糖类的概念

糖类的概念
糖类的概念

第一单元糖类

一、糖类的概念

糖类物质是多羟基(2个或以上)的醛类(aldehyde)或酮类(Ketone)化合物,以及它们的衍生物或聚合物,可分为醛糖(aldose)和酮糖(ketose),还可根据碳层子数分为丙糖(triose),丁糖(terose),戊糖(pentose)、己糖(hexose)。

最简单的糖类就是丙糖(甘油醛和二羟丙酮)

由于绝大多数的糖类化合物都可以用通式Cn (H2O)n表示,所以过去人们一直认为糖类是碳与水的化合物,称为碳水化合物。现在已经这种称呼并恰当,只是沿用已久,仍有许多人称之为碳水化合物。

二、糖的种类

根据糖的结构单元数目多少分为:

(1)单糖:不能被水解称更小分子的糖。

(2)寡糖:2~6个单糖分子脱水缩合而成,以双糖最为普遍,意义也较大。

(3)多糖:同多糖:淀粉、糖原、纤维素、半纤维素、几丁质(壳多糖);杂多糖:糖胺多糖类(透明质酸、硫酸软骨素、硫酸皮肤素等)。

(4)结合糖(复合糖,糖缀合物,glycoconjugate):糖脂、糖蛋白(蛋白聚糖)、糖-核苷酸等。

(5)糖的衍生物:糖醇、糖酸、糖胺、糖苷

三、糖类的生物学功能

(1) 提供能量。植物的淀粉和动物的糖原都是能量的储存形式。

(2) 物质代谢的碳骨架,为蛋白质、核酸、脂类的合成提供碳骨架。

(3) 细胞的骨架。纤维素、半纤维素、木质素是植物细胞壁的主要成分,肽聚糖是细胞壁的主要成分。

(4) 细胞间识别和生物分子间的识别。

细胞膜表面糖蛋白的寡糖链参与细胞间的识别。一些细胞的细胞膜表面含有糖分子或寡糖链,构成细胞的天线,参与细胞通信。

红细胞表面ABO血型决定簇就含有岩藻糖。

四、单糖

(一)单糖的结构

1.单糖的链状结构

确定链状结构的方法(葡萄糖):

a.与Fehling试剂或其它醛试剂反应,含有醛基。

b.与乙酸酐反应,产生具有五个乙酰基的衍生物。

c.用钠、汞剂作用,生成山梨醇。

最简单的单糖之一是甘油醛(glyceraldehydes),它有两种立体异构形式(Stereoismeric form),这两种立体异构体在旋光性上刚好相反,一种异构体使平面偏振光(Plane polarized liyot)的偏振面沿顺时针方向偏转,称为右旋型异构体(dextrorotary),或D型异构体。另一种异构体则使平面偏振不的编振机逆时针编转,称左旋异构体(levorotary,L)或L型异构体。

像甘油醛这样具有旋光性差异的立体异构体又称为光学异构体(Cptical lsmer),常用D,L表示。以甘油醛的两种光学异构体作对照,其他单糖的光学异构构与之比较而规定为D型或L型。

差向异构体(epimer):又称表异构体,只有一个不对称碳原子上的基因排列方式不同的非对映异构体,如D-等等糖与D-半乳糖。

链状结构一般用Fisher投影式表示:碳骨架、竖直写;氧化程度最高的碳原子在上方。

2.单糖的环状结构

在溶液中,含有4个以上碳原子的单糖主要以环状结构。

单糖分子中的羟基能与醛基或酮基可逆缩合成环状的半缩醛(emiacetal)。环化后,羰基C就成为一个手性C原子称为端异构性碳原子(anomeric carbon atom),环化后形成的两种非对映异构体称为端基异构体,或异头体(anomer),分别称为α-型及β-型异头体。

环状结构一般用Havorth结构式表示:

用FisCher投影式表示环状结构很不方便。Haworth结构式比Fischer投影式更能正确反映糖分子中的键角和键长度。转化方法:

①画一个五员或六员环

②从氧原子右侧的端基碳(anomerio carbon)开始,画上半缩醛羟基,在Fischer投影式中右侧的居环下,左侧居环上。

构象式:

