据集,形成行业解决方案。

考核指标:开发不少于50种算法的智慧企业制造大数据分析算法库。研制具有个性化、服务化和智能化等模式的制造大数据原型平台,提供企业制造大数据分析算法库。研发流程行业和离

—5—

散行业的典型行业验证数据集,提供流程行业智能化或离散行业个性化的制造大数据解决方案。出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准,发表SCI/EI检索的高质量学术论文不少于10篇。

1.4制造企业数据空间构建方法与技术(基础前沿类)

研究内容:针对制造企业制造大数据发展与利用问题,研究制造大数据体系结构,建立设计资源、管理流程、制造过程、产品服务等大数据模型。研究结构化和非结构化数据的集成、更新和演化方法,异构多源制造数据的高效存储和索引方法。研究制造大数据治理方法,包括面向设计/管理/制造/服务大数据的关联理解与挖掘、知识演化与推理、智慧要素描述与生成、人机整合与增强、自我维持与安全交互等方法。研制覆盖设计、制造、服务、管理等多业务的数据空间管理系统原型,形成典型行业解决方案。

考核指标:构建制造大数据体系结构,建立设计资源、管理流程、制造过程、制造服务等大数据模型。研发异构多源制造数据的关联挖掘、知识推理、人机协同、自我维持、安全管理、数据集成/更新/演化等工具软件构件15个。研发制造大数据应用原型系统,实现设计、制造、服务和管理等4个业务领域解决方案。

—6—

出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准,发表SCI/EI检索的高质量学术论文不少于10篇。

1.5智能生产线信息物理系统理论与技术(基础前沿类)

研究内容:围绕个性化定制生产管控,研究智能工厂信息物理系统自组织运行方法,建立覆盖生产线感知、运行、重构和决策等过程的时变动态模型。研究信息物理融合计算方法,支持多时空尺度模型的统一计算求解,实现生产过程的自主感知、运行优化、智能决策和动态重构。开发可根据动态生产任务进行自组织生产的信息物理原型系统,实现动态生产环境自主感知、多类型生产任务自组织调度、复杂工艺参数自优化配置、装备控制策略自适应调整等功能。研发面向个性化定制的智能生产线信息物理系统架构,选取具有定制化生产需求的离散行业进行应用验证,形成行业解决方案。

考核指标:建立时变过程的智能生产线信息物理系统动态模型,覆盖生产线感知、运行、重构和决策等4大核心过程。提出多时空尺度模型的统一计算求解方法,时间尺度覆盖秒、分、小时,空间尺度覆盖设备、工位、产线。制定信息物理模型与统一计算框架的标准接口规范,实现信息物理系统的灵活扩展功能。研制支持个性化定制生产管控的信息物理原型系统和实验验证平

—7—

台各1套,具备在不停机条件下支持不少于3类产品、每类产品不少于5种型号的混线生产能力。形成汽车、3C等离散行业解决方案。出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准,发表SCI/EI检索的高质量学术论文不少于10篇。

1.6智能生产线虚拟重构理论与技术(基础前沿类)

研究内容:针对制造企业物理资源与数字世界之间存在交互数字鸿沟,研究智能工厂虚拟重构设计方法,提升智能工厂设计与构建能力。研究面向制造过程的部件、资源和系统等智能生产线的镜像理论。研发智能生产线在虚拟空间的同步重组方法,建立多任务虚拟场景中生产单元分层动态重构、物理仿真和可信性度量系统。构建大数据驱动的制造过程数字孪生仿真平台,实现生产设备离线虚拟组合设计仿真、智能生产线在线实时虚拟运行、生产工艺离线和在线仿真与优化等功能。形成离散行业智能生产线虚拟重构解决方案。

考核指标:建立智能生产线虚拟动态重构方法,实现制造过程的部件、资源和系统等虚拟与物理实体的映射。研制物理实体与虚拟场景动态同步重建技术,孪生仿真粒子数不少于100万个,仿真显示帧率不少于40fps。研究复杂时变场景虚拟环境的可信性度量和评价方法,使仿真精度达到99.9%以上。构建典型智能生

—8—

产线数字孪生平台,实现生产设备离线虚拟组合设计仿真、智能生产线在线实时虚拟运行、生产工艺离线和在线仿真与优化等功能。形成1套离散行业智能生产线虚拟重构系统的完整解决方案。出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准,发表SCI/EI检索的高质量学术论文不少于10篇。

1.7“互联网+”产品定制设计方法与技术(基础前沿类)

研究内容:针对用户深度参与产品研发设计过程、产品个性化与规模化研发设计亟待融合的实际需求,研究“互联网+”环境下个性化需求分类、预测与转化建模基础理论、模式和方法;研究大数据驱动的“互联网+”环境下产品个性化设计技术,包括基于新一代人工智能的定制产品设计意图理解与智能反馈技术、“互联网+”环境下产品定制功能精确求解与设计可配置性方法、产品定制功能虚拟体验、性能可信预测与强化设计等技术;研发“互联网+”定制设计资源库、案例分析库和使能工具集;研发支持个性化用户深度参与的“互联网+”产品定制设计原型系统,并面向服装、电梯、盾构机等典型行业和产品开展应用验证。

考核指标:提出并建立“互联网+”环境下产品个性化设计模式、理论和方法体系,揭示“互联网+”产品定制设计机理和演化规律,突破“互联网+”产品定制设计关键技术不少于5项,研发“互

—9—

联网+”定制设计工具与构件不少于30项,构建“互联网+”定制设计资源库和案例分析库,完成“互联网+”产品定制设计原型系统,形成面向服装、电梯、盾构机等典型行业和产品的“互联网+”定制设计解决方案并得到应用验证。出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准。

1.8支持个性化设计的众包平台研发(基础前沿类)

研究内容:针对现有研发设计体系难以适应互联网环境下海量个性化需求爆发,双边匹配准确度偏低、设计工具标准和在线流程管理规范缺失等问题,探索“互联网+”众包产品设计规律,研究开放式网络环境下众包产品定制研发设计模式、机理和自组织生态化网络系统;研究精确需求导向的众包产品个性化设计方法与支撑技术,包括多主体在线交互设计技术、设计资源匹配与共享技术、个性化需求分类与异构数据集成技术、基于大数据的设计资源关联挖掘、动态更新、状态反馈及智能推送技术等;构建众包产品设计、制造与服务的资源案例库、设计服务库和使能工具集;研发支持个性化设计的众包平台;形成面向模具、家电、家具等标准定制行业的典型众包产品设计解决方案,并开展应用验证。

考核指标:提出不少于2类众包产品个性化设计模式与运行—10—

机制,形成以“众包设计”为主要模式的新型研发设计体系,突破不少于5项众包个性化设计关键技术,研发不少于30项支持众包个性化设计的资源案例库、设计服务库和使能工具,研发完成支持个性化设计的众包平台,突破时间、空间、成本对制造业创新设计活动的限制,实现网络众包、异地协同下的设计要素资源共享,在模具、家电、家具等典型行业的众包设计中得到应用验证。出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准。

1.9产品全生命周期模型管理技术与系统(基础前沿类)

研究内容:针对复杂产品跨域信息交换和数据共享问题,研究融合产品模型、过程模型、知识模型的复杂产品全生命周期模型定义体系、统一表达方法与互联规范;研究跨单位、跨阶段、跨层次的全生命周期模型协同、计算协同、流程协同方法以及模型数据管理技术,包括面向产品全生命周期的模型知识获取、多领域协同建模、产品全生命周期模型构建与管理技术等;研发支持统一模型管理、模型数据特征关联匹配、智能检索查询等功能的软件构件和使能工具集,研发支持设计、分析、制造规划和维护服务等各环节的复杂产品全生命周期模型管理原型系统;面向航空航天等领域的典型产品开展应用验证。

考核指标:提出基于模型面向产品全生命周期的数字化设计

—11—

技术理论框架、模型定义方法和管理体系,制定不少于5项统一产品全生命周期信息模型规范和数字化评价标准,突破不少于10项产品全生命周期模型构建与管理技术,实现不少于20项模型管理软件工具和构件,建立不少于2套通贯产品全生命周期各阶段的知识库/数据库/案例库,研发完成1套复杂产品模型管理原型系统,面向航空航天等领域的典型产品开展应用验证,产品数字化率不低于80%,产品研制周期缩短不少于40%。出版专著1部及以上,申请发明专利或取得著作权不少于10项,制定1项及以上国家、行业或核心企业相关标准。

