聚合物表面银纳米颗粒的大面积均匀沉积及其应用

聚合物表面银纳米颗粒的大面积均匀沉积及其应用
聚合物表面银纳米颗粒的大面积均匀沉积及其应用

物理学报54卷

径可控制在5nm以下(约3.25nm,见表1,样品3)

图2银纳米颗粒的HRTEM照片(a)及其傅里叶变换图(b)

剥离CTA薄膜表面层,可以通过HRTEM得到银纳米颗粒在聚合物表面的分布情况.结果表明,尽管金属银颗粒的粒径大小会因AgNO,溶液浓度的不同而有所变化(见表1),但聚合物基片上银颗粒的密度分布均匀性都较好,没有通常制备方法中出现的颗粒聚集效应(图3是样品1表面银纳米颗粒分布的HRTEM照片).

复性好的大面积光敏胶片,制备工艺和设备要求较复杂.我们曾实现在CTA基片上直接生成非银盐光敏介质并成功记录了各种全息光栅∽1,其成像机理是通过交联聚合引起的折射率调制口0|.而直接在该聚合物基片上制备金属纳米颗粒形成的全息光栅,迄今为止,还未见相关文献报道.图4为通过接触拷贝方式在CTA基片上复制的振幅型全息光栅,光栅面积大小约2cm×2cm.由图可看见,光栅明暗相间,条纹对比度较高,分布均匀性良好.这为大面积均匀简化制备聚合物基片光存储材料,为廉价、快捷加工各种轻便、高性能衍射光学元器件,以及光加工聚合物.金属纳米结构功能材料,如金属.电介质光子晶体等n1’120创造了一条新途径.

图4金属纳米银颗粒在CTA基片上形成的光栅条纹分布

4.结论

本文提出并实现了一种制备大面积均匀分布的纳米银颗粒.聚合物复合膜的简单制作方法.通过控制化学浸润和光还原过程中的实验条件,成功获得了颗粒直径在5nm以下,颗粒密度和直径大小分布

图3

cTA基片上银纳米颗粒分布的HRTEM照片(样品1)

均匀的纳米银颗粒一CTA复合膜?该制备方法不仅适用于本文所用的CTA基片,还可以进一步推广到聚

3?3?光存储结果

乙烯醇(PvA),聚苯乙烯(PS)等各类常用聚合物衬CTA是普通照相和全息记录材料的一种基底材底,因此在聚合物非线性光学材料,纳米结构表面,料.通过在该基底上涂布各种光敏介质,即可获得各光电信息功能结构材料的制备等诸多方面具有广阔种记录胶片.很显然,通过涂布技术获得均匀性、重

应用前景.

聚合物表面银纳米颗粒的大面积均匀沉积及其应用

作者:谢耩, 温建忠, 汪国平, 王建波

作者单位:谢耩,温建忠,汪国平(武汉大学物理科学与技术学院,武汉,430072), 王建波(武汉大学物理科学与技术学院,武汉,430072;武汉大学电镜中心,武汉,430072)

刊名:

物理学报

英文刊名:ACTA PHYSICA SINICA

年,卷(期):2005,54(1)

被引用次数:3次

参考文献(9条)

1.Wang G P查看详情 1995

2.Pascual I;Belendez A;Fimia A查看详情 1992

3.Serna R;Afonso C N;Ballesteros J M;Naudon A,Babonneau D Petford-Long A K查看详情 1999

4.Ruckschlos M;Landkammer B;Veprek S查看详情 1993

5.Gusso G M;Tapfer L;Catalano M;Gonella F,Mattei G,Mazzoldi P Battaglin G查看详情 1996

6.Kaneko K;Sun H B;Duan X M;Kawata S查看详情[外文期刊] 2003

7.Wang G P;Tan C;Yi Y查看详情 2003

8.Zhou J;Zhou Y;NgSL;Zhang H,Que WX,Lam Y L,Chan Y C Kam C H查看详情 2000

9.Wang G P;GuoL;Zhou L;Zhu J查看详情 1996

本文读者也读过(4条)

1.段春英.周静芳银纳米颗粒的制备及表征[期刊论文]-化学研究2003,14(3)

2.李学锋苯乙烯-马来酸酐无规共聚物/银纳米微粒的合成及表征[学位论文]2007

3.郭文静.孙磊.张平余.吴志申.张治军.GUO Wen-Jing.SUN Lei.ZHANG Ping-Yu.WU Zhi-Shen.ZHANG Zhi-Jun微乳液中单分散银纳米颗粒的制备及抗磨性能[期刊论文]-物理化学学报2007,23(3)

4.王兵.汪国平基于表面等离子体激元的波导结构的光传播特性[会议论文]-2004

引证文献(3条)

1.姚宝慧.徐国财.张宏艳.韩笑PVP催化还原及稳定化纳米银的微波合成[期刊论文]-无机化学学报 2010(9)

2.吉青.乔宝福.赵得禄高分子的溶度参数理论[期刊论文]-物理学报 2007(3)

3.陈艳凤.杜泽学固态紫外光谱法在炼油催化剂表征中的应用[期刊论文]-工业催化 2007(3)