Haworth结构式虽能正确反映糖的环状结构,但还是过于简单,构象式最能正确地反映糖的环状结构,它反映出了糖环的折叠形结构。

3.几种重要的单糖的链状结构和环状结构

(1) 丙糖:D-甘油醛二羟丙酮

(2) 丁糖:D-赤鲜糖D-赤鲜酮糖

(3) 戊糖:D-核糖D-脱氧核糖D-核酮糖D-木糖D-木酮糖

(4) 己糖:D-葡萄糖(α-型及β型) D-果糖

(5) 庚糖:D-景天庚酮糖

4.变旋现象

在溶液中,糖的链状结构和环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。

从乙醇水溶液中结晶出的D-glucose称为α-D-(+)Glucose([α]20D=+113°),从吡啶溶液中结晶出的D-glucose称为β-D-(+)glucose([α]20D=+18.7°)。将α-D-(+)葡萄糖与β-D-(+)葡萄糖分别溶于水中,放置一段时间后,其旋光率都逐渐转变为+52.7?C。原因就是葡萄糖的不同结构形式相互转变,最后,各种结构形式达到一定的平衡,其中α型占36%,β型占63%,链式占1%。

5.构型与构象

构型:分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构,如D-甘油醛与L-甘油醛,D-葡萄糖和L葡萄糖是链状葡萄糖的两种构型,α-D-葡萄糖和β-D-葡萄糖是环状葡萄糖的两种构型。

一般情况下,构型都比较稳定,一种构型转变另一种构型则要求共价键的断裂、原子(基团)间的重排和新共价键的重新形成。

构象:由于分子中的某个原子(基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式,不同的构象之间可以相互转变,在各种构象形式中,势能最低、最稳定的构象是优势对象。

6.构型与旋光性

旋光性是分子中具有不对称结构的物质的一种物理性质。显然,构型不同旋光性就不同。

但构型是人为规定的,旋光性是实验测出的。因此,构型与旋光性之间没有必然的对应规律,每一种物质的旋光性只能通过实验来确定。

(二)单糖的物理化学性质

1.物理性质

旋光性:是鉴定糖的一个重要指标

甜度:以蔗糖的甜度为标准

溶解性:易溶于水而难溶于乙醚、丙酮等有面溶剂

2.化学性质

(1)变旋

在溶液中,糖的链状结构和环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,称为变旋现象。三者间的比例因糖种类而异。

只有链状结构才具有下述的氧化还原反应。

(2)糖醛反应(与酸的反应)

①Molish反应

Molish反应可以鉴定单糖的存在。

②Seliwannoff反应

据此区分酮糖与醛糖。还可利用溴水区分醛糖与酮糖。

(3)氧化反应

氧化只发生在开链形式上。

在氧化剂、金属离子如Cu2+、酶的作用下,单糖可以发生几种类型的氧化:醛基氧化:糖酸(aldonic acid)

伯醇基氧化:醛酸(uronic acid)

醛基、伯醇基同时氧化:二酸(alduric acid)

能被弱氧化剂(如Fehhing试剂、Benedict试剂)氧化的糖称为还原性糖,所有的单糖都是还原性糖。

单糖氧化形成的羟基可以进一步形成环状内酯(Lactone)。

内酯在自然界中很普遍,如L-抗坏血酸(L-ascorbio acid),又称Vc (Vitamcn c),就是D-葡萄糖酸的内酯衍生物。式量176.1,它在体内是一种强还原剂。豚鼠(guinea pig)、猿(ape)和人不能合成Vc,从能合成Vc的肝脏微粒体中分

离到合成Vc的三种酶,人和猿缺乏gulonolactone oxidase)。缺乏抗坏血酸将导致坏血病(scurvy),龄龈(gum)、腿部等开始出血,肿胀,逐渐扩展到全身,柑橘类果实(citrus frait)中含有丰富的Vc。

(4)还原反应

单糖可以被还原成相应的糖醇(Sugar alcohol)。

D-葡萄糖被还原成D-葡萄糖醇,又称山梨醇(D-Sorbitol)。

糖醇主要用于食品加工业和医药,山梨醇添加到糖果中能延长糖果的货架期,因为它能防止糖果失水。用糖精处理的果汁中一般都有后味,添加山梨醇后能去除后味。人体食用后,山梨醇在肝中又会转化为果糖。