1.10智能工厂设计仿真技术与软件工具开发(基础前沿类)

研究内容:针对缺少数字化设计仿真软件工具导致的智能工厂设计周期长、生产过程效能难以预测,无法验证所设计的智能工厂制造能力等问题,研发智能工厂跨领域设计、仿真一体化软件工具,实现制造系统软-硬件交互,物理系统-信息系统仿真与设计。研究组成智能工厂关键要素物料流、能量流、信息流交互的语义建模方法和可视化组件技术,实现智能工厂生产系统快速布局;研究制造系统关键装备的弱装配关系建模和指令驱动运动性能仿真技术,实现支持3D组态的制造系统物化建模和性能仿真;研究面向智能工厂数字化设计的虚拟仿真系统与物理系统数据实时交互及融合接口,建立基于数据驱动的数字模型与物理实

—12—

体同步运行验证机制,实现智能工厂制造能力的虚拟验证与同步运行。

考核指标:开发智能工厂设计与可视化虚拟仿真工具软件1套,支持3D组态建模和空间运动性能仿真;构建制造系统多层次知识模型,支持智能工厂的概念设计和物化设计;建立智能工厂关键要素的知识模型库不少于100个;开发底层控制系统和仿真系统数据交互融合接口设备,实现中等规模智能工厂控制系统和仿真系统的指令转换和交互设计仿真,支持3种以上工业控制总线和200以上控制节点。出版专著1部及以上。

1.11面向智能工厂动态生产的实时优化运行技术与系统(基础前沿类)

研究内容:为解决动态生产多任务协同,安全/质量/效益多目标协同,车间/装置生产运行与底层控制在线联动优化等难题,研究基于在线学习/优化与大数据的动态生产多目标/多任务实时优化运行与协同控制一体化技术,建立智能工厂实时运行优化平台,及时响应智能工厂柔性生产和管控一体化优化的要求。具体研究内容包括:研究结合在线学习/优化和大数据的多目标/多任务实时优化方法,研发装置实时优化运行与协同控制一体化技术与工具软件,研究装置实时优化与车间实时调控的智能联动方法,研发多目标/多任务协同的智能车间实时调控与运行优化工具软

—13—

件与平台。

考核指标:形成结合在线学习/优化和大数据的多目标/多任务实时优化混合智能算法库,算法种类超过20种;开发装置实时优化运行与协同控制一体化工具软件1套;突破装置实时优化与车间实时调控的智能联动方法,智能车间运行优化单次耗时小于0.5小时;开发多目标/多任务协同的智能车间实时运行优化平台1套,在3类智能工厂应用验证,并集成到智能工厂管控平台。出版专著不少于2部。

1.12智能加工产线的工艺感知与产品加工精度控制技术(基础前沿类)

研究内容:针对批量零件加工过程缺乏有效的工艺感知技术,制造数据难以同步收集和孤立导致的加工质量建模与溯源困难等问题,开展零件加工生产线数据多粒度同步采集、工艺感知、加工精度控制技术等研究。研究长链条加工过程的实时数据采集与分析技术,开发面向批量零件加工的产线工艺参数与状态的数据采集系统;研究上下游加工工艺参数的耦合机制分析方法,建立智能产线零件加工精度预测模型;研究制造装备加工精度演变与退化机理,开发智能产线加工设备动态误差自学习建模与在线补偿技术,研制加工产线关键设备精度自愈控制平台。

考核指标:提出面向复杂零件批量加工的基于大数据学习的—14—

工艺控制与建模方法;研发4套以上适应批量零件加工的制造数据同步采集装置;开发1套用于复杂零件批量加工过程数据采集与精度预测系统;开发1套用于智能产线的适应6种以上国内外主流数控系统加工设备的动态误差建模与精度自愈服务平台;研发1套复杂零件加工工艺优化软件系统;在装备制造和汽车零件等2类以上加工行业中验证应用,零件加工次品率减少15%。出版专著1部及以上。

1.13制造系统在线工艺规划与产线重构软件工具(基础前沿类)

研究内容:围绕产品加工、装配等场景的个性化定制、多品种混线制造等柔性生产需求,提出面向工艺变更、场景感知和产线重构的生产系统智能重组方法。研究个性化定制产品的装配工艺自主规划和工序自主编排技术,研究典型离散制造工艺智能组态技术和自学习工艺规划方法,实现工艺在线规划与产线动态重组同步运行;研究制造系统场景在线感知技术,开发基于深度学习的多场融合智能感知和场景特征智能提取系统;研究自适应产品定制化需求的生产系统布局、生产工艺流程及路径规划、底层控制设备动态在线调整与动态重组等技术,实现工艺变更和产线重组时制造系统关键装备的虚拟定义、原地重组。

考核指标:开发产品装配工艺智能生成软件1套,支持定制

—15—

化产品装配工艺自主规划和工序自主编排;研发柔性制造系统工艺过程场景智能感知硬件设备及场景特征提取软件工具1套,系统具有场景特征识别与工件定位识别功能;开发面向产品混线制造的生产线关键装备虚拟定义和功能重组软件工具1套,支持多工序在线协同调度和物料系统动态重组变更;在高端装备制造、航空航天等离散制造业进行应用验证;制定标准不少于6项,出版专著不少于2部。

1.14制造企业主导的制造服务价值网融合技术与方法(基础前沿类)

研究内容:针对我国制造业核心企业服务价值链延伸与协同模式创新不足,以及向价值链高端转移缺少平台支撑的突出问题,围绕产品三包期内外的制造核心企业及其协作企业群业务协同的实际需求,研究“互联网+”环境下基于业务驱动与资源共享的服务生命周期价值链协同模式与优化机理,重构产品服务生命周期价值网络。研究核心企业主导的制造服务生命周期价值网络协同理论、方法与技术,包括服务生命周期价值网络建模、分析、优化和评价技术,面向产品后市场的保内保外业务协同技术,基于故障诊断与质量改进的服务全生命周期闭环质量控制技术,以及基于售后配件多级管理的配件链协同技术等。形成制造服务生命周期价值网协同优化解决方案,研发相关软件构件,实现基于价值

—16—

链协同的制造与服务业务流程融合、信息系统互联互通,为加速我国制造服务生命周期价值链协同与生态化发展提供理论与方法支撑。

考核指标:提出面向服务全生命周期的跨主体/跨流程制造和服务价值链融合模式、技术与方法,突破制造与服务融合的不少于3项价值网融合使能技术,开发支持产品三包期内外服务生命周期的制造服务云平台,形成基于云平台的服务生命周期价值网协同优化解决方案,服务价值链协作企业数累计不少于1000家。成果在复杂装备制造等典型行业得到应用。申请发明专利或取得软件著作权不少于20项;制定国家、行业或核心企业标准不少于2项。

1.15基于第三方平台的多价值链协同技术与方法(基础前沿类)

研究内容:针对制造业传统供应链管理带来的“价值链孤岛”以及产业价值链协同模式创新不足等问题,研究基于第三方云平台及业务驱动的多价值链协同模式与协同机制,包括多制造企业为核心的多价值链协同形态与运行机理。研究多价值链业务协同与优化方法,多价值链企业群业务重构与组织方法,跨企业价值链的多链协同模型,跨企业价值链的多链协同与优化技术等。围绕供应/营销/服务等业务流程,开发面向典型行业的多价值链协

—17—

同与优化构件,研发支持多价值链协同的第三方云服务平台。形成基于第三方平台的多价值链协同解决方案,基于第三方平台实现多制造企业为核心的多价值链业务协同。

考核指标:提出基于第三方平台的多价值链协同模式、方法和技术,突破3~4项多价值链及链间协同优化技术。研发供应/营销/服务等多价值链协同与优化构件,形成支持多价值链协同的第三方云服务平台原型及解决方案,申请发明专利或取得软件著作权不少于20项,制定国家、行业(联盟)或企业标准不少于2项。基于同一平台实现多制造企业为核心的供应、营销或服务多价值链企业群业务协同,包括跨企业价值链的多链业务协同,开展业务协同的协作企业不少于3000家,制造企业为核心上下游协同的价值链不少于3条,跨链业务协同效率提升30%。要求平台实现第三方运营,核心制造企业间、制造企业与平台运营企业间无关联关系。成果在汽车或工程机械等典型行业得到应用。