本文链接:https://www.360docs.net/doc/4a5275661.html,/Periodical_wlxb200501044.aspx

3.4 金纳米颗粒自组装

金纳米颗粒自组装 1 引言 纳米技术(nanotechnology)是研究结构尺寸在0.1纳米至100纳米范围内材料的性质和应用的一种技术。目前纳米技术涉及领域主要包括:化工、能源、材料、生物医学等。尺寸为纳米级别的物质其性质也会发生变化,出现既不同于原来组成的原子、分子,也不同于宏观的物质特殊性能,把这种具有特殊性能材料称为纳米材料。纳米材料的制备和研究是整个纳米科技的基础,可以以很多形状存在,例如球状、棒状、片状、星状、线状、枝杈状等。由于纳米材料的较小尺寸,使它产生出小尺寸效应、表面效应、量子尺寸效应等,从而具有传统材料不具备的特异的光、电、磁、热、声、力、化学和生物学性能。因此,纳米材料也被科学家们广泛应用于各个研究领域,如催化、生物医学、化工、环境能源等。 在众多纳米材料中,金纳米颗粒自从16世纪欧洲现代化学的奠基人、杰出的医师、化学家Paracelsus制备出“饮用金”用来治疗精神类疾病以来,开始登上了科学的舞台。随着纳米技术的不断发展,人们发现金纳米颗粒具有独特的光、电、热、催化等物理与化学性质,生物相容性好等特点,是构筑新型复合功能材料的重要组元,在生物传感、细胞及活体成像、癌细胞的光热治疗、肿瘤放射治疗、靶向载药等生物医学领域展现出了广阔的应用前景。 金纳米颗粒的光学性能方面,由于入射光源的波长与金纳米颗粒的原子表面自由电子的振动频率可以发生共振耦合,使金纳米颗粒具有突出的局部表面等离子共振吸收(Localized surface plasmonresonance, LSPR)。金纳米颗粒的LSPR性质与其尺寸、周围介质性质以及纳米微粒间作用等因素都有关。因此,不同尺寸的金纳米颗粒会有不同的共振吸收峰,并且改变纳米微粒间距离、介质等都会造成共振吸收峰位置的左移或右移。小尺寸范围(<50 nm)的金纳米颗粒的等离子共振吸收通常在可见光范围520-530 nm左右有一个很明显的吸收峰,尺寸越大,吸收峰波长越大,并且其溶液会呈现出橙红、酒红、浅紫等不同颜色。大尺寸的金纳米颗粒自组装聚集体的等离子共振吸收除了在可见光范围520-530 nm左右有一个很明显的吸收峰,并且其溶液颜色会呈现深紫、蓝黑色等。这一近红外波长范围正是生物组织所具有的光的窗口。近红外线能够穿透进入深部组织达10cm,克服了可见光不能很好穿透组织的缺点,为利用金纳米材料进行光热治疗,破坏肿瘤细胞提供了理论依据。 此外,也有很多研究报道,金纳米颗粒的其他一些生物性能也与其尺寸有关,例如2016年Chang等研究了3-50 nm不同尺寸的金纳米颗粒增强CT成像与放射治疗的效果比较,发

银纳米粒子的制备及其能测试新

银纳米粒子的制备及其能测试新

毕业论文 论文题目:银纳米粒子的制备及其性能测试

目录 一、前言 (1) 1.1纳米粒子概述 (1) 1.2 纳米粒子的应用 (1) 1.3银纳米粒子概述 (2) 1.4 银纳米粒子的制备方法 (3) 1.5 研究现状 (3) 1.6 研究内容 (4) 二、实验部分 (5) 2.1 实验药品 (5) 2.2 实验仪器 (5) 2.3 实验步骤 (6) 2.3.1 银纳米粒子的制备 (6) 2.3.2 银纳米粒子的表征 (6) 2.3.3 银纳米粒子的电催化活性测试 (6) 3.1 X射线衍射仪表征 (7) 3.3 纳米激光粒度仪测试 (11) 3.4 银纳米粒子的电催化活性测试结果 (12) 四、实验结论 (13) 致谢 (14) 参考文献 (15)

摘要:随着科学技术的进步,银纳米粒子的研究开发也是日新月里的发展起来了。本文尝试了一种制备方法:用电化学还原法,以柠檬酸作为配位剂用电化学工作 溶液制得银纳米粒子。用扫描电镜观察所制得站在一定电流、时间内电解AgNO 3 的产品形貌状态,为松针状的晶体粒子,其粒径在50-100 nm之间,用X射线衍射仪分析了银纳米粒子的晶体结构及样品纯度,纳米粒度分布仪测试得出粒子的大小分布在125-199 nm范围内,并用制得的银纳米粒子修饰碳糊电极,测其C-V 曲线,对其电催化活性进行了初步探索。 关键词:银纳米粒子;电解;制备;表征

Abstract: With the progress of science and technology, the research and development of silver nanoparticles also developed very quickly. This paper attempts a preparation method:electricity chemical reduction method, using citric acid as complexing agent chemical workstation in a certain current, time electrolytic AgNO3solution obtained dendritic silver https://www.360docs.net/doc/4a5275661.html,ing scanning electron microscope observed the product appearance, and it shows pine needle shaped crystal particles, the particle diameter between 50-100 nm, by X ray diffraction analysis the silver nanoparticles on the crystal structure and purity of the samples, nanoparticle size distribution tester that particle size distribution in the range of 125-199nm, and the prepared silver nanoparticles modified carbon paste electrode, measured C-V curve, to conduct a preliminary study of the electrocatalytic activity. Key words: silver nanoparticles;Electrolysis; preparation; characterization

