微积分复习及解题技巧

微积分复习及解题技巧
微积分复习及解题技巧

微积分复习附解题技巧

《微积分》复习及解题技巧 第一章 函数 一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2 二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示) 对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0 ④反正(余)弦函数式:自变量 ≤1 在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。 典型例题:《综合练习》第二大题之1 补充:求y=x x 212-+的定义域。(答案:2 12<≤ -x ) 三、判断函数的奇偶性: 典型例题:《综合练习》第一大题之3、4

第二章 极限与连续 求极限主要根据: 1、常见的极限: 2、利用连续函数: 初等函数在其定义域上都连续。 例: 3、求极限 的思路: 可考虑以下9种可能: ①0 0型不定式(用罗彼塔法则) ② 2 0C =0 ③∞ 0=0 ④01 C =∞ ⑤21C C ⑥∞ 1C =0 ⑦ 0∞=∞ ⑧2C ∞=∞ ⑨∞ ∞ 型不定 式(用罗彼塔法则) 1sin lim 0 =→x x x e x x x =??? ? ?+∞→11lim )0(01 lim >=∞→αα x x ) ()(0 lim 0 x f x f x x =→11 lim 1 =→x x 1) () (lim =→x g x f x α?? ???∞ ≠=→)0(0 )(11lim 常数C C x f x α?? ???∞ ≠=→)0(0)(22lim 常数C C x g x α

微积分2方法总结

第七章 矢量代数与空间解析几何 ★类型(一) 向量的运算 解题策略 1. a a a ?=,2.},,{321a a a a = , .||232221a a a a ++= 3. 利用 点积、叉积、混合积的性质及几何意义. ★类型(二) 求直线方程 解题策略 首先考虑直线方程的点向式与一般式,否则再用其它形式. 类型(三) 直线点向式与参数式转化 类型(四) 异面直线 ★类型(五) 点到直线的距离、两直线的夹角 ★类型(六) 求平面方程 解题策略 平面方程的点法式、一般式、平面束. 类型(七) 直线与平面的位置 类型(八)求曲线与曲面方程 解题对策 一般用定义求曲线与曲面方程 疑难问题点拨 一般参数方程?? ???===Γ)()()(:t h z t g y t f x 绕Oz 轴旋转所成旋转曲面∑的方程 .)]}([{)]}([{212122z h g z h f y x --+=+ 证如图4-7, 设),,(z y x M 是曲面 上任意一点,而M 是由曲线Γ上某点),,(1111z y x M (对应的参数为t 1)绕Oz 轴旋转所得到。因此有).(),(),(111111t h z t g y t f x === ,1z z =,2 12122y x y x +=+),()(111z h t t h z -=?=? )]([)],([1111z h g y z h f x --==, 故所求旋转曲面方程为.)]}([{)]}([{212122z h g z h f y x --+=+ 特别地,若Γ绕Oz 轴旋转时,且Γ参数方程表示为???==). (),(z g y z f x 则 ).()(2222z g z f y x +=+ 事实上,由前面的证明过程可知),(),(1111z g y z f x ==1z z =,212122y x y x +=+ ),(),(11z g y z f x ==? 故).()(2222z g z f y x +=+ 图4-7

高等数学上册复习要点及解题技巧

高等数学上册复习要点及解题技巧 第一章:1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 高数解题技巧 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。 ●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 ●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。 ●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。 ●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理 ●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 ●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。 ●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 概率解题的九种思维定势 ●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 ●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式 ●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发 生概率是用全概率公式计算。关键:寻找完备事件组 ●第四句话:若题设中给出随机变量X ~ N 则马上联想到标准化 ~ N(0,1)来处理有关问题。 ●第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使 联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。 ●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联 想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的 区域的公共部分。 ●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作 (0-1)分解。即令