(5)异构化

在弱碱性溶液中,D-葡萄糖、D-甘露糖和D-果糖,可以通过烯醇式相互转化(enediol intermediate),D-葡萄糖异构化为D-甘露糖后,由于其中的一个手性碳原子的构型发生变化,又称差向异构化(epimerization)。

(6)酯化

生物体中最常见也是最重要的糖酯是磷酸糖酯和硫酸糖酯。

磷酸糖酯及其衍生物是糖的代谢活性形式(糖代谢的中间产物)。

硫酸糖酯主要发现于结缔组织的蛋白聚糖中(Proteo glycan),由于硫酸糖酯带电荷,因此它能结合大量的水和阳离子。

葡萄糖的核苷二磷酸酯,如UDPG参与多糖的生物合成。

(7)糖苷化

单糖环状结构上的半缩醛羟基与醇或酚的羟基缩合失水成为缩醛式衍生物,通称为糖苷(glycosides)。

(8)糖脎反应(亲核加成)

糖脎反应发生在醛糖和酮糖的链状结构上。糖脎易结晶,可以根据结晶的形状,判断单糖的种类。

(三)重要的单糖

1.三碳糖

2.四碳糖

3.五碳糖

概念结构设计和逻辑结构设计

概念结构设计和逻辑结构设计 一.系统概述 本系统通过调查从事医药产品的零售,批发等工作的企业,根据其具体情况设计医药销售管理系统。医药管理系统的设计和制作需要建立在调查的数据基础上,系统完成后预期希望实现药品基本信息的处理,辅助个部门工作人员工作并记录一些信息,一便于药品的销售和管理。通过此系统的功能,从事药品零售和批发等部门可以实现一些功能,如:基础信息管理,进货管理,库房管理,销售管理,财务统计,系统维护等。 二.概念结构设计 1.员工属性 2.药品属性 3.客户属性 4.供应商属性 5.医药销售管理系统E--R 图 三.逻辑结构设计 该设计概念以概念结构设计中的E--R 图为主要依据,设计出相关的整体逻辑结构,具体关系模型如下:(加下划线的表示为主码) 药品信息(药品编号,药品名称,药品类别,规格,售价,进价,有效期,生产日期,产地,备注) 供应商信息(供应商编号,供应商名称,负责人,) 员工 姓名 家庭地址 E-maill 电话 员工 编号 年龄 帐号

四.系统各功能模块如何现(数据流实图);1.基本信息管理子系统 基本信息管理子系统 药品信息员工信息客户信息供应商信息2.库存管理子系统 库存管理子系 统 库存查询库存信息出入库登记库存报表3.销售管理子系统 销售管理 销售登记销售退货销售查询 4.信息预警子系统 信息预警 报废预警库存预警 5.财务统计子系统 财务统计 统计销售额打印报表 6.系统管理子系统

系统管理 权限管理修改密码系统帮助 五.数据库设计(E-R图,数据库表结构) 1.药品基本信息表 列名字段数据类型可否为空说明药品编号 药品名称 药品类别 规格 进价 有效期 生产日期 售价 产地 备注 2.员工基本信息表 列名字段数据类型可否为空说明员工编号 性别 身份证号 员工年龄