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

光化学还原制备IgG包裹的银纳米颗粒

第28卷 第4期 2010年12月 广西师范大学学报:自然科学版Jour nal of Guangx i N or mal U niv ersity :N atur al Science Editio n V ol.28 N o.4 Dec.2010 收稿日期:2010-05-20 基金项目:国家自然科学基金资助项目(20927007)通讯联系人:肖丹(1961—),男,广西桂林人,四川大学教授,博士。E-mail:x ia odan@https://www.360docs.net/doc/4a5275661.html, 光化学还原制备IgG 包裹的银纳米颗粒 庄贞静1,2,肖 丹1 (1.四川大学化工学院,四川成都610064;2.华侨大学分子药物研究所,福建泉州362021) 摘 要:采用光化学还原方法合成人免疫球蛋白(Ig G)包裹的银纳米颗粒胶体溶液,用X 射线衍射仪(XR D) 和透射电子显微镜(T EM )等技术对合成的Ig G 包裹的银纳米颗粒组分和形态进行表征。结果表明,采用光化 学还原方法合成IgG 包裹的银纳米颗粒,粒径在10nm 左右。得到的胶体溶液为黄色混浊液体,通过白光观 察时,该胶体溶液呈透明状,其颜色随着制备条件的不同而发生变化。本文对产生这种特殊光学透光现象的 原因进行了初步分析。 关键词:银纳米颗粒;人免疫球蛋白;光化学还原 中图分类号:T B 321 文献标识码:A 文章编号:1001-6600(2010)04-0081-05 银纳米颗粒以其易于合成,具有极高的电导率、热导率、强烈的表面等离子体激发特性和拉曼增强特性引起科研工作者的关注。目前有多种方法用来制备银纳米颗粒,主要可分为化学方法和物理方法2种类型。化学方法主要有化学氧化还原法[1-3]、电化学方法[4-5]和微乳液法[6-7]等。然而这些方法大多是在水相完成制备过程,制备的银纳米颗粒表面能大、反应活性高,因此必须采取保护措施避免银纳米颗粒的团聚。物理方法主要有气相蒸发凝聚法和激光蒸发法[8]等。物理方法制备银纳米颗粒的缺点在于所用设备昂贵、制备成本高而产率低。本文采用光化学还原方法在人免疫球蛋白(IgG)的水溶液中,还原银离子制备银纳米颗粒。 光化学还原法制备银纳米颗粒时,整个反应在均相中进行,先产生较少的银作为晶核,后续还原的银沉积到银晶核上而使银晶核不断长大形成银纳米颗粒。用该方法制备的纳米颗粒具有高度的分散性,可以获得不同粒径、颜色各异、稳定性好的银胶体溶液[9]。该方法克服了加热法制备银纳米颗粒的不稳定以及出现黑色大颗粒沉淀物的缺陷,并且所获得的纳米粒子纯净,无过量还原剂或还原产物的污染。邹凯等人用光化学还原的方法在聚乙烯吡咯烷酮存在下合成了银纳米线,并讨论了银纳米线在该体系的形成机理,认为聚乙烯吡咯烷酮在形成银纳米线的过程中主要是作为一维线状模板促进纳米颗粒在一维方向上聚集[10]。此外,聚乙烯吡咯烷酮可在银纳米颗粒的制备中作保护剂,然而在只含有聚乙烯吡咯烷酮的水溶液 体系中银的还原反应缓慢[11],若加入光引发剂或光敏剂则可以加快银纳米颗粒的形成[12]。Khanna 等人在 银离子与苯胺的溶液中用光还原的方法制备了银/聚苯胺的纳米复合颗粒[13]。最近,各种二氧化硅、碳纳米管及二氧化钛纳米材料也被作载体用于光还原制备各种基于银纳米颗粒的纳米复合材料[14-16]。 采用环境友好的生物材料作为介质制备金属纳米颗粒已引起人们的关注。例如,利用DNA 与银离子之间强烈的相互作用,Petty 等人以DNA 为介质,用化学还原方法合成了DNA 包裹的银纳米簇[17]。Slocik 等人用化学还原方法还原组装在氨基功能化多肽上的金属离子(如金离子或银离子等),得到了多肽包裹的金属纳米颗粒[18]。Shankar 等人用天竺葵叶汁快速还原银离子而形成稳定且具有很好晶形的银纳米颗粒,粒径在16~40nm,并且认为用天竺葵叶汁可以快速还原银离子形成银纳米颗粒,可能是由于天竺葵叶汁内的某种蛋白对银离子的还原作用[19],该蛋白具有类似于氨基酸及蚕丝蛋白所具有的还原金离子为金的功能[20]。此外,牛血清白蛋白[21]和氨基酸[22]也被用于生物辅助组装纳米材料,以使得这些纳米材料具有生物兼容性,并提高材料的稳定性。

银纳米粒子的合成

银纳米粒子的合成及其表征 一、实验目的: 1. 掌握银纳米粒子的合成原理和制备方法。 2. 掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构 造。 3. 进一步熟悉紫外分光光度法的测定原理。 二、实验原理: 纳米粒子是指粒子尺寸在纳米量级(1~100nm)的超细材料。由于其特有的小尺寸效应、表面效应、量子尺寸效应、量子隧道效应等,使其拥有完全不同于常规材料的光学性能,力学性能,热学性能,磁学性能,化学性能,催化性能,生物活性等,从而引起了科技工作者的极大兴趣,并成为材料领域研究的热点。成为21世纪最有前途的材料。 银纳米粒子,因其独特的光学电学性能,得到人们的关注。常用的制备方法分为物理法和化学法。化学法有溶胶-凝胶法、电镀法、氧化-还原法和真空蒸镀法等。本实验中我们利用氧化还原法合成银纳米粒子。银纳米粒子引起尺寸的不同,表现出不同的颜色。由黄溶胶和灰溶胶两种。可用紫外可见光谱表征。根据朗伯-比耳定律:A=εb c,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。据此,可绘制校准曲线。并对样品进行测定。本实验我们利用氧化还原法合成黄溶胶,并对其进行表征。 三、试剂和仪器 TU-1901紫外-可见分光光度计,比色管 (1.5mmol/L),王水 硝酸银(1mmol/L),NaBH 4 四、实验步骤:

1、化学还原法制备纳米银: 2KBH4+2AgNO3+6H2O→2Ag+2KNO3+2H3BO3+7H2↑ (反应开始后BH4-由于水解而大量消耗:BH4-+H++2H2O→中间体→HBO2+4H2↑) 还原法制得的纳米银颗粒杂质含量相对较高,而且由于相互间表面作用能较大,生成的银微粒之间易团聚,所以制得的银粒径一般较大,分布很宽。 2、银纳米粒子的合成 1)制备银纳米粒子的玻璃容器均需在王水或铬酸溶液中浸泡,最后用去离子水洗涤几次。 (M=37.85)溶液。 2)配制50 mL 1.5mmol/L的NaBH 4 溶液置于冰浴中,在剧烈搅拌下,逐滴加入2.5 3)取15mL 1.5 mmol/L的NaBH 4 mL 1mmol/L的AgNO 溶液,继续搅拌30 min,制得黄色的银纳米粒子溶胶。 3 3、银纳米粒子的表征和测量 1)紫外可见光谱的表征 1. 启动计算机,打开主机电源开关,启动工作站并初始化仪器。 2. 在工作界面上选择测量项目(光谱扫描,光度测量),设置测量条件(测量波长等)。 3. 将空白放入测量池中,点击基线,进行基线校正。 4. 将合成的银纳米粒子放入样品池,点击开始,进行扫描。确定最大吸收波长。 5. 校准曲线的绘制 配制稀释不同倍数的银纳米粒子溶液(1,2,4,5倍),放入样品池,进行

聚合物纳米粒投送药物新方法

聚合物纳米粒投送药物新方法 发布日期:2007年6月27日 加州大学圣塔芭芭拉分校的研究人员最近发现,将多聚纳米颗粒附着在红细胞的表面后,可以显著延长这些纳米颗粒的体内代谢周期。该研究发表在7月7日的Experimental Biology and Medicine上,这将为药物的投送和体内循环的生物活性物质的应用提供新的视角。 聚合物纳米粒是良好的药物投送载体,可以保护药物免于在到达作用部位前的降解,保持药物的持续释放。然而,聚合物纳米粒一个主要的限制是它们很快被从血液中被清除,有时只需数分钟时间,最终导致通过纳米聚合物给药效果并不理想。 化学工程教授Samir Mitragotri和博士研究生Elizabeth Chambers率领的研究小组发现将纳米颗粒附着在红细胞上后,纳米颗粒可以持续存留在循环系统中,在最后受到剪切力和细胞间相互作用才从红细胞上脱落,并被肝脾从循环系统中清除。整个过程中,红细胞的循环不受影响。Mitragotri称,红细胞存活寿命较长,数量充足而聚合物纳米粒比较稳定,聚合物纳米粒和红血球相连后,将这两者的优势合二为一。由于红细胞存在一种对巨噬细胞的逃避机制,粘附在红细胞表面的颗粒可以逃脱吞噬作用。这种策略并不新鲜,一种立克次氏体Hemobartonella通过附着在红血球表面,可以随其在血液中循环数周。理论上,红细胞的寿命是120天,如果聚合物纳米粒和红细胞的连接足够强,聚合物纳米粒同样可以在血液中存留相当长的时间。 Mitragotri认为这种模式在药物投送技术方面影响深远,可能推动许多疾病的治疗,如癌症、脑血栓和心脏病等。杂志主编Steven R. Goodman博士认为这是一项纳米科学、细胞生物学和血液学多学科交叉融合的现代技术。

纳米银粉的液相还原制备方法

纳米银粉的液相还原制备方法 摘要:纳米银粉因粒径小(1~100nm)、比表面积大、表面活性位点多、高导电性等优良特点,已被广泛用作各类电池的电极材料。本文综述了纳米银粉的液相还原制备及其各方面应用,对今后的发展趋势进行了展望。 关键词:纳米银粉、液相还原、制备 Liquid phase reduction method for preparing nanometer silver powder Abstract: Nanosilver powder has been widely applied in the electrode materials due to its small grainsize,large specific surface areas,many active sites Oil the surface,and high conductivity.This paper reviews the nanosilver liquid preparation and all aspects of application of the reduction, the future development trends are discussed. Key words:nanosilver powder、reduction in liquid phase、Preparation 引言 人类社会进入21世纪以来,高新技术发展迅速,特别是生物、信息和新材料等代表了高新技术的发展方向。在信息产业飞速发展的今天,新材料领域有一项技术引起了世界各国政府和科技界的高度关注,这就是纳米科技。[]6纳米材料被誉为21世纪最有前途的材料, 自20 世纪80 年代以来逐渐成为各国研究开发的重点, 引起人们极大的关注, 其应用已十分广泛, 在磁性材料、电子材料、光学材料以及高强、高密度材料的烧结、催化、传感等方而有广阔的应用前景。银纳米粒子不仅具有一般纳米粒子的性质, 作为贵金属纳米的重要一员, 具有独特的光学、电学、催化性质, 可广泛应用于催化剂材料、电池电极材料、低温导热材料和导电材料等。而且, 与其他金属纳米材料相比, 银纳米粒子具有最优良的导电性能和较好电催化性能, 将银纳米粒子修饰到电极上有着较大的应用价值和前景。因此, 研究纳米银的制备方法具有重要意义, 纳米银的制备及改进技术从纳米抗菌材料起始以来就成为研究者及开发商们广泛关注的热点。[]2 1、纳米银粉的基本概念和性质 纳米材料又称为超微颗粒材料,由纳米微粒组成。银粉是一种重要的贵金属粉末,广泛的应用于催化剂、抗菌材料、医药材料、电子浆料等领域。[]1纳米粉末是指尺寸范围为1~100nm的粉末,是介于单个原子、分子与宏观物体之间的原子集合体,是一种典型的介观