2.装备/系统与平台

2.1复杂产品建模与仿真系统(共性关键技术类)

研究内容:针对复杂产品在需求、设计、试验、运维等全系统建模与协同仿真方面的实际需求,研究模型驱动的复杂产品多学科全流程协同设计建模、仿真优化方法与标准规范;研究复杂产品全系统统一建模技术、白盒/灰盒/黑盒模型互联集成技术、

—18—

基于模型的混合现实技术、多仿真目标机模型自动划分、协同仿真计算与综合验证技术;基于多领域统一建模语言构建多学科工业知识模型库和重点行业功能模型库,开发基于开放式架构的多学科复杂产品建模与仿真系统,实现模型仿真、混合现实、知识库/模型库等在航空、航天、海洋、医疗工程等重点领域复杂产品全系统综合设计验证与设计优化中的深入应用。

考核指标:突破复杂产品信息物理模型互联集成技术,研发1套基于多领域统一建模的复杂产品建模与仿真系统,实现复杂产品全系统统一建模、基于模型自动划分与部署的多机协同仿真,支持复杂产品全系统仿真和综合验证,针对不少于3个仿真目标机实现仿真模型自动划分与协同仿真计算,行业功能模型库不少于5个,基础模型组件不少于4000个,在不少于2个国家重大工程总体院所、不少于20个工业单位开展应用验证,提升产品设计研制与仿真验证效率不低于30%。申请发明专利或取得著作权不少于25项,制定国家、行业或核心企业相关标准不少于5项。

2.2产品自适应在线设计技术平台研发(共性关键技术类)

研究内容:针对产品设计适应性差、在线交互能力弱、协同响应速度慢等问题,研究环境及制造大数据驱动的产品自适应设计系统架构,研究自适应与在线交互相结合的产品优化设计方法;研究包含设计数据、经验、模型等在内的显性设计知识组织管理

—19—

技术,研究涵盖产品自适应在线设计主要环节的多源异构大数据分析/融合/冲突消解及协同自适应控制等技术;构建产品在线设计、制造、应用与迭代反馈过程的设计知识库、构件库与工具集;开发数据驱动的产品自适应在线设计制造集成技术平台并开展应用。

考核指标:提出大数据驱动的产品自适应在线设计集成方法、模型与系统架构,突破自适应决策与控制等关键技术不少于5项,研发产品自适应在线设计集成工具和软件构件不少于20项,构建不少于2个行业的产品自适应在线设计知识库,开发不少于2套产品自适应在线设计技术平台,建立产品自适应在线设计技术验证系统,形成产品自适应在线设计集成解决方案,覆盖需求决策、设计探索、方案设计、参数优化、制造服务、故障预测等完整设计过程,在不少于2个行业开展应用。申请发明专利或取得著作权不少于25项,制定国家、行业或核心企业相关标准不少于2项。

2.3集团企业研发设计资源集成共享平台研发(共性关键技术类)

研究内容:针对集团制造企业及所属企业/工厂之间研发设计资源分散孤立、共享程度不高、协同效率偏低等问题,围绕产品设计/制造/服务全生命周期对设计资源共享和集成管理的需求,开展集团企业设计资源共享与集成模式研究。研究集团企业研发

—20—

2018年智能制造行业发展趋势分析报告

目录 一、工业互联网是制造业升级的核心 (2) 1、工业互联网平台是工业全要素链接的枢纽 (2) 2、政策春风拂面,市场前景可期 (4) 二、平台体系是工业互联网的关键 (6) 1、不同分类下,国内外工业互联网平台一览 (6) 2、三类平台的比较分析及未来发展趋势 (9) 3、他山之石:GEPredix——全球工业互联网平台的典型11 三、工业软件应用构成工业互联网平台的重要资源 (15) 1、工业软件丰富程度决定工业平台整体竞争力 (15) 2、工业互联网平台助力软件企业打开发展空间 (20) 四、投资标的 (21) 五.风险提示 (26) 一、工业互联网是制造业升级的核心 1、工业互联网平台是工业全要素链接的枢纽 工业互联网是制造业数字化、网络化、智能化的重要载体,也是全球新一轮产业竞争的制高点。工业互联网是新一代信息通信技术与现代工业技术深度融合的产物,通过构建链接机器、物料、人、信息系统的基础网络,实现工业数据的全面感知、动态传输、实时分析、形成科学决策与智能控制,提供制造资源配置效率,正成为领军企业竞争的新赛道、全球布局的新方向、制造大国竞争的新焦点。

工业互联网平台是工业全要素链接的枢纽,是工业资源配置的核心。工业互联网构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在链接、弹性供给和高效配置。工业互联网平台可以分为4个部分:1>边缘层:通过协议转化和边缘计算形成有效的数据采集体系,从而将物理空间的隐形数据在网络空间显性化。2>IaaS层:将基础的计算网络存储资源虚拟化,实现基础设施资源池化;3>工业PaaS层:工业操作系统,向下对接海量工业装备、仪器、产品,向上支撑工业智能化应用的快速开发和部署;4>工业APP:通过调用和封装工业PaaS平台上的开放工具,形成面向行业和场景的应用。对于工业互联网平台来说,数据采集、工业PaaS、工业APP是核心三大要素。 1>数据采集是基础。工业大数据有三类:生产经营相关业务数据、设备物联数据、外部互联网数据。其中,设备物联数据采集受制于传感器部署不足,装备智能化水平低,数据采集颗粒度不足,无法支持上层应用。随着兼容多种协议的技术产品构建,此类问题将得到改善。同时通过部署边缘计算模块,实现数据在生产现场的轻量级运算和实时分析。可以缓解数据的云端计算压力。 2>工业PaaS是关键。现有的通用PaaS平台尚不能满足工业级应用需要。未来通过对通用PaaS的深度改造,构造满足工业实时、可靠、安全需求的云平台,将大量工业技术原理、行业知识、基础模型模块化,并封装成为可重复使用的API,降低应用

最新智能制造装备专项重点领域指南

智能制造装备专项重点领域指南 一、离散型智能制造成套装备 (一)基于机器人的汽车焊接自动化生产线 1、智能功能与技术参数 自动根据订单安排生产计划,实现多种车型任意顺序混流生产,生产过程控制实现程序化、数字化、远程遥控化,生产中自动车型识别、焊装设备运行状况智能故障诊断及报警。 年生产纲领20万辆以上,实现3个以上车身产品平台、6种以上车型的柔性生产;白车身柔性主拼焊装台可快速切换6种以上车型、各种车型切换时间8秒;实现多车型共线,工位间传输时间5~6秒。 2、关键智能部件 伺服点焊焊接机器人、弧焊机器人、搬运机器人,机器人智能视觉识别系统,机器人智能协同系统,基于工业总线技术的可编程控制系统,智能切换定位装置(重复精度0.05mm),闭环伺服位置传感装置(重复精度0.1mm),白车身实时在线检测装置。 (二)煤炭综采成套装备智能系统 1、智能功能与技术参数 实现各种设备自动协调运行,针对复杂多变的地质条件及设备工况变化调整自身及设备之间的配合运行参数,实现煤炭开采的自动化和智能化。采煤机总装