概念结构理论

概念结构理论 刘壮虎 北京大学哲学系,liuzhh@https://www.360docs.net/doc/4a7633908.html, 摘要 本文不从概念的外延和内涵出发,而是将概念作为初始出发点,按照概念结构整体论的观点,在思想—概念—语言三者统一的基础上,建立概念结构的形式理论,讨论其基本性质及其意义,并在此基础上研究若干相关的问题。 实际中使用的推理,比我们通常说的逻辑推理要更广泛,本文建立依赖于语言的相对于主体的推理,并根据这种相对的推理建立相对的一致的概念。通过这种一致的概念,讨论不一致信念集的特征。这种推理也可以部分地用于概念的分类上,本文通过两个简单的实例来说明这种方法的应用。 词项的同义是语言学中的重要问题,按整体论的观点,比同义更一般的不可分辨性更为重要,本文给出了概念的不可分辨性的定义,并讨论其在语言中的表现。不同语言间的翻译也是语言学中的重要问题,本文在概念结构的形式理论基础上的对不同语言间的翻译进行了一些初步的讨论。 本文只是在对最简单的语言进行讨论,通过这样的讨论体现概念结构形式理论的思想、方法和研究框架。 §1前言 一、外延和内涵 概念有外延和内涵,是概念研究中的一个教条。我认为,这个教条是错误的,至少是不准确的。 概念有不同类型的,如亚里士多德就提出了十大范畴,而在三段论中使用的只是实体范畴和性质范畴。在讨论概念的外延和内涵时,也往往集中在个体、类和性质的范围内(与实体范畴和性质范畴相当),就算有所推广,也不是所有的概念。就是在个体、类和性质的范围内,概念有外延和内涵也是存在质疑的,如不可数名词的外延、性质化归为类等问题。 对外延和内涵的形式化的研究中,大多数说的是语句的外延和内涵,如各种内涵逻辑,它们与概念的外延和内涵是完全不同。 将内涵看作可能世界到外延的函数(或者在此基础上的修改),对于处理语句的内涵确实是一种比较好的方法,但将这种方法用于处理概念的内涵和外延,却带

7.3 概念结构设计(S)

7.3 概念结构设计 将需求分析得到的用户需求抽象为信息结构即概念模型的过程就是概念结构设计。它是整个数据库设计的关键。(概念结构是对用户需求的客观反映,不涉及到软硬件环境,也不能直接在数据库管理系统DBMS上实现,是现实世界与机器世界的中介。这一阶段所产生的工作结果一般表现为E-R图的形式,它不仅能够充分反映客观世界,而且易于非计算机人员理解,易于向关系、网状、层次等各种数据模型转换。) 7.3.1 概念结构 在需求分析阶段所得到的应用需求应该首先抽象为信息世界的结构,才能更好地、更准确地用某一DBMS实现这些需求。 概念结构的主要特点是: (1) 能真实、充分地反映现实世界,包括事物和事物之间的联系,能满足用户对数据的处理要求。是对现实世界的一个真实模型。 (2) 易于理解,从而可以用它和不熟悉计算机的用户交换意见,用户的积极参与是数据库的设计成功的关键。 (3) 易于更改,当应用环境和应用要求改变时,容易对概念模型修改和扩充。 (4) 易于向关系、网状、层次等各种数据模型转换。 概念结构是各种数据模型的共同基础,它比数据模型更独立于机器、更抽象,从而更加稳定。 描述概念模型的有力工具是E-R模型。有关E-R模型的基本概念已在第一章介绍。下面将用E-R模型来描述概念结构。 7.3.2 概念结构设计的方法与步骤 设计概念结构通常有四类方法: ·自顶向下。即首先定义全局概念结构的框架,然后逐步细化,如图7.7(a)所示。 ·自底向上。即首先定义各局部应用的概念结构,然后将它们集成起来,得到全局概念结构,如图7.7(b)所示。 ·逐步扩张。首先定义最重要的核心概念结构,然后向外扩充,以滚雪球的方式逐步生成其他概念结构,直至总体概念结构,如图7.7(c)所示。 ·混合策略。即将自顶向下和自底向上相结合,用自顶向下策略设计一个全局概念结构的框架,以它为骨架集成由自底向上策略中设计的各局部概念结构。 其中最经常采用的策略是自底向上方法。即自顶向下地进行需求分析,然后再自底向上地设计概念结构。如图7.8所示。这里只介绍自底向上设计概念结构的方法。它通常分为两步:第1步是抽象数据并设计局部视图,第2步是集成局部视图,得到全局的概念结构,如图7.9所示。