最新 金纳米粒子在医学领域中的运用-精品

金纳米粒子在医学领域中的运用 金纳米粒子潜在的细胞毒性是制约其临床应用的一个重要原因,下面是小编搜集的一篇关于金纳米粒子在领域中的运用探究的,供大家阅读借鉴。 金是典型的惰性元素,由金制成的历史文物能够保留几千年的灿烂光泽不变色,如图1所示.金被广泛使用于珠宝、硬币和电子器件等方面.目前,20nm 厚的金薄膜已用在办公室的窗户上,因为它能够在传输大量可见光的同时有效地反射红外光线,并吸收光的热量.因金纳米粒子具有很好的稳定性、易操作性、灵敏的光学特性、易进行表面修饰以及良好的生物相容性,使其广泛应用于食品安全检测、环境安全检测和医学检测分析等领域[1-4].金纳米粒子尺寸范围为1nm~100nm.图2(a)为50nm的金纳米棒,(b)为二氧化硅包覆的金纳米颗粒,其中扇形金纳米粒子尺寸比较小,被二氧化硅包覆后的纳米粒子尺寸大约140nm,(c)为50nm的金纳米笼[5].由于其比较微小的结构,这些颗粒比小分子更能积聚在炎症或肿瘤增长部位.具有高效的光转热属性的金纳米颗粒,可以被应用于特异性地消融感染或患病组织.因金纳米颗粒具有吸收大量X射线的能力,而被用于改善癌症放射治疗或CT(断层扫描)诊断成像.另外,金纳米粒子可以屏蔽不稳定的药物或难溶造影剂,使之有效传递到身体各个部位. 1金纳米粒子在加载药物方面的应用 1.1金纳米粒子可作为内在药制剂 金基疗法有着悠久的历史,这是金自然的优异性能以及其神秘效应引起的药效应用.金基分子化合物已被发现可以显着限制艾滋病病毒的生长[6].目前,搭载药物的金纳米粒子常用于靶向癌细胞[7].将放射性金种子植入肿瘤中,对其内部进行放射疗法,实现近距离放射治疗[7].直径非常小的金纳米颗粒(小于2nm)能够渗透到细胞和细胞区室(如细胞核)[8].金纳米颗粒与其无毒的较大尺寸的表面修饰试剂[8],有杀菌和杀死癌细胞的功效,并有诱导细胞氧化的应激能力,促使损伤的线粒体和DNA相互作用. 最近,人们发现,纳米金(直径5nm)表现出抗血管生成性质(抑制新血管的生长).这些纳米颗粒可选择性结合肝素糖蛋白内皮细胞,并抑制它们的表面活性.因为上述纳米金的大小和生物分子或蛋白质差不多,在生理过程中,它们也可以相互修饰或作用,尤其在细胞和组织内.最近,El-Sayed和他的同事针对恶性生长与分裂的细胞核,已探索出微分细胞质. 通过将金纳米粒子聚集于细胞表面,从而认识到整合肽序列(细胞质交付)和核内蛋白(核周交付),并通过金纳米颗粒选择性地靶向恶性细胞,他们已证明凋亡效应(DNA的双链断裂).另外,使用类似的研究策略,已发现金纳米粒子可选择性地发挥抗增殖和放射增敏效应. 1.2基于金纳米粒子的光热疗法

水合肼还原法制备纳米银粒子的研究

水合肼还原法制备纳米银粒子的研究 应用化学杜运兴2080301 纳米银材料具有很稳定的物理化学性能,在电学、光学和催化等方面具有十分优异的性能,现已广泛应用于陶瓷和环保材料等领域[1].纳米银材料具有很稳定的物理化学性能,在电学、光学和催化等方面具有十分优异的性能,现已广 泛应用于陶瓷和环保材料等领域[2]. 联氨作为还原剂的最大优点是在碱性条件下还原能力非常强,其氧化产物是干净的N2,不会给反应产物引进金属杂质[4]。 本文对纳米银的性质进行简要说明,对目前采用水合肼在表面活性剂的保护下还原AgNO 3 ,制得粒径均一的纳米银粒子的实验原理及方法深入讨论,并对各影响因素分别论述,最后对纳米银粒子的应用前景进行展望。 1.纳米银粒子的性质 纳米银粒子具有量子效应、小尺寸效应和极大的比表面积,这使得其抗菌性能远大于传统的银离子杀菌剂。 纳米银由于具有很高的表面活性及催化性能而被广泛用作高效催化剂、非线性光学材料及超低温制冷机的稀释剂 纳米银溶液是纳米银的悬浊液,随浓度不同颜色也变化,随着浓度的增加颜色也逐步加深,从黄色至深红色。而液体中有颗粒,质地粗糙。2.纳米银粒子的制备 反应方程式 因为水合肼是弱电解质,在溶液中不能完全电离,在进行氧化还原反应时,只有较多过量才能使银离子的反应完全[3]。根据水合肼还原硝酸银的反应式: 2Ag++N 2H 4 +2H 2 O=2Ag+2NH 3 OH+ 等物质的量的反应物摩尔数之比为水合肼:硝酸银=1:4,按照过量的原则设计水合肼和硝酸银的摩尔比。 由于Ag+直接与水合肼反应过于激烈,所以有些实验中采用氨水作为络合剂,使Ag+与氨形成配合物,降低了Ag+的浓度,从而相应降低Ag+的氧化能力,使反