机功率至2200kW,截割功率900kW。液压支架移架速度<8s/架,寿命>60000次工作循环,自动耦合响应时间<3s。智能化传输网络的速度达到100Mbps,单点故障时网络自愈时间小于20ms;无线传感网传输速率达到250Kbps。网络传输延迟小于1ms。刮板输送机装机功率达到2500kW以上,输送能力3500t/h。 2、关键智能部件 采煤机智能控制系统、支架围岩智能耦合电液控制系统、支架与采煤机、刮板输送机等设备的协调决策机制与系统、刮板运输机智能控制系统、软启动及其控制装置。 (三)高效织造智能生产线 1、智能功能与技术参数 编织工艺参数控制实现机电一体化、数字化、智能化,实现工作参数的自动调节和工艺数据的实时采集、传递、设备故障诊断和维护,具有断纱自动停止功能。无缝衣裤最高400条/h,原料:锦纶、氨纶、棉、麻,经编机速度600 rpm,脱圈板半径:0.05-2mm,幅宽:44”-140”。 2、关键智能部件 多速、多段电子送经、卷曲系统,激光自停装置,多维精协运动控制系统,嵌入式花型设计软件,新型压电陶瓷贾卡提花装置。 (四)数字化车间及智能物流系统 1、智能功能与技术参数 产品流向智能控制,产品自动识别,与生产管理系统接口,与设备智能接口,高效灵活的智能设备调度,库存智能优化管理,标准化、模块化、具有智能识别

国家智能制造标准体系建设指南【模板】

国家智能制造标准体系建设指南 (2018年版) 2018年7月

目录 前言 (1) 一、总体要求 (2) (一)指导思想 (2) (二)基本原则 (2) (三)建设目标 (3) 二、建设思路 (4) (一)智能制造系统架构 (4) (二)智能制造标准体系结构 (8) (三)智能制造标准体系框架 (9) 三、建设内容 (11) (一)基础共性标准 (11) (二)关键技术标准 (14) (三)行业应用标准 (30) 四、组织实施 (32) 附件1:智能制造相关名词术语和缩略语 附件2:智能制造系统架构映射及示例解析 附件3:已发布、制定中的智能制造基础共性标准和关键技术标准

前言 制造业是国民经济的主体,是立国之本、兴国之器、强国之基。智能制造是落实我国制造强国战略的重要举措,加快推进智能制造,是加速我国工业化和信息化深度融合、推动制造业供给侧结构性改革的重要着力点,对重塑我国制造业竞争新优势具有重要意义,“智能制造、标准先行”,标准化工作是实现智能制造的重要技术基础。 为指导当前和未来一段时间智能制造标准化工作,解决标准缺失、滞后、交叉重复等问题,落实“加快制造强国建设”,工业和信息化部、国家标准化管理委员会在2015年共同组织制定了《国家智能制造标准体系建设指南(2015年版)》并建立动态更新机制。 按照标准体系动态更新机制,扎实构建满足产业发展需求、先进适用的智能制造标准体系,推动装备质量水平的整体提升,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2018年版)》。

一、总体要求 (一)指导思想 进一步贯彻落实《智能制造发展规划(2016-2020年)》(工信部联规〔2016〕349号)和《装备制造业标准化和质量提升规划》(国质检标联〔2016〕396号)的工作部署,充分发挥标准在推进智能制造产业健康有序发展中的指导、规范、引领和保障作用。针对智能制造标准跨行业、跨领域、跨专业的特点,立足国内需求,兼顾国际体系,建立涵盖基础共性、关键技术和行业应用等三类标准的国家智能制造标准体系。加强标准的统筹规划与宏观指导,加快创新技术成果向标准转化,强化标准的实施与监督,深化智能制造标准国际交流与合作,提升标准对制造业的整体支撑作用,为产业高质量发展保驾护航。 (二)基本原则 按照《国家智能制造标准体系建设指南(2015年版)》中提出的“统筹规划,分类施策,跨界融合,急用先行,立足国情,开放合作”原则,进一步完善智能制造标准体系,全面开展基础共性标准、关键技术标准、行业应用标准研究,加快标准制(修)订,在制造业各个领域全面推广。同时,加强标准的创新发展与国际化,积极参与国际标准化组织活动,

2018年智能制造行业分析报告

2018年智能制造行业 分析报告 2018年6月

目录 一、工业互联网是制造业升级的核心 (2) 1、工业互联网平台是工业全要素链接的枢纽 (2) 2、政策春风拂面,市场前景可期 (4) 二、平台体系是工业互联网的关键 (6) 1、不同分类下,国内外工业互联网平台一览 (6) 2、三类平台的比较分析及未来发展趋势 (10) 3、他山之石:GEPredix——全球工业互联网平台的典型 (12) 三、工业软件应用构成工业互联网平台的重要资源 (17) 1、工业软件丰富程度决定工业平台整体竞争力 (17) 2、工业互联网平台助力软件企业打开发展空间 (22) 四、投资标的 (23) 五.风险提示 (28) 一、工业互联网是制造业升级的核心 1、工业互联网平台是工业全要素链接的枢纽 工业互联网是制造业数字化、网络化、智能化的重要载体,也是全球新一轮产业竞争的制高点。工业互联网是新一代信息通信技术与现代工业技术深度融合的产物,通过构建链接机器、物料、人、信息系统的基础网络,实现工业数据的全面感知、动态传输、实时分析、形成科学决策与智能控制,提供制造资源配置效率,正成为领军企业竞争的新赛道、

全球布局的新方向、制造大国竞争的新焦点。 工业互联网平台是工业全要素链接的枢纽,是工业资源配置的核心。工业互联网构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在链接、弹性供给和高效配置。工业互联网平台可以分为4个部分:1>边缘层:通过协议转化和边缘计算形成有效的数据采集体系,从而将物理空间的隐形数据在网络空间显性化。2>IaaS层:将基础的计算网络存储资源虚拟化,实现基础设施资源池化;3>工业PaaS层:工业操作系统,向下对接海量工业装备、仪器、产品,向上支撑工业智能化应用的快速开发和部署;4>工业APP:通过调用和封装工业PaaS平台上的开放工具,形成面向行业和场景的应用。对于工业互联网平台来说,数据采集、工业PaaS、工业APP是核心三大要素。 1>数据采集是基础。工业大数据有三类:生产经营相关业务数据、设备物联数据、外部互联网数据。其中,设备物联数据采集受制于传感器部署不足,装备智能化水平低,数据采集颗粒度不足,无法支持上层应用。随着兼容多种协议的技术产品构建,此类问题将得到改善。同时通过部署边缘计算模块,实现数据在生产现场的轻量级运算和实时分析。可以缓解数据的云端计算压力。 2>工业PaaS是关键。现有的通用PaaS平台尚不能满足工业级应用需要。未来通过对通用PaaS的深度改造,构

国家智能制造标准体系建设指南(2015年版)

国家智能制造标准体系建设指南 (2015年版) 2015年12月

目录 一、总体要求 (1) (一)指导思想 (1) (二)基本原则 (1) (三)建设目标 (2) 二、建设思路 (4) (一)智能制造系统架构 (4) (二)智能制造标准体系结构图 (11) (三)智能制造标准体系框架 (13) 三、建设内容 (15) (一)基础共性标准 (15) (二)关键技术标准 (18) (三)重点行业标准 (28) 四、组织实施 (30) 附件1:智能制造相关名词术语和缩略语 附件2:已发布、制定中的智能制造基础共性标准和关键技术标准

加快推进智能制造,是实施《中国制造2025》的主攻方向,是落实工业化和信息化深度融合、打造制造强国的战略举措,更是我国制造业紧跟世界发展趋势、实现转型升级的关键所在。当前,“智能制造、标准先行”,为解决标准缺失、滞后以及交叉重复等问题,指导当前和未来一段时间内智能制造标准化工作,根据《中国制造2025》的战略部署,工业和信息化部、国家标准化管理委员会共同组织制定了《国家智能制造标准体系建设指南(2015年版)》。 一、总体要求 (一)指导思想 充分发挥标准在推进智能制造发展中的基础性和引导 性作用,建立政府主导制定与市场自主制定的标准协同发展、协调配套的新型标准体系。聚焦智能制造跨行业、跨领域的融合创新领域,建成覆盖5大类基础共性标准、5大类关键技术标准及10大领域重点行业应用标准的国家智能制造标 准体系。加强标准的统筹规划与宏观指导,加强标准的实施与监督,加强标准的创新发展与国际化,建立动态完善机制,逐步形成智能制造强有力的基础支撑。