概念结构和逻辑结构

中北大学 数据库课程设计 概念结构和逻辑结构设计 2012 年 6月 3 日

一、概念结构设计 建立系统数据模型的主要工具是实体-联系图,即E-R图。E-R图的图形符号约定如表1-1所示: 表 1-1 E—R图的图形符号 系统的E-R图,如图1-1所示,每个实体及属性如下: 家庭成员:姓名、称呼、密码、出生日期 收入记录:收入项目编号、收入项目名称、收入人员、收入金额、收入日期 支出记录:支出项目编号、支出项目名称、支出人员、支出金额、支出日期 银行信息:银行账号、银行名称、开户人、存款金额、开户日期 1.家庭成员关系E-R图 2.收入记录E-R图

3.支出记录E-R图 4.银行信息E-R图 5.系统E-R图

二、逻辑结构设计 1.概述 数据库逻辑设计将概念结构转换为某个DBMS所支持的数据模型对其进行优化。 在对该家庭理财管理系统的实体关系图进行了分析之后,分别对其实体、联系作了属性的分析,得出这些实体与联系的主键与码值,为以后对该家庭理财管理系统的数据库的物理设计提供了方便与基础。 2.数据模型 2.1基本的数据模型有: 家庭成员(姓名、称呼、密码、出生日期); 收入记录(收入项目编号、收入项目名称、收入人员、收入金额、收入日期); 支出记录(支出项目编号、支出项目名称、支出人员、支出金额、支出日期); 银行信息(银行账号、银行名称、开户人、存款金额、开户日期) ; 2.2经过优化后的数据模型有: 家庭成员(ID,姓名、称呼、密码、出生日期); 银行信息(银行账号、银行名称、开户人、存款金额、开户日期); 使用者(ID,帐号,密码); 收入记录(ID,名称,收入人员,金额,日期); 支出记录(ID,名称,支出人员,金额,日期); 管理收入(家庭成员ID,收入记录ID); 管理支出(家庭成员ID,支出记录ID); 查看收入(家庭成员ID,收入记录ID); 查看支出(家庭成员ID,支出记录ID);

结构设计中的概念设计与结构措施一

1.概念设计的重要性 概念设计是展现先进设计思想的关键,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计,并能有意识地处理构件与结构、结构与结构的关系。一般认为,概念设计做得好的结构工程师,随着他的不懈追求,其结构概念将随他的年龄与实践的增长而越来越丰富,设计成果也越来越创新、完善。遗憾的是,随着社会分工的细化,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计,缺乏创新,更不愿(不敢)创新,有的甚至拒绝对新技术、新工艺的采纳(害怕承担创新的责任)。大部分工程师在一体化计算机结构程序设计全面应用的今天,对计算机结果明显不合理、甚至错误而不能及时发现。随着年龄的增长,导致他们在大学学的那些孤立的概念都被逐渐忘却,更谈不上设计成果的不断创新。 强调概念设计的重要,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性,比如对混凝土结构设计,内力计算是基于弹性理论的计算方法,而截面设计却是基于塑性理论的极限状态设计方法,这一矛盾使计算结果与结构的实际受力状态差之甚远,为了弥补这类计算理论的缺陷,或者实现对实际存在的大量无法计算的结构构件的设计,都需要优秀的概念设计与结构措施来满足结构设计的目的。同时计算机结果的高精度特点,往往给结构设计人员带来对结构工作性能的误解,结构工程师只有加强结构概念的培养,才能比较客观、真实地理解结构的工作性能。 概念设计之所以重要,还在于在方案设计阶段,初步设计过程是不能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念,选择效果最好、造价最低的结构方案,为此,需要工程师不断地丰富自己的结构概念,深入、深刻了解各类结构的性能,并能有意识地、灵活地运用它们。 2.协同工作与结构体系 协同工作的概念广泛存在于工业产品的设计和制造中,对于任一个工业产品,我们均不希望其在远未达到其设计寿命(负荷、功能)时,它的某些部件(或零件)即出现破坏。对于建筑结构,协同工作的概念即是要求结构内部的各个构件相互配合,共同工作。这不仅要求结构构件在承载能力极限状态能共同受力,协同工作,同时达到极限状态,还要求他们能有共同的耐久寿命。结构的协同工作表现在基础与上部结构的关系上,必须视基础与上部结构为一个有机的整体,不能把两者割裂开来处理。举例而言,对砖混结构,必须依靠圈梁和构造柱将上部结构与基础连接成一个整体,而不能单纯依靠基础自身的刚度来抵御不均匀沉降,所有圈梁和构造柱的设置,都必须围绕这个中心。 对协同工作的理解,还在于当结构受力时,结构中的各个构件能同时达到较高的应力水平。在多高层结构设计时,应尽可能避免短柱,其主要的目的是使同层各柱在相同的水平位移时,能同时达到最大承载能力,但随着建筑物的高度与层数的加大,巨大的竖向和水平荷载使底层柱截面越来越大,从而造成高层建筑的底部数层出现大量短柱,为了避免这种现象的出现,对于大截面柱,可以通过对柱截面开竖槽,使矩形柱成为田形柱,从而增大长细比,避免短柱的出现,这样就能使同层的抗侧力结构在相近的水平位移下,达到最大的水平承载力;而对于梁的跨高比的限制,一般还没有充分认识到。实际上与长短柱混杂的效果一样,长、短梁在同一榀框架中并存,也是极为不利的,短跨梁在水平力的作用下,剪力很