银纳米材料的制备

银纳米材料的制备 (矿业学院矿物加工工程080801110265) 摘要为了更好的了解纳米银的制备,主要介绍了纳米银粉的特性、结构和分类;简述了纳 米银的制备方法;纳米银材料研究现状;展望了纳米银研究的发展方向,介绍了其应用领域。 关键词纳米银粉纳米银辐射γ射线电子束 Silver that the material preparation (institute of mining technology mineral processing engineering080801110265) Abstract In order to better understanding of the preparation of radiation,mainly introduces nanometer silver powder characteristics,construction and classification;discussed radiation preparation of method;nm silver of materials research at the present;the direction of the development of nanotechnology research silver, introduced the application domain. Key words nanometer silver powder radiation γ-ray electron beam 前言纳米粒子是指粒子尺寸在1~100nm之间的粒子,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特有的性质和功能[1]。金属纳米粒子是指组分相在形态上被缩小至纳米程度(5~100nm)的金属颗粒,这种新型纳米材料,其原子和电子结构不同于化学成分相同的金属粒子。纳米材料是一种新兴的功能材料,具有很高的比表面积和表面活性,例如,纳米银导电率比普通银块至少高20倍,因此,广泛用作催化剂材料、防静电材料、低温超导材料、电子浆料和生物传感器材料等[2]。纳米银还具有抗菌、除臭及吸收部分紫外线的功能,因而可应用于医药行业和化妆品行业[3]。在化纤中加入少量的纳米银,可以改变化纤品的某些性能,并赋予很强的杀菌能力。因此,研究纳米银粉的制备技术具有重要意义。 1 纳米银粉的特性及纳米银的结构 纳米银粉与普通粉相比,由于其尺寸介于原子簇和宏观微粒之间,因此也具有纳米材料的表面效应、体积(小尺寸)效应、量子尺寸效应、宏观量子隧道效应等许多宏观材料所不具有的特殊的性质[4]。 1.1.1 表面效应 纳米银粉是表面效应是指由大颗粒变成超细粉后,表面积增大,表面原子数目增多造成的效应,纳料银粉的表面与块状银粉是十分不同的。 1.1.2 体积效应 纳米银粉的体积效应是指体积缩小,粒子内的原子数目减少而而造成的效应。随着纳米

3.1 金纳米粒子性质

金纳米粒子性质 1 金纳米粒子类型 不同形状的金纳米粒子对应着不同的应用目的。目前为止,人们已经制备了多种不同形状的金纳米粒子,主要有棒状,球状,壳状,笼状,多面体,星状等,不同形状的金纳米粒子有着自身独特的优势。例如棒状的金纳米粒子具有良好的光热性能,而笼状的金纳米粒子更适合于内部物质的负载等。 根据金纳米粒子的尺寸可以将其分为金纳米团簇及金纳米晶,通常来说,金属粒子具有一定的导电性,而当金纳米粒子的尺寸小于2 nm时,金纳米粒子的性质由原来的金属导电性质变为了绝缘体性质,因此这个尺寸被称为临界尺寸。通过这个临界尺寸可以将金纳米粒子分成两类:尺寸小于2 nm的金纳米粒子,被称为金纳米团簇;而金粒子的粒径尺寸大于2 nm时,通常被称为金纳米晶。 2 金纳米粒子特性 块状的金在通常被认为是惰性金属,而纳米金却显示出了区别于宏观尺寸的高活性。金纳米粒子作为纳米材料中的贵金属纳米粒子的一类,金纳米粒子除了具有纳米材料的普遍特性之外还具有自身独特的性质,主要表现在以下几个方面: 2.1 表面等离子体共振特性 有较高的比表面积,其表面自由电子较多,自由电子受到原子核的正电荷束缚较小,电子云在表面自由运动,当表面的电子云产生相对于核的位移时,来自电子和核之间的库仑引力会产生一个恢复力,从而产生表面电子云的震荡,振荡频率由四个因素决定:电子密度、有效电子质量电荷分布的形状和大小。表面等离子体(surface plasmons),又被称为表面等离子体激元,是由于金属粒子表面的自由电子的集体谐振而产生。当金属纳米粒子被一定波长的光照射后,入射的光子与表面自由电子相互作用,入射的光子与金属表面自由电子耦合后产生的疏密波。当入射光的振动频率与金属粒子表面的自由电子谐振频率相同时产生的共振被称为表面等离子体共振。 金纳米粒子的表面等离子体共振对光子产生的吸收能够使用UV-vis-vis光谱检测,通过不同的吸收峰值反映金纳米粒子的形貌,大小等特性,实心球形的金纳米粒子具有一个单峰,不同尺寸的金纳米粒子具有的峰位不同,而金棒具有两个典型的吸收峰,分别为横向和纵向,而笼状的金粒子的吸收峰也有别于球状和棒状,而即使同为球形金粒子,壳层结构的金粒子的吸收峰也有很大的区别。金纳米粒子的这种表面等离子体共振特性被广泛应用与检测,传