智能制造项目申报指南

第7章智能制造项目申报指南 7.1 两化融合管理体系贯标 我们国家提出的两化深度融合战略,有丰富的内容、前进的方向,也指明了实现的路径、实现的方法,符合在企业在信息环境下融合创新的发展要求。企业可以通过系统地建立、实施、保持和改进两化融合过程管理机制的通用方法,覆盖企业全局,规定相关过程,持续受控,以形成新型能力,获取可持续竞争优势、实现公司战略目标。贯标不能流于形式,必须本质贯标,力求取得实效。 图7-1为两化融合管理体系贯标流程: 图7-1 两化融合管理体系贯标流程 7.1.1体系建立阶段 1.项目组建立和培训: ?自行或引进贯标咨询服务机构,成立项目组; ?内部或外部专家对两化融合的基本概念、发展历程、重要意义做解读;

多我国两化融合的现状和存在的问题进行解读;管理标准的现状与未 来的发展趋势解读。 ?对两化融合的九项基本原则、基本框架、应用与推广进行阐述; ?对两化融合管理体系的贯标条款进行详细解读; ?对良好融合管理体系的贯标实施要点进行解读; ?搜集相关案例进行分享。 2.调研诊断和文件编写: ?通过企业调研,进行文件的编写发布 ?两化融合管理体系文件目录,图7-2为体系文件参考清单: 图7-2 两化融合管理体系文件清单

3.文件发布 依照文件管理程序进行两化融合管理体系文件的发布。 7.1.2体系实施阶段 体系试运行,最高管理者主持管理评审,确保体系的适宜性、充分性和有效性,包括对两化融合管理体系改进的机会和变更的需求,包括两化融合方针和目标; 管理评审的流程:制定两化融合管理评审计划-下达管理评审的通知-准备管理评审资料-实施管理评审-编写管理评审报告-报告分发实施。整个流程包含评审输入信息:审核结果、内部反馈、符合性、可能影响两化融合管理体系的变更、改进的建议,也包含评审输出:两化融合管理体系其过程有效性的改进、资源需求等。 7.1.3体系评定阶段 图6-3为体系评定总设计流程、图7-3、7-4分别为体系评定总体设计示意、评定流程: 图7-3 体系评定总体设计

2018年西门子杯中国智能制造挑战赛

2018年“西门子杯”中国智能制造挑战赛(原全国大学生工业自动化挑战赛)连续过程设计开发赛项初赛对象工艺说明 2018年“西门子杯”中国智能制造挑战赛 (原全国大学生工业自动化挑战赛) 连续过程设计开发赛项初赛 对象工艺说明 2018年反应器对象增加了循环物料的回收工艺,特针对这部分工艺做进一步说明: 1、闪蒸罐罐顶部的阀门PV1102为抽真空阀,它的作用是在闪蒸罐未闪蒸前,提前通过真空泵P104与此阀门,将闪蒸罐内的压力降低到大气压下,如20-40kpa,然后就可以关闭。 2、闪蒸罐顶部额阀门PV1101是用来回收闪蒸产生的A物料,当闪蒸罐开始闪蒸时,通过调节P104与此阀门,将闪蒸产生的以A物料为主的气相引入到冷凝器(此时冷凝器的冷却水应该打开),然后变成液相进入到冷凝罐,待冷凝罐建立液位后,通过循环泵打到混合罐内。 3、因为PV1102与PV1101的作用与投用时间完全不同,因此不要同时打开这两个阀门。 4、整个系统有一定的设计工艺与稳态要求,开车时,切记阀门开度大起大落,如一开始就把所有阀门开到最大,应当缓缓调节,慢慢提高负荷。 5、综上,这部分的开车流程建议如下: (1)在开车开始阶段,提前通过真空泵P104与阀门PV1102,将闪蒸罐内的压力降低到大气压下,如20-40kpa,然后就可以关闭。 (2)反应器进料,慢慢反应,温度上升,上升到一定温度(或反应器液位到一定高度),将反应器底部物料打入闪蒸罐,此时,可能还未闪蒸,随着温度的升高,开始闪蒸(表现为闪蒸罐的压力开始增大)。 (3)当闪蒸罐开始闪蒸时,通过调节P104与阀门PV1101,将闪蒸产生的以A物料为主的气相引入到冷凝器(此时冷凝器的冷却水应该打开),然后变成液相进入到冷凝罐,待冷凝罐建立液位后,通过循环泵打到混合罐内。(4)一旦出现冷凝罐压力太大(往往是因为进入的物料没有冷凝或者冷凝不够,呈现气相),可以通过打开冷凝罐排气阀排气,回到常压后,再关闭。

2018智能制造专项指南

附件1 2018年智能制造综合标准化与新模式 应用项目申报要求 为贯彻落实《中国制造2025》,深入实施智能制造工程,推动制造业智能升级,工业和信息化部与财政部决定联合开展2018年智能制造综合标准化与新模式应用项目工作,有关事项要求如下: 一、主要支持内容 智能制造综合标准化与新模式应用项目将围绕2类项目:一是智能制造综合标准化试验验证类项目;二是智能制造新模式应用类项目。 二、激励约束机制 建立促进企业创新的激励约束机制,通过明确项目实施目标,发挥财政资金引导作用,激发企业内生动力,促进产业提质增效、节能降耗、优化升级。纳入智能制造综合标准化与新模式

应用的项目,先预拨一部分财政补助资金,如期实现目标并通过项目验收的,将给予后续财政资金奖励;未如期完成项目验收的,将收回已补助资金。对于项目承担单位擅自调整实施内容或项目发生重大安全事故、环境污染等问题的,除将收回已补助资金外,还将进行业内通报等处理。 三、项目组织方式 委托第三方机构组织申报项目评审,择优遴选。所有申报项目需经项目建设所在地工业和信息化主管部门出具推荐意见,中央企业申报项目需额外出具推荐意见。 四、项目申报条件 (一)申报项目的单位应在中华人民共和国境内注册、具备独立法人资格,运营和财务状况良好。 (二)智能制造新模式应用项目须由用户、系统集成商、软件开发商、核心智能制造装备供应商等组成的联合体联合申报。联合体成员间须共同签订合作协议书,明确联合体组织方式和运营机制、成员单位具体权责、任务分工以及长期发展计划等。联合体的牵头单位作为项目的申报单位。 (三)每个申报单位只允许在智能制造综合标准化试验验证项目或智能制造新模式应用项目中牵头申报一个项目。已承担过项目但逾期未验收的,项目牵头单位不得申报2018年智能制造综合标准化与新模式应用项目。

智能制造工程实施指南设计(2016-2020)

智能制造工程实施指南 (2016-2020) 为贯彻落实《中国制造2025》,组织实施好智能制造工程(以下简称“工程”),特编制本指南。 一背景 自国际金融危机发生以来,随着新一代信息通信技术的快速发展及与先进制造技术不断深度融合,全球兴起了以智能制造为代表的新一轮产业变革,数字化、网络化、智能化日益成为未来制造业发展的主要趋势。世界主要工业发达国家加紧谋篇布局,纷纷推出新的重振制造业国家战略,支持和推动智能制造发展,以重塑制造业竞争新优势。为加速我国制造业转型升级、提质增效,国务院发布实施《中国制造2025》,并将智能制造作为主攻方向,加速培育我国新的经济增长动力,抢占新一轮产业竞争制高点。 当前,我国制造业尚处于机械化、电气化、自动化、信息化并存,不同地区、不同行业、不同企业发展不平衡的阶段。发展智能制造面临关键技术装备受制于人、智能制造标准/软件/网络/信息安全基础薄弱、智能制造新模式推广尚未起步、智能化集成应用缓慢等突出问题。

相对工业发达国家,推动我国制造业智能转型,环境更为复杂,形势更为严峻,任务更加艰巨。 《中国制造2025》明确将智能制造工程作为政府引导推动的五个工程之一,目的是更好地整合全社会资源,统筹兼顾智能制造各个关键环节,突破发展瓶颈,系统推进技术与装备开发、标准制定、新模式培育和集成应用。加快组织实施智能制造工程,对于推动《中国制造2025》十大重点领域率先突破,促进传统制造业转型升级,实现制造强国目标具有重大意义。 二总体要求 加快贯彻落实《中国制造2025》总体战略部署,牢固树立创新、协调、绿色、开放、共享的新发展理念,以构建新型制造体系为目标,以推动制造业数字化、网络化、智能化发展为主线,坚持“统筹规划、分类施策、需求牵引、问题导向、企业主体、协同创新、远近结合、重点突破”的原则,将制造业智能转型作为必须长期坚持的战略任务,分步骤持续推进。“十三五”期间同步实施数字化制造普及、智能化制造示范,重点聚焦“五三五十”重点任务,即:攻克五类关键技术装备,夯实智能制造三大基础,培育推广五种智能制造新模式,推进十大重