微积分求解技巧

有时候就是需要大胆去想,大胆去尝试。你自认为不可能的事情恰恰成为出卷人考察你的把柄。 计算不定积分:x e x x e x x d ) () 1(2 ?-- 我的解法: C xe xe xe xe xe x xe x e x e x x e x x x x x x x x x +-=-=--=--=--=---------????11)1d()1(1)1()d(d )1()1(d )()1(2 222 同类型的题目 C x x x x x x x x x x x x x x x x x x x x x x x x x x x x x +-=---=-=-+=-+=-+?????tan 11)tan 1()tan 1d()tan 1()tan d()tan 1(d tan dtan d )tan 1(tan cos d )sin (cos cos sin 222222再来一题: x x x d ln 1 ln 2?- 我的解法: C x x x x x x x x x x x x x x x x x x x x x x x x x +=++-=-+--=--=---=-?????ln d ln ln 1ln ])1(ln d[ln 1 ln )1(ln ln 1d )1(ln d ln )1(ln d ln 1ln 22 不要把出题人想象的多么神圣,他只是看的题目比你多,仅此而已! 下面一题是用分部积分算的,但是我们可以用微分的性质快速的进行计算。 其实过度的依赖规则就是对思维的桎梏,有时候我们就是要转变思想,打破规则! 再来一个抽象函数的题目:

()ln()()ln()ln()ln() =d d ()()()() ln()d ln()ln()d ln()d[ln()ln()]ln()ln()x a x a x b x b x a x b x x x a x b x b x a x a x b x b x a x a x b x a x b C +++++++=+++++=+++++=++=+++? ???原式 有时候就是要换个角度看问题,避开出题人设置的障碍,虽然这并不是出题人的本意,但是这却是他没有充分考虑的Bug !怪只能怪出题人太笨,脑子不转弯。

高等数学,线性代数,概率解题万能技巧。期末,考研复习必备!!

高数解题技巧。(高等数学、考研数学通用)【欢迎分享】tiantian 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。 ●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 ●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。 ●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。 ●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理 ●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 ●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。 ●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 概率解题的九种思维定势 ●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 ●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli 试验,及其概率计算公式 ●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组

最新大学微积分(常见问题与解答)

大学微积分(常见问题 与解答)

辅导答疑 第一章微积分的基础和研究对象 1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么? 答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。微积分这座大厦是从上往下施工建造起来的。微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。在以后的发展中,后继者才对逻辑细节作了逐一的修补。重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。 微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。而初等数学研究不变的数和形,属于常量数学的范畴。 2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处? 答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。函数不

仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。 《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。 第二章微积分的直接基础-极限 1.问:阿基里斯追赶乌龟的悖论到底如何解决的? 答:阿基里斯追赶乌龟的悖论是一个很有趣的悖论。如果芝诺的结论是正确的,则追赶者无论跑得多么快也追不上在前面跑的人,这显然与我们在生活中经常见到的现象相违背。 芝诺的说法中有合理的成分:阿基里斯追赶乌龟的过程确实是一个无穷的过程--一个无穷的位置变化过程。芝诺的说法中的错误在于:他把阿基里斯追赶乌龟的无穷的位置变化过程与无穷的时间变化过程混为一谈了。 芝诺的结论"阿基里斯永远也追不上乌龟"中的"永远"一词,指的当然是"时间"。条件中谈的是"位置"的变化,结论却谈"时间",这是芝诺悖论偷梁换柱之所在。 事实上,阿基里斯追赶乌龟的悖论的解决借助于高等数学的一部分重要内容---无穷级数,在那里,我们将会看到,尽管是无穷多个数相加,却可以等于一个有限的数。虽然芝诺将追赶时间一段一段叙述,造成无穷多个时间的迷惑,实际上,这无穷多个时间的和是个有限的数。从而,阿基里斯在有限的时间内就可以追赶上乌龟了,这与我们的生活常识一致。