各向异性银纳米材料的制备及生长机制研究进展

各向异性银纳米材料的制备及生长机制研究进展* 高敏杰1,孙 磊1,王治华2,赵彦保1 (1 河南大学特种功能材料教育部重点实验室,开封475004;2 河南大学化学化工学院环境和分析化学研究所,开封475004 )摘要 银纳米材料具有许多特异性能,在电学、光学、催化等领域得到了广泛应用,其性能在很大程度上受到形貌、尺度、晶体结构和结晶度等因素的影响,因而研究银纳米材料形貌和尺度的可控制备具有十分重要的意义。从水体系和非水体系两方面综述了液相化学还原法制备银纳米材料的研究工作进展, 详细论述了线(棒)形、片(盘)形、立方体形等特异形貌银纳米粒子的制备方法和实验条件;探讨了银纳米材料各向异性形貌的影响因素;提出了不同形貌银纳米晶的形成机理。分析指出晶种的晶型结构尤其是缺陷结构对晶体的最终形貌有很大影响; 加入表面修饰剂是防止银纳米颗粒团聚和控制形貌的有效方法。提出了此类研究目前存在的主要问题,展望了其发展方向和趋势。 关键词 各向异性 银纳米材料 液相化学还原 生长机制 中图分类号:O781;O648.1 文献标识码:A Progress on the Prep aration and Growth Mechanism ofAnisotrop ic Silver NanomaterialsGAO Minj ie1,SUN Lei 1,WANG Zhihua2,ZHAO Yanbao1 (1 Key Laboratory for Special Functional Materials of Ministry of Education,Henan University,Kaifeng  475004;2 Institute of Environmental and Analytical Sciences,College of Chemistry  and Chemical Engineering,Henan University,Kaifeng 475004)Abstract Due to their novel properties,anisotropic Ag nanomaterials have attracted much attention in recentyears.It is very important to control the size,shape,and structure of silver nanomaterials due to the strong  correla-tion between the parameters and the optical,electrical,and catalytic properties.The study advances on the prepara-tion of silver nanomaterials using chemical reduction method in aqueous and non-aqueous solution are reviewed,inclu-ding the synthesis of Ag nanowires,nanodisks and nanocubes,etc.The growth mechanism and influence factors forthe formation of anisotropic Ag  nanomaterials are concluded.It is found that the formation process is a joint functionof internal(crystal texture)and external(reaction parameter)factors.The structures of crystal seeds play an impor-tant role on the formation process of anisotropic morphology.The addition of surface modification agent is an effectiveapproach to control the particles morphology and restrain aggregation.At last,the shortages in the liquid phase reduc-tion method to synthesis of Ag anisotropic nanomaterials are analyzed and the developing trends of this field are pros-p ected.Key  words anisotropic,Ag nanomaterials,liquid phase chemical reduction,formation mechanism *国家自然科学基金( 50701016);中国博士后科学基金(2011M500787) 高敏杰: 女,1987年生,硕士研究生 孙磊:通讯作者,男,1975年生,副教授,硕士生导师,主要从事纳米材料的制备及性能研究E-mail:sunlei@h enu.edu.cn0 引言 银纳米材料由于具有特异的物化性质,在抗菌材料、传感器、光电材料等领域得到了广泛应用。研究表明,金属纳米材料的性能在很大程度上取决于粒子的形貌、尺寸、组成、结晶度和结构,理论上人们可以通过控制上述参数来精细调 节纳米粒子的性质[ 1,2] 。形貌是影响银纳米颗粒光学性质的主要因素 [3-6] ,不同形貌的纳米银,其表面等离子共振(Sur- face p lasmon resonance,SPR)光谱也不相同。球形银纳米颗粒对称性高,只有一个偶极子,表现为单一SPR峰;棒状银纳米颗粒有横向和纵向两个偶极SPR峰;银纳米立方体有3个SPR峰;三角形银纳米颗粒有弱的面外四极、面内四极和强的面内双极SPR峰。银纳米材料的其它物化性质亦受其 形貌及尺度的影响[ 7-10] 。这一现象引起了许多科学工作者的关注,不同形貌银纳米材料的制备及生长机理的报道也越来越多。 银纳米材料的制备方法有多种,目前主要有液相化学还原法、沉积法、电极法、蒸镀法、机械研磨法、辐射化学还原 · 54·各向异性银纳米材料的制备及生长机制研究进展/高敏杰等