2018年西门子杯中国智能制造挑战赛

2018年“西门子杯”中国智能制造挑战赛 (原全国大学生工业自动化挑战赛) 连续过程设计开发赛项决赛竞赛细则 一、总则 1.以公平、公正、公开为原则,以参赛队现场实施效果为考核标准。 2.全国竞赛组委会以甲方的身份发布工程项目招标需求,各参赛队以乙方的身份,根据甲方提出的 要求,进行项目方案设计,并以工程承包商的身份进入比赛现场实施。全国竞赛组委会将组织专家就项目方案设计、系统开发和现场实施等三个方面,对参赛队的系统设计方案和实施效果进行综合考察。 3.项目方案设计内容: (1)系统分析,包括需求分析、对象特性分析、安全分析等。 (2)控制系统设计,包括开车顺序、控制回路、控制PI&D图、控制算法、安全联锁、人机界面等。 (3)控制系统组成,包括控制器、IO卡件、通讯网络等。 (4)系统实施说明,包括系统连接、系统安装、系统组态、系统整定、系统调试、系统投运等。 (5)经济效益分析,包括产能、耗能、安全、环保等。 4.项目方案实施内容: (1)在SIMATIC S7-400 PLC上,完成硬件组态和控制程序开发;在SIMATIC WINCC上,完成监控画面组态与开发;建立PLC和WINCC之间的通讯连接。 (2)系统调试,包括控制器参数整定、故障排除、系统投运等。 (3)系统验收,包括项目方案设计书、现场实施报告,接受甲方对系统性能的评估。 5.全国竞赛组委会和决赛组委会只保证比赛设备正常可用,比赛现场不再对硬件组态、程序下载等 基础问题作技术支持。参赛队需要自行分析解决问题,全国竞赛组委会将此作为比赛考核内容之一。

6.参赛队需要自行携带电脑,作为系统的上位机,并自己负责设备的连接。全国竞赛组委会和决赛 组委会不再提供备用机。 7.决赛环节由“现场实施”与“方案答辩”两部分组成。 8.正式比赛期间,指导教师不得进入比赛现场。如有不听规劝者,将取消其所带领参赛队的比赛资 格。原则上不允许以任何原因离开赛场,如有特殊原因,需要边裁或巡检陪同。 9.在现场比赛过程中,主裁宣读完注意事项之后十五分钟内,指导教师可以通过手机通话的方式(只 能通话,不能视频、拍照)与参赛队员进行远程交流和指导,十五分钟后,所有参赛队员关闭手机。 二、决赛规则 1.各参赛队针对比赛题目自主构思控制方案,完成系统设计、控制算法及程序开发,并于指定日期 和地点参加决赛的现场比赛。 2.决赛环节由“现场实施”与“方案答辩”两部分组成(高职组只有上机,没有答辩,满分80分)。 分值分配如下: 3.“现场实施”环节包括:接线、系统实现(含WINCC画面组态与方案的调试实施)等,其中接线 分值5分、WINCC画面组态分值5分、方案调试实施分值70分(第一阶段30分,第二阶段40分)。 4.决赛报到的参赛队需在赛前参与抽签,以决定现场比赛的组别和顺序。 5.参赛队员须经大赛志愿者检录后进入赛场。如发现有冒名顶替者,将取消该参赛队的比赛资格。 【现场实施】 6.参赛队员全部入场后,主裁宣读比赛注意事项,并分发具体任务要求(赛题与竞赛规则)。主裁宣 读比赛注意事项期间,参赛队员不得进行任何操作。 7.“现场实施”环节总的时间为4小时(240分钟)。 8.主裁宣读完注意事项之后十五分钟内,参赛队员可以通过手机寻求场外指导教师的帮助,十五分 钟后,统一关闭手机。 9.接来下是接线环节,该环节总共40分钟,要求将PCS 7远程IO中的AI模块与SMPT-1000的仪 表测量输出模块进行接线,并确保通讯正常(至少确保一路TI1101能够接入到PCS 7远程IO中)。

智能制造项目申报

附件1 2017年智能制造综合标准化与新模式 应用项目申报要求 为贯彻落实《中国制造2025》,深入实施智能制造工程,助推制造业转型升级、提质增效,工业与信息化部、财政部决定联合开展2017年智能制造综合标准化与新模式应用项目工作,有关事项要求如下: 一、项目支持主要内容 智能制造综合标准化与新模式应用项目将围绕2类项目:一就是智能制造综合标准化试验验证类项目;二就是智能制造新模式应用类项目。2017年智能制造综合标准化与新模式项目指南详见附1。 二、激励约束机制 建立促进企业创新的激励约束机制,通过明确项目实施目标,发挥财政资金引导作用,激发企业内生动力,促进产业提质增效、节能降耗、转型升级。纳入智能制造专项的项目,先预拨一部分财政补助资金,如期实现目标并通过竣工验收的,将给予后续财政资金奖励;未如期完成竣工验收的,将收回已补助的资金。对于项目承担单位擅自调整实施内容或项目发生重大安全事故、环境污染等问题的,除将收回已补助资金外,还将进行业内通报等处理。 三、项目组织方式

委托第三方机构组织申报项目评审,择优遴选。所有申报项目需经项目建设所在地工业与信息化主管部门出具推荐意见。 四、项目申报条件 (一)申报项目的单位应在中华人民共与国境内注册、具备独立法人资格,运营与财务状况良好。 (二)智能制造新模式应用项目须由用户、系统集成商、软件开发商、核心智能制造装备供应商等组成的联合体联合申报。联合体成员单位间须签订合作协议书,明确联合体组织方式与运营机制、成员单位具体权责、长期发展计划以及本项目的任务分工等。联合体牵头单位作为项目申报单位。 (三)每个申报单位只允许在智能制造综合标准化试验验证项目或智能制造新模式应用项目中牵头申报一个项目。 (四)申报项目须能够在2019年底前完成竣工验收。智能制造综合标准化试验验证项目应具备标准草案初稿等标准化基础;智能制造新模式应用项目须为已开工在建项目。 (五)申报项目应具有知识产权归属明确的核心技术,项目的技术参数与功能有重大突破,技术指标达到国内领先或国际先进水平,并在竣工验收前完成有关主管部门对知识产权申请的正式受理。 (六)申报项目应具有需求迫切、经济效益显著,目标产品具备技术先进、市场潜力大、示范带动作用强等特征。 五、申报程序与要求 (一)申报单位根据指南与项目申报书(详见附1、2)内容要求,填写项目申报书一式10份(附电子版);附件请按规定顺

2018年智能制造试点示范申报内容具体要求

附件3 2018智能制造试点示范申报内容具体要求 模式一:离散型智能制造试点示范 1. 系统模型建立与运行情况 请分别提供车间/工厂总体设计模型、工程设计模型、工艺流程及布局模型的架构及说明;提供上述系统模型模拟仿真的情况。 2. 先进设计技术应用和产品数据管理系统(PDM)建设情况 请描述数字化三维设计与工艺技术的应用情况,以及通过物理检测与试验进行验证和优化的情况;提供产品数据管理系统(PDM)的整体架构图,描述其主要功能。 3. 关键技术装备应用情况 请提供高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备的应用及互联互通情况。 4. 生产过程数据采集与分析系统建设情况 请提供生产过程数据采集与分析系统的整体架构及功能描述。 5. 制造执行系统(MES)与企业资源计划系统(ERP)建设情况 请提供制造执行系统(MES)的架构,描述其主要子系统的