结构概念体系

结构概念体系现今发展的优点与不足 ——以中银大厦和悉尼歌剧院为例 建筑与土木一班王凯林141604010033 摘要:结构是建筑物的基本受力骨架。无论工业建筑、居住建筑、公共建筑或某些特种构筑物,都必须承受自重、外部荷载作用、变形作用以及环境作用。对结构的基本功能要求是:可靠、适用、耐久,以及在偶然事故中,当局部结构遭到破坏后,仍能保持结构的整体稳定性。随着科学技术的迅速发展,各类学科的分工越来越细,在土木工程专业范围内建筑力学、材料力学、建筑学、城市规划、结构、地基基础、施工组织、施工技术、房屋设备等许多学科发展都很快。对于结构工程师,也应具备必要的建筑设计知识,在建筑设计的方案阶段,主动考虑并建议最适宜的结构体系方案,使之与建筑功能和造型有机结合,才能使建筑结构达到完美地统一。所以,各专业相互渗透、密切配合,懂得各种组合结构对工程带来的结构稳定性,经济利益等等是是十分重要的。 关键词:结构概念体系;缺点;优点 一、不足之处——以悉尼歌剧院为例

1.1悉尼歌剧院简介 凡是去澳大利亚旅游的人,没有不去悉尼的;去悉尼,必然会去参观悉尼歌剧院。可以这样说,悉尼歌剧院现在是悉尼甚至是澳大利亚的一个标志。悉尼歌剧院位于悉尼湾一侧的班尼朗半岛上,距港湾大桥很近,位置十分显要,是各国船只进出港时必经之地。它不同于一般方盒子式房屋组成的建筑群,而是在坚实平整的基座上建造了几组活跃起伏的壳体屋盖组成的、造型奇特的建筑群,像群帆泊港,又似白鹤飞翔,格外引人注目。 应该说,从建筑的角度看,它是很有特色的。8个壳体分成两组,每组4个,分别覆盖2个大厅;另外有2个小壳体置于餐厅之上。两组壳体对称互靠,外贴乳白色面砖,给人以丰富的联想:好像白帆,又如贝壳,姿同海浪,貌了以莲花。这个杰作出自38岁的丹麦建筑师伍重之手,它是从30个国家参加竞赛的二百多个建筑方案中脱颖而出的,一举夺标,不可不称之出类拔萃。尽管有人批评它是功能迁就形式,但它能突破传统的建筑形式,标新立异,刻意创新,大家从建筑设计的角度上大力赞美它,应该说还是不过分的。 悉尼歌剧院共耗时14年,斥资1200万澳币,于1973年10月20日正式竣工开幕。歌剧院内部有许多地方是用法国进口的玻璃所镶嵌,配上澳洲独有的建材材料,其内部建筑结构则是仿效玛雅文化和阿兹特克神庙。外面的玻璃是由法国制造的双层玻璃──素色及黄玉色,共有700种尺寸、2000片。悉尼歌剧院是世界著名艺术表演场地,每年举办约2400次活动,曾邀请纽约爱乐、德国碧娜.鲍许乌帕塔舞蹈剧场(Tanztheatre Wuppertal Pina Bausch)、菲利浦.葛拉斯乐团(The Philip Glass Ensemble)等国际团体,并获得伊丽莎白女王、美国总统福特、柯林顿、南非总统曼德拉、联合国前安理会总理安南等众多国际名人造访,为歌剧院增添许多光采。2007年被联合国教科文组织评为世界文化遗产。[1] 1.2 结构上存在的不足 不过,这位杰出的建筑师对悉尼歌剧院的结构方案却考虑的太少了。这个建筑方案中选后,邀请世界著名的结构工程师帮助作结构设计,结果经过近三年的研究,得出的结论是:只能放弃它的壳体方案。为什么呢?因为悉尼歌剧院的建筑方案虽然好得无以复加,但其结构方案有一个致命的缺点:选错了结构型式。大家知道如果壳体屋盖都是凸面向上平放,当受重力作 用时,可通过壳体的薄膜压应力来抵抗外荷载;当受风力作用时,所受的向上风吸力,只要小于