金纳米颗粒聚集以及金纳米探针 微阵列技术研究进展

金纳米颗粒聚集以及金纳米探针-微阵列技术研究进展 逄键涛 文思远 王升启# (军事医学科学院放射与辐射医学研究所,北京100850) 摘 要 金纳米颗粒 (GNP )探针正引起科学家们越来越多的兴趣。本文主要综述了基于GNP 自组装聚集反应的生物检测和微阵列-金标银染检测的最新进展,对GNP 在电化学等其他领域的研究前沿也进行了探讨。引用文献41篇。 关键词 金纳米颗粒,微阵列,生物检测,评述 2005-08-10收稿;2005-12-03接受 本文系国家863资助项目(No.2004BA519A46) 1 引 言 金纳米颗粒(GNP )是直径为0.8~250nm [1]的缔合胶体,具有纳米表面效应、量子效应、宏观量子 隧道效应。按粒子尺寸和聚集情况,GNP 可显示不同的颜色,已被广泛用于光学、电学、电子显微镜检 测的生物分子标记[2]。单个纳米颗粒的尺寸和颗粒间的组装形式,使胶体Au 溶液表现出不同的整体 特征。生物分子可参与到GNP 的聚集和组装过程中, 从而干扰GNP 的原始组装方式。通过胶体Au 溶液最终的物理状态(如颜色、吸光度等)可得到参与组装的生物分子的“质、量”特征,达到检测的目的。另外,GNP 逐渐在生物芯片检测中显现出应用前景。生物芯片技术本身是纳米尺度的分子操作和组装技术,芯片诊断、纳米检测等技术可以在此得到良好的融合。本文着重就GNP 自组装以及GNP 探针-微阵列技术进展作一综述。 2 生物分子辅助的GNP 聚集和组装 2.1 DNA-GNP 探针 灵敏度高、特异性强、快速简单、低成本是生物检测的重要指标。基于GNP 聚集反应的分子诊断方法能满足这些要求。Mirkin 发现DNA 特异杂交可使DNA-Au 颗粒自组装为复合结构,开创了GNP 用 于生物检测的新领域[3]。GNP 经巯基修饰的短链DNA 修饰成为编码探针[4],溶液中加入目标互补 DNA 后,纳米颗粒发生有序、可逆的聚集反应[5]。聚集后溶液颜色发生红7桃红7紫色变化,几小时出 现桃灰色沉淀(DNA-胶体金沉淀)。该现象是DNA 介导的胶体-胶体键合,其过程是可逆的。系统在没有优化的情况下能检测10fmol 的寡核苷酸。 DNA 修饰的GNP 以非交联结构聚集,对于颗粒表面结合的杂交体末端错配有很好的选择性[6],可 对单核苷酸多态性(SNP )进行检测。5个人瘤细胞系的基因组DNA 的检测结果与传统方法(质谱、直接测序)一致。这种方法不需要复杂的设备,为SNP 医护现场诊断、个性化医疗提供了可能。Storhoff 等[7]研究了GNP 距离和光学性质的关系,开发出“杂交-读出”的比色检测方法,鉴别核酸序列。DNA 修饰的金纳米探针识别核酸目标分子后发生颜色变化,可检测到zmol (10-21mol )级的核酸,不需要目 标分子的扩增或信号放大。S?nnichsen 等[8]采用等离子体耦合对金银纳米颗粒间距进行测量,研究了 金银纳米颗粒二聚体的实时组装以及单个DNA 分子杂交的动力学。 “等离子体标尺”可连续监控分子间距离上限达到70nm ,时间超过50min 。 2.2 非标记DNA 检测 双链DNA (dsDNA )比单链DNA (ssDNA )表面负电荷堆积程度高,并且dsDNA 的双螺旋结构使氮(N )、硫(S )等对GNP 亲和性高的原子包埋更深,所以ssDNA 和dsDNA 对GNP 有不同吸附力。 Li 等[9,10]据此设计了基于Au 颗粒聚集反应的核酸杂交比色检测方法。ssDNA 可吸附负电荷纳米金颗第34卷 2006年6月 分析化学(FENXI HUAXUE ) 评述与进展 Chinese Journal of Analytical Chemistry 第6期 884~888

银纳米粒子的合成和表征实验报告

银纳米粒子的合成和表征 一、实验目的 1、学会还原法制备银纳米粒子的方法; 2、熟练掌握TU-1901紫外分光光度仪测量吸收光谱; 3、锻炼实验操作能力以及根据实验现象分析原理,独立思考能力。 二、实验原理 1、化学还原法制备纳米银: 2KBH4+2AgNO3+6H2O→2Ag+2KNO3+2H3BO3+7H2↑ (反应开始后BH4-由于水解而大量消耗:BH4-+H++2H2O→中间体→HBO2+4H2↑) 还原法制得的纳米银颗粒杂质含量相对较高,而且由于相互间表面作用能较大,生成的银微粒之间易团聚,所以制得的银粒径一般较大,分布很宽。 2、TU-1902双光束紫外可见分光光度仪 测量原理:由于银纳米粒子的粒度不同,对于不同波长的光有不同程度的吸收,根据其吸收特性,即最大吸收峰对应的波长,可以判断粒子的大小。 银纳米粒子平均粒径与λmax: 平均粒径/nm <10 15 19 60 λmax/nm 390 403 408 416 三、实验仪器与试剂 仪器:电子分析天平、磁力搅拌器、量筒(5mL)、烧杯(一大一小)、移液管(5mL)、容量瓶(50mL)、比色管(50mL)、TU-1902双光束紫外可见光谱仪、滴管、洗瓶、洗耳球、手套等。 药品试剂:1mmol/L AgNO 3溶液、KBH 4 (固体)、蒸馏水、冰块等。

四、实验步骤、实验现象及数据处理 1、配制1.5mmol/L KBH4溶液 (1)减量法称取0.04gKBH4固体于小烧杯中,少量蒸馏水溶解,转移至 50mL容量瓶中,用蒸馏水洗涤并将洗液转移至容量瓶中(重复3次),用蒸馏水定容至刻度线,摇匀。得15mmol/L KBH4溶液。 (2)用移液管移取上述溶液5mL至50mL比色管,用蒸馏水定容至刻度线,摇匀。得1.5mmol/L KBH4溶液。 实验数据:m(KBH4)=22.6177g-22.5792g=0.0385g c1(KBH4)=m/(MV)=0.0385g/(53.94g/mol×50mL)=14.3mmol/L c(KBH4)=c1V1/V2=(14.3mmol/L×5mL)/50mL=1.43mmol/L 2、制备纳米银: 量筒移取15mL1.5mmol/L KBH4溶液于烧杯中,放入磁子,在冰浴、搅拌条 溶液,继续搅拌15min。 件下,逐滴加入2.5mL1mmol/LAgNO 3 现象:开始滴加AgNO 后溶液变黄,之后颜色逐渐加深,一段时间后变成黄 3 棕色。 3、银纳米粒子的表征 (1)测量银纳米粒子的吸收曲线: 光谱测量→设置测量参数→基线测量(蒸馏水)→样品测量→导出数据(得表1): 波长(nm) 吸光度A 波长(nm) 吸光度A 波长(nm) 吸光度A 500 0.716 430 0.903 360 0.877 495 0.721 425 0.939 355 0.837 490 0.727 420 0.972 350 0.794 485 0.733 415 1.013 345 0.753 480 0.74 410 1.03 340 0.712

相关文档
最新文档