高等数学中值定理的题型与解题方法

高等数学中值定理的题型与解题方法 高数中值定理包含:1.罗尔中值定理(rolle); 2.拉格朗日中值定理(lagrange); 3.柯西中值定理(cauchy); 还有经常用到的泰勒展开式(taylor), 其中(,)a b ξ∈,一定是开区间. 全国考研的学生都害怕中值定理,看到题目的求解过程看得懂,但是自己不会做,这里往往是在构造函数不会处理,这里给总结一下中值定理所涵盖的题型,保证拿到题目就会做。 题型一:证明:()0n f ξ= 基本思路,首先考虑的就是罗尔定理(rolle),还要考虑极值的问题。 例1. ()[,]f x C a b ∈在(,)a b 可导,()()0f a f b >>,()( )02 a b f a f +<, 证明:存在(,)a b ξ∈,使得'()0f ξ=. 分析:由()()0f a f b >>,()( )02 a b f a f +<,容易想到零点定理。 证明:()()02a b f a f +<,∴存在1(,)2 a b x a +∈,使得1()0f x =, 又()()0f a f b >>,∴(),()f a f b 同号,∴()()02 a b f b f +<, ∴存在2(,)2 a b x b +∈,使得2()0f x =, ∴12()()0f x f x ==,所以根据罗尔中值定理:存在(,)a b ξ∈,使得'()0f ξ=. 例2. ()[0,3]f x C ∈在(0,3)内可导,(0)(1)(2)3f f f ++=,(3)1f =, 证明:存在(0,3)ξ∈,使得'()0f ξ= 证明:(1) ()[0,3]f x C ∈,∴()f x 在[0,3]使得上有最大值和最小值,M m , ∴根据介值性定理(0)(1)(2) 3 f f f m M ++≤ ≤,即1m M ≤≤ ∴存在[0,3]c ∈,使得()1f c =, (2)()(3)1f c f ==,所以根据罗尔中值定理:存在(,3)(0,3)c ξ∈?, 使得'()0f ξ=. 例3. ()f x 在(0,3)三阶可导,[0,1]x ∈,(1)0f =,3()()F x x f x =

不定积分解题方法及技巧总结

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

微积分公式技巧解答

Abstract: Based on the comprehensive analysis on the plastic part’s structure service requirement, mounding quality and mould menu factoring cost. A corresponding injection mould of internal side core pulling was designed. By adopting the multi-direction and multi-combination core-pulling. A corresponding injection mould of internal side core pulling was designed, the working process of the mould was introduced 有关高等数学计算过程中所涉及到的数学公式(集锦) 一、0 101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞?=??+++? =??? (系数不为0的情况) 二、重要公式(1)0sin lim 1x x x →= (2)()1 0lim 1x x x e →+= (3 ))1n a o >= (4 )1n = (5)lim arctan 2x x π→∞= (6)lim tan 2 x arc x π →-∞=- (7)lim arc cot 0x x →∞ = (8)lim arc cot x x π→-∞ = (9)lim 0x x e →-∞ = (10)lim x x e →+∞ =∞ (11)0 lim 1x x x + →= 三、下列常用等价无穷小关系(0x →) sin x x tan x x a r c s i n x x arctan x x 2 11c o s 2 x x - ()ln 1x x + 1x e x - 1l n x a x a - ()11x x ? +-? 四、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-??= ??? 五、基本导数公式 ⑴()0c '= ⑵1 x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2 tan sec x x '= ⑹()2 cot csc x x '=-

微积分复习及解题技巧.docx

《微积分》复习及解题技巧 第一章函数 一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2 二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示) 对于用数学式子来表示的函数,它的定义域就是使这个式子有意 义的自变量X的取值范围(集合) 主要根据: ①分式函数:分母H0 ②偶次根式函数:被开方式20 ③对数函数式:真数式>0 ④反正(余)弦函数式:自变量W1 在上述的函数解析式中,上述情况有几种就列出几个不等式组成 不等式组解之。 典型例题:《综合练习》第二大题Z1 补充:求y=、巨的定义域。(答案:-2<^<|) ]ll-2x 2 三、判断函数的奇偶性: 典型例题:《综合练习》第一大题之3、4

第二章极限与连续 式(用罗彼塔法则) 求极限主要根据: 1、常见的极限: lim 占=() (。>0) X->CO X lim lim/(x )= /(x o ) XT% 初等函数在其定义域上都连续。 例: lim*T XT1兀 3、求极限 r ‘⑴ 1 lim —- = 1 —a gO ) 的思路: lim/W= c i (c i 工0常数) X — 可考虑以下9种可能: 00 ①彳型不定式(用罗彼塔法则) ④5=00 ⑦汁 limgU ) x->a ②冷 ⑤牙