功能;提供企业资源计划系统(ERP)架构,并描述其主要子系统的功能。 6. 工厂内部网络架构建设及信息集成情况 请提供工厂内部工业通信网络结构图,并对架构进行说明;提供实现系统、装备、零部件以及人员之间信息互联互通和有效集成的方案,生产过程数据采集与分析系统与制造执行系统(MES)实现信息集成的技术方案,以及制造执行系统(MES)与企业资源计划系统(ERP)实现信息集成的技术方案;提供全生命周期产品信息统一平台的架构,说明其建设和运行情况。 7. 信息安全保障情况 请描述试点示范的信息安全管理制度、技术防护体系和功能安全保护系统的建设情况。 模式二:流程型智能制造试点示范 1. 系统模型建立与运行情况 请分别提供工厂总体设计模型、工程设计模型、工艺流程及布局模型的架构及说明,并提供上述系统模型模拟仿真的情况。 2. 数据采集与监控系统建设情况 请提供数据采集与监控系统架构图、系统建设和运行情况;描述关键现场装备的智能功能。 3. 先进控制系统建设情况 请提供先进控制系统架构图、系统建设情况;描述关键环节

2020年智能制造行业分析报告

2020年智能制造行业分析报告 2020年4月

目录 1. 智能制造推动新旧动能转换 (5) 1.1. 行业机遇带来良好的发展趋势 (5) 1.2. 智能制造行业下游拉动需求增长 (6) 1.3. 机器人市场快速增长,科技促进行业智能化突破 (7) 2. 智能制造发力行业应用 (9) 2.1. 中国汽车市场为智能制造带来增长空间 (9) 2.2. 汽车行业电子化程度提升,带动智能制造渗透率提升 (10) 2.3. 科技突破将带动汽车电子在核心应用领域整体提升 (12) 2.4. 医疗健康市场发展迅速,未来智能化改造具备一定空间 (13) 2.5. 新能源电池产能扩张,技术升级带动智能化改造需求 (14) 3. 智能制造的核心竞争力在于技术 (16) 3.1. 核心技术研发筑就行业壁垒 (16) 3.2. 行业公司研发投入较大,技术储备充足 (16) 3.3. 行业公司专注汽车领域 (19) 3.4. 海外公司具备技术和先发优势 (20) 3.5. 国内公司纷纷走向国际化 (22) 3.6. 国内公司与头部客户深度绑定 (23)

1. 智能制造推动新旧动能转换 1.1. 行业机遇带来良好的发展趋势 人口红利消退助推经济结构转型升级,智能制造成为新旧动能转换的必由之路。自 改革开放以来,我国制造业凭借人口红利而高速发展,但与人口红利相伴随的是劳 动密集、资源消耗大、自主创新能力低、信息化智能化水平不高等特征。近年来, 我国人口老龄化速度明显加快,人口红利逐步消退,劳动力成本持续上涨。根据国 家统计局数据,中国65 岁以上老年人口已经从1990 年的6300 万迅速增长到2018 年的1.67 亿,占总人口比例的11.94%。我国劳动力单位成本也不断上升,我国制 造业职工平均工资从2008 年的24404 元增长到2018 年的72088 元。在人口红利 消退、劳动力成本快速上升的情形下,通过发展智能制造装备行业,实现机器换人 能有效节约劳动力成本,提升生产效率,是经济结构转型、新旧动能转换的必由之 路。 图1:1990-2018 年中国65 岁及以上人口数及比重图2:2008-2018 年中国制造业职工平均工资65岁及以上人口数(万人)65岁及以上人口比重(%)制造业职工平均工资(元)增幅(%) 18,000 16,000 14,000 12,000 10,000 8,000 12% 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 22% 20% 18% 16% 14% 12% 10% 8% 11% 10% 9% 8% 7% 6,000 6% 4,000 5% 6% 数据来源:国家统计局,市场部数据来源:国家统计局,市场部 近年来国家产业政策的不断出台,有力支持智能制造装备行业发展。为了实现制造 强国的战略目标,智能制造工程作为五大工程之一,成为国家全力打造制造强国的 重要抓手。2015 年5 月,国务院发布的《中国制造2025》在主要目标中明确提出: “十三五”期间通过数字化制造的普及,智能化制造的试点示范,推动传统制造业 重点领域基本实现数字化制造,有条件、有基础的重点产业全面启动并逐步实现智 能转型;“十四五”期间加大智能制造实施力度,关键技术装备、智能制造标准/工 业互联网/信息安全、核心软件支撑能力显著增强,构建新型制造体系,重点产业逐 步实现智能转型。

2018年智能制造试点示范项目要素条件

附件1 2018年智能制造试点示范项目要素条件 根据《智能制造发展规划(2016-2020年)》《智能制造工程实施指南(2016-2020年)》的要求,重点围绕五种智能制造模式,鼓励新技术集成应用,开展智能制造试点示范。为做好项目遴选工作,特制订本要素条件。 一、智能制造模式要素条件 (一)离散型智能制造 1.车间/工厂的总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现规划、生产、运营全流程数字化管理。 2.应用数字化三维设计与工艺技术进行产品、工艺设计与仿真,并通过物理检测与试验进行验证与优化。建立产品数据管理系统(PDM),实现产品设计、工艺数据的集成管理。 3.制造装备数控化率超过70%,并实现高档数控机床与工业机器人、智能传感与控制装备、智能检测与装配装备、智能物流与仓储装备等关键技术装备之间的信息互联互通与集成。 4.建立生产过程数据采集和分析系统,实现生产进度、

现场操作、质量检验、设备状态、物料传送等生产现场数据自动上传,并实现可视化管理。 5.建立车间制造执行系统(MES),实现计划、调度、质量、设备、生产、能效等管理功能。建立企业资源计划系统(ERP),实现供应链、物流、成本等企业经营管理功能。 6.建立工厂内部通信网络架构,实现设计、工艺、制造、检验、物流等制造过程各环节之间,以及制造过程与制造执行系统(MES)和企业资源计划系统(ERP)的信息互联互通。 7.建有工业信息安全管理制度和技术防护体系,具备网络防护、应急响应等信息安全保障能力。建有功能安全保护系统,采用全生命周期方法有效避免系统失效。 通过持续改进,实现企业设计、工艺、制造、管理、物流等环节的产品全生命周期闭环动态优化,推进企业数字化设计、装备智能化升级、工艺流程优化、精益生产、可视化管理、质量控制与追溯、智能物流等方面的快速提升。 (二)流程型智能制造 1.工厂总体设计、工艺流程及布局均已建立数字化模型,并进行模拟仿真,实现生产流程数据可视化和生产工艺优化。 2.实现对物流、能流、物性、资产的全流程监控,建立数据采集和监控系统,生产工艺数据自动数采率达到90%

智能制造项目申请报告

智能制造项目申请报告

智能制造项目申请报告目录 第一章项目基本情况 第二章项目建设必要性分析第三章项目市场研究 第四章产品规划分析 第五章项目选址分析 第六章项目土建工程 第七章工艺可行性 第八章环境影响概况 第九章项目安全规范管理第十章项目风险评价 第十一章节能说明 第十二章实施进度 第十三章投资计划 第十四章经济效益可行性 第十五章招标方案 第十六章项目综合评估

第一章项目基本情况 一、项目承办单位基本情况 (一)公司名称 xxx科技公司 (二)公司简介 公司满怀信心,发扬“正直、诚信、务实、创新”的企业精神和“追 求卓越,回报社会” 的企业宗旨,以优良的产品、可靠的质量、一流的服 务为客户提供更多更好的优质产品。本公司秉承“顾客至上,锐意进取” 的经营理念,坚持“客户第一”的原则为广大客户提供优质的服务。公司 坚持“责任+爱心”的服务理念,将诚信经营、诚信服务作为企业立世之本,在服务社会、方便大众中赢得信誉、赢得市场。“满足社会和业主的需要,是我们不懈的追求”的企业观念,面对经济发展步入快车道的良好机遇, 正以高昂的热情投身于建设宏伟大业。 公司实行董事会领导下的总经理负责制,推行现代企业制度,建立了 科学灵活的经营机制,完善了行之有效的管理制度。项目承办单位组织机 构健全、管理完善,遵循社会主义市场经济运行机制,严格按照《中华人 民共和国公司法》依法独立核算、自主开展生产经营活动;为了顺应国际 化经济发展的趋势,项目承办单位全面建立和实施计算机信息网络系统, 建立起从产品开发、设计、生产、销售、核算、库存到售后服务的物流电