特别注意:对于f (X )、g (X )都是多项式的分式求极限吋,解法见 教材P70下总结的“规律”。 以上解法都必须贯穿极限四则运算的法则 典型例题:《综合练习》第二大题之3. 4;第三大题之1、3、5. 7、8 1砂[而+而+而+」(2-1畑+ 1)『1]更寸一3+3丐+」右一冇丿 补充4: 2型 一 匚 limf = i XT1 丄 (此题用了 “罗彼塔法则”) 补充1: 洛lim x-?l sin 2(x-l) 广 + ax+ 补充厶 lim X —>00 \ 2x ^lim 1 2/? +1 丿 lim XT1 lnx x-1 贝 ij a= ~2 X 4- P x — \)

大学微积分(常见问题与解答)

辅导答疑 第一章微积分的基础和研究对象 1. 问:如何理解微积分(大学数学)的发展历史?微积分与初等数学的主要区别是什么? 答:微积分的基础是---集合、实数和极限,微积分的发展历史可追溯到17世纪,在物理力学等实际问题中出现大量的(与面积、体积、极值有关的)问题,用微积分得到了很好的解决。到19世纪,经过无数数学家的努力,微积分的理论基础才得以奠定。可以说,经过300多年的发展,微积分课程的基本内容已经定型,并且已经有了为数众多的优秀教材。但是,人们仍然感到微积分的教与学都不是一件容易的事,这与微积分学科本身的历史进程有关。微积分这座大厦是从上往下施工建造起来的。微积分从诞生之初就显示了强大的威力,解决了许多过去认为高不可攀的困难问题,取得了辉煌的胜利,创始微积分数学的大师们着眼于发展强有力的方法,解决各式各样的问题,他们没来得及为这门学科建立起严格的理论基础。在以后的发展中,后继者才对逻辑细节作了逐一的修补。重建基础的细致工作当然是非常重要的,但也给后世的学习者带来了不利的影响,今日的初学者在很长一段时间内只见树木不见森林。 微积分重用极限的思想,重用连续的概念,主要是在研究函数,属于变量数学的范畴。而初等数学研究不变的数和形,属于常量数学的范畴。 2.问:大学数学中研究的函数与初等数学研究的函数有何不同之处? 答:在自然科学,工程技术甚至社会科学中,函数是被广泛应用的数学概念之一,其意义远远超过了数学范围,在数学中函数处于基础核心地位。函数不仅是贯穿中学《代数》的一条主线,它也是《大学数学》这门课程的研究对象。 《大学数学》课程中,将在原有初等数学的基础上,对函数的概念、性质进行重点复习和深入的讨论,并采用极限为工具研究函数的各种分析性质,进而应用函数的性质去解决实际问题。

最新微积分复习及解题技巧[1]

微积分复习及解题技 巧[1]

《微积分》复习及解题技巧 第一章 函数 一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2 二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示) 对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0 ④反正(余)弦函数式:自变量 ≤1 在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。 典型例题:《综合练习》第二大题之1 补充:求y=x x 212-+的定义域。(答案:2 12<≤ -x ) 三、判断函数的奇偶性: 典型例题:《综合练习》第一大题之3、4

第二章 极限与连续 求极限主要根据: 1、常见的极限: 2、利用连续函数: 初等函数在其定义域上都连续。 例: 3、求极限 的思路: 可考虑以下9种可能: ①0 0型不定式(用罗彼塔法则) ② 2 0C =0 ③ ∞ 0=0 ④01 C =∞ ⑤21C C ⑥∞ 1C =0 ⑦0 ∞ =∞ ⑧2C ∞=∞ ⑨∞ ∞ 型不定式(用罗彼塔法则) 1sin lim 0 =→x x x e x x x =??? ? ?+∞→11lim )0(01 lim >=∞→αα x x ) ()(0 lim 0 x f x f x x =→11 lim 1 =→x x 1) () (lim =→x g x f x α?? ???∞ ≠=→)0(0 )(11lim 常数C C x f x α?? ???∞ ≠=→)0(0)(22lim 常数C C x g x α

不定积分解题方法及技巧总结

不定积分解题方法及技巧 总结 Prepared on 24 November 2020

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2)ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 ) ln (ln 1 【解】x x x ln 1)'ln (+= 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式

第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种: (7)当根号内出现单项式或多项式时一般用t 代去根号。 但当根号内出现高次幂时可能保留根号, (7)当根号内出现单项式或多项式时一般用t 代去根号。 但当根号内出现高次幂时可能保留根号, 4.分部积分法. 公式:??-=νμμννμd d 分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取νμ、时,通常基于以下两点考虑: (1)降低多项式部分的系数 (2)简化被积函数的类型 举两个例子吧~! 例3:dx x x x ? -?2 31arccos 【解】观察被积函数,选取变换x t arccos =,则 例4:?xdx 2arcsin 【解】 ? ?--=dx x x x x x xdx 2 2 211arcsin 2sin arcsin 上面的例3,降低了多项式系数;例4,简化了被积函数的类型。 有时,分部积分会产生循环,最终也可求得不定积分。 在??-=νμμννμd d 中,νμ、的选取有下面简单的规律: 将以上规律化成一个图就是: ν

不定积分解题方法及技巧总结

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x

C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222 也奏效。 ,有时倒代换当被积函数含有::t x c bx ax x t d cx b ax d cx b ax t b ax b ax m n n n n 1 )6()5()4(2=++?=++++=++ (7)当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号,

高等数学中有理分式定积分解法总结

由十个例题掌握有理分式定积解法 【摘要】 当被积函数为两多项式的商 () () P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结 【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分 两个多项式的商 () () P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式. 1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式. 例1.2 422 23 1 x x dx x +++? ()222 22131 x x x dx x ++-=+? 解 原式 2 2 2212311 x x dx dx dx x x =+-++??? 3 24arctan 3 x x x C = +-+ ()42 2222 2 22 222223321.11 311 31 13111 31 arctan x x dx x x x x dx x x x dx dx x x dx dx x x dx dx dx x x x x C +++-=+=-+? ?=-- ?+?? =-++=--+?????????例 解 原式

总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如: 2221111x dx dx x x ? ?=- ?++?? ?? 对于真分式 () () P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和: ()()P x Q x ()()()() 1 212P x P x Q x Q x =+,上述过程称为 把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、() () 1k P x x a -、 () () 22 l P x x px q ++等三类函数,则多项 式的积分容易求的 2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分 2.1 类型一 ()m k ax b dx cx +? 例2.1.1 () 3 2 1x dx x -? 322 331 =x x x dx x -+-?解 原式 211 =33xdx dx dx dx x x -+-???? 211 =332x x In x C x -+++ 总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数, 然后利用常见积分公式进行运算 2.2 类型二 () k m cx dx ax b +? 例2.2.1 ()2 3 2x dx x +? 解 令x+2=t ,则2x t =-,∴有dx dt =

高数解题技巧

高数解题技巧。 高数(上册)高数(上册)期末复习要点第一章: 第一章:1、极限 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加 C ) 定积分:1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求 直线方程)4、空间旋转面(柱面) 高数解题技巧。高等数学、考研数学通用) 高数解题的四种思维定势 ●第一句话:在题设条件给出一个函数f(x)二阶和二阶以上可导,不管三七二 十一把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一, 先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数 f(x)在[a,b]上连续,在(a,b)内可导,且 f(a)=0 或 f(b)=0,则不管三七二十一先用拉格朗日中值定理处理一下再 说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不 管三七二十一”,先做变量替换使之成为简单形式 f(u)再说。 线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式 Aij 或 A*有关,则立即联想到用行列式 按行(列)展开定理以及 AA*=A*A=|A|E。 ●第二句话:若涉及到 A、B 是否可交换,即AB=BA,则立即联想到用逆矩阵 的定义去分析。 ●第三句话:若题设 n 阶方阵 A 满足 f(A)=0,要证 aA+bE 可逆,则先分解因 子 aA+bE 再说。 ●第四句话:若要证明一组向量α1, 2, ……,αS 线性无关,先考虑用定义再

高等数学下册重点和解题方法.