子网络管理系统,使项目承办单位与全国各销售区域形成信息互通,有效 提高工作效率,及时反馈市场信息,为项目承办单位的战略决策提供有利 的支撑。公司通过了GB/ISO9001-2008质量体系、GB/24001-2004环境管理体系、GB/T28001-2011职业健康安全管理体系和信息安全管理体系认证, 并获得CCIA信息系统业务安全服务资质证书以及计算机信息系统集成三级 资质。 经过多年发展,公司已经形成一个成熟的核心管理团队,团队具有丰 富的从业经验,对于整个行业的发展、企业的定位都有着较深刻的认识, 形成了科学合理的公司发展战略和经营理念,有利于公司在市场竞争中赢 得主动权。为了确保研发团队的稳定性,提升技术创新能力,公司在研发 投入、技术人员激励等方面实施了多项行之有效的措施。公司自成立以来,一直奉行“诚信创新、科学高效、持续改进、顾客满意”的质量方针,将 产品的质量控制贯穿研发、采购、生产、仓储、销售、服务等整个流程中。公司依靠先进的生产、检测设备和品质管理系统,确保了品质的稳定性, 赢得了客户的肯定。 (三)公司经济效益分析 中国快递行业的发展现状,可以通过一组数据来充分说明。最新 数据显示,2018年全年,中国预计完成邮政业业务总量1.23万亿元,同比增长26%;业务收入0.79万亿元(不含邮政储蓄银行直接营业收

2018年智能制造战略合作协议范本

甲方: 住所: 联系电话: 乙方: 住所: 联系电话: 一、标的 甲方在合同有效期内,将甲方研发并拥有的完全知识产权的基于________产品(以下简称授权产品)的版本授予乙方代理。乙方有权下载_________、论坛及网站、手机预装等渠道向用户提供授权产品的发行、推广、捆绑销售、预装、复制生产、提供下载及收费,双方共享推广获得的用户的收益。 二、合作方式及结算 1、甲方可自由选择以下产品收益模式,乙方推广甲方授权产品所获得的全部收入,在合同有效期内由双方共享。 2、各结算数据以乙方平台数据为准,乙方需向甲方开放数据平台,提供并共享真实有效的收费和收入的数据,以保证双方利益的公正性。乙方以日为单位提供查询统计后台供甲方查询各业务的当日收入情况,乙方以月为单位提供查询统计后台供甲方查询各业务的当月结算比例。 3、乙方以一个自然月为一个结算周期,每月初按上月实际获得收入支付甲方分成费用。乙方应在次月_______日前将上月应支付数据发送给甲方。双方在确认数据后,甲方将合法有效的正式服务发票寄给乙方。(个人无需提供发票)乙方在收到正式发票后_______个工作日内将甲方所得收入汇入甲方指定账户。 4、因乙方和移动运营商、SP、渠道商、代收通道之间账期而未实际结算的费用,在乙方收入实际费用后再和甲方进行结算。 5、如当结算周期实际结算费用不足_______元,则当期不进行结算,费用归入下一结算周期

统一结算。当合同终止期到时,乙方需向甲方结清所有余款,不论余款的多少。 6、本协议项下双方之合作、服务等所产生的其他成本、税、费等支出,由各方根据国家规定承担或缴纳。(如甲方为个人,则乙方需按国家规定代扣所得税,月支付金额超过_______元扣税_______%。如甲方为境外公司或境外个人,则甲方需按国家规定代扣预提所得税、汇款费等。) 7、乙方无故拖延向甲方定期发送的结算单或拖延经双方确认的结算金额的支付,甲方有权向乙方索还拖欠费用并有权单方面向对方发出书面通知终止双方确定的合作项目。 三、权利与义务 1、甲方的权利和义务: (1)甲方负责授权产品开发和测试的全部过程,乙方将在授权产品的计费接口、开发工具和测试环境上给予支持。甲方应在技术上开放接口,并按乙方的要求进行程序修改和支持。(2)甲方应提供授权产品的全面的支持文件,并随产品修改和升级而完善,并在产品安装、测试和使用方面对乙方进行简单的免费培训。 (3)甲方负责授权产品的内容、客户服务和日常维护工作,并保证稳定运行。 (4)根据市场运营情况,乙方有权要求甲方对合作授权产品依市场运营实际情况进行适当更改或升级,或提供不同语言的版本。 2、乙方的权利和义务: (1)乙方在手机增值服务和应用推广时应对于甲方的授权产品提供必要的市场宣传和推广。(2)乙方负责合作授权产品的计费系统的客户服务和日常维护工作,并保证稳定运营。(3)乙方保证其具备合法资格从事本合同规定的服务,向甲方授权产品提供的相关推广和运营合法,不违反任何法律法规,也不侵犯任何第三方的合法权益。有任何违约侵权行为,全部由乙方负责,甲方不承担任何联带责任。 四、知识产权 1、甲方授权给乙方的所有授权产品(包括但不限于许可软件中所含任何声音、音乐、图像、照片、动画、录像、视频软件以及应用程序),所有权仍归甲方所有,包括但不限于专利、著作权等知识产权,并不因双方的合作而有所改变。

智能制造装备专项工程

附件1 项目指南 一、“大规模集成电路”专项工程 (一)集成电路设计 1.超级计算机、服务器等高端通用芯片; 2.数字电视关键芯片; 3.平板显示及驱动芯片; 4.面向智能移动终端应用的芯片; 5.移动通信芯片; 6.高压芯片; 7.金融卡芯片; 8.信息安全关键芯片。 (二)集成电路制造 1.45及以下先进工艺的基础工艺、标准成套工艺、产品工艺; 2.汽车电子工艺; 3工艺; 4.高压工艺; 5.面向移动通信等领域的射频工艺; 6.面向产品工艺的及建库技术。 (三)集成电路装备 1.先进刻蚀和薄膜设备; 2.高端光刻机; 3.镀铜设备; 4.无应力抛光设备;

5.12英寸晶圆清洗设备; 6.高精度聚焦离子束光学检测设备。 (四)集成电路材料 1.大尺寸抛光片、外延片、片; 2.新型化合物半导体材料; 3.集成电路用高性能铜及铜合金材料; 4.超净高纯电子化学品; 5.特种气体; 6.高纯金属及其高性能靶材。 (五)公共服务平台 1.共性(特色)工艺技术开发; 2.关键核/库建设; 3.先进集成电路测试技术。 二、“新型显示”专项工程 (一)领域 1.高功率、高性能外延、芯片制造和高端封装、模组及测试技术开发及产业化 2.灯具光效110流明/瓦及以上功能性照明系统、高密度显示系统的产业化 3.蓝宝石图形衬底、硅衬底技术等新型半导体衬底技术开发及产业化 4.半导体照明驱动及控制芯片 (二)领域 1.新型显示技术开发及产业化 2、氧化物、有机()等新型基板技术及产业化 3显示驱动、彩色滤光膜、玻璃基板等核心配套产品产

业化 (三)领域 1驱动、蒸镀、封装等核心工艺关键技术开发及产业化2配套材料、专用芯片、装备及相关产品产业化 (四)激光显示领域 1.激光光源、激光器、光机、显示芯片、菲涅尔屏、超短焦光学系统、自由曲面镜等激光显示关键模组及系统产业化 2.激光显示微型投影模块、产品及超大尺寸激光显示产品产业化 3.激光电视用高功率激光光源开发、照明光路设计、投影光路设计以及相关产品及系统产业化 (五)3D立体显示等其他新兴显示领域 1.3D立体显示等新一代显示关键技术开发及产业化 2.新型触控面板等关键技术开发及产业化 3.其他新型显示核心配套产品产业化 (六)综合示范应用 具有产业带动效应,具有一定产业影响力,拥有一定知识产权,产品技术水平领先的新型显示产品在各领域的示范应用。 (七)公共服务平台 面向新型显示产业共性技术研发、试验、测试认证、专利、标准、产业政策研究等综合服务及支持。 三、“下一代网络(互联网、通信网、广电网)”专项工程 (一)无线网络

相关文档
最新文档