高等数学下册重点加方法

第八章多元函数的微分学 多元函数的概念 我们前面所学的函数的自变量的个数都是一个,但是在实际问题中,所涉及的函数的自变量的个数往往是两个,或者更多。 例:一个圆柱体的体积与两个独立变量r,h有关。` 我们先以二个独立的变量为基础,来给出二元函数的定义。 二元函数的定义 设有两个独立的变量x与y在其给定的变域中D中,任取一组数值时,第三个变量z就以某一确定的法则有唯一确定的值与其对应,那末变量z称为变量x与y的二元函数。 记作:z=f(x,y). 其中x与y称为自变量,函数z也叫做因变量,自变量x与y的变域D称为函数的定义域。 关于二元函数的定义域的问题 我们知道一元函数的定义域一般来说是一个或几个区间.二元函数的定义域通常是由平面上一条或几段光滑曲线所围成的连通的部分平面.这样的部分在平面称为区域.围成区域的曲线称为区域的边界,边界上的点称为边界点,包括边界在内的区域称为闭域,不包括边界在内的区域称为开域。 如果一个区域D(开域或闭域)中任意两点之间的距离都不超过某一常数M,则称D为有界区域;否则称D为无界区域。常见的区域有矩形域和圆形域。如下图所示: 例题:求的定义域. 解答:该函数的定义域为:x≥,y≥0. 二元函数的几何表示 把自变量x、y及因变量z当作空间点的直角坐标,先在xOy平面内作出函数z=f(x,y)的定义域D;再过D域中得任一点M(x,y)作垂直于xOy平面的有向线段MP,使其值为与(x,y)对应的函数值z;

当M点在D中变动时,对应的P点的轨迹就是函数z=f(x,y)的几何图形.它通常是一张曲面, 其定义域D就是此曲面在xOy平面上的投影。 二元函数的极限及其连续性 在一元函数中,我们曾学习过当自变量趋向于有限值时函数的极限。对于二元函数z=f(x,y)我们同样可以学习当自变量x与y趋向于有限值ξ与η时,函数z的变化状态。 在平面xOy上,(x,y)趋向(ξ,η)的方式可以时多种多样的,因此二元函数的情况要比一元函数复杂得多。如果当点(x,y)以任意方式趋向点(ξ,η)时,f(x,y)总是趋向于一个确定的常数A, 那么就称A是二元函数f(x,y)当(x,y)→(ξ,η)时的极限。 这种极限通常称为二重极限。 下面我们用ε-δ语言给出二重极限的严格定义: 二重极限的定义 如果定义于(ξ,η)的某一去心邻域的一个二元函数f(x,y)跟一个确定的常数A有如下关系:对于任意给定的正数ε,无论怎样小,相应的必有另一个正数δ,凡是满足 的一切(x,y)都使不等式 成立, 那末常数A称为函数f(x,y)当(x,y)→(ξ,η)时的二重极限。 正像一元函数的极限一样,二重极限也有类似的运算法则: 二重极限的运算法则 如果当(x,y)→(ξ,η)时,f(x,y)→A,g(x,y)→B. 那末(1):f(x,y)±g(x,y)→A±B; (2):f(x,y).g(x,y)→A.B; (3):f(x,y)/g(x,y)→A/B;其中B≠0 像一元函数一样,我们可以利用二重极限来给出二元函数连续的定义: 二元函数的连续性 如果当点(x,y)趋向点(x0,y0)时,函数f(x,y)的二重极限等于f(x,y)在点(x0,y0)处的函数值f(x0,y0),那末称函数f(x,y)在点(x0,y0)处连续.如果f(x,y)在区域D的每一点都连续,那末称它在区域D连续。 如果函数z=f(x,y)在(x0,y0)不满足连续的定义,那末我们就称(x0,y0)是f(x,y)的一个间断点。

相关文档
最新文档