高一生物概念图

第1章遗传因子的发现 一、本章核心概念: 主要:基因的分离定律,基因的自由组合定律,正交,反交,杂交,自交,F1,F2,测交,相对性状,性状分离,遗传因子 次要:显性性状,隐性性状,显性遗传因子,隐性遗传因子,杂合子,纯合子,基因型,表现型,假说-演绎法 二、本章总概念图: 三、各节子概念图: 第1节孟德尔的豌豆杂交实验(一) 1.1 孟德尔的豌豆杂交实验(一)

第2节孟德尔的豌豆杂交实验(二) 1.2 孟德尔的豌豆杂交实验(二) 第2章基因和染色体的关系 一、本章核心概念: 主要:减数分裂,受精作用,精子,卵子,减数第一次分裂,减数第二次分裂,等位基因,非等位基因,同源染色体,非同源染色体 次要:睾丸,卵巢,精原细胞,卵原细胞,初级精母细胞,初级卵母细胞,次级精母细胞,次级卵母细胞,极体,联会,四分体 二、本章总概念图: 三、各节子概念图:

第1节减数分裂和受精作用2.1 减数分裂和受精作用 第2节基因在染色体上 2.2 基因在染色体上 第3节伴性遗传 2.3 伴性遗传

第3章基因的本质 一、本章核心概念: 主要:DNA分子双螺旋结构,DNA半保留复制,基因,遗传信息,遗传效应,肺炎双球菌实验,噬菌体侵染细菌实验,碱基互补配对原则 次要:碱基,腺嘌呤,胸腺嘧啶,尿嘧啶,胞嘧啶,同位素示踪技术,密度梯度离心,解旋,DNA分子的多样性,DNA分子的特异性 二、本章总概念图: 三、各节子概念图: 第1节DNA是主要的遗传物质 3.1.1 肺炎双球菌转化实验 3.1.2 噬菌体侵染细菌实验

第2节DNA分子的结构 3.2 DNA分子的结构 第3节DNA的复制 3.3.1 DNA半保留复制的实验证据(选学)

高考生物概念图汇总

2014高考生物知识结构网络 第一单元生命的物质基础和结构基础 (细胞中的化合物、细胞的结构和功能、细胞增殖、分化、癌变和衰老、生物膜系统和细胞工程)1.1化学元素与生物体的关系 1.2生物体中化学元素的组成特点 1.3生物界与非生物界的统一性和差异性

1.4细胞中的化合物一览表 1.5蛋白质的相关计算 设 构成蛋白质的氨基酸个数m , 构成蛋白质的肽链条数为n , 构成蛋白质的氨基酸的平均相对分子质量为a , 蛋白质中的肽键个数为x , 蛋白质的相对分子质量为y , 控制蛋白质的基因的最少碱基对数为r , 则 肽键数=脱去的水分子数,为 n m x -= ……………………………………① 蛋白质的相对分子质量 x ma y 18-= …………………………………………② 或者 x a r y 183 -= …………………………………………③

1.6蛋白质的组成层次 1.7核酸的基本组成单位 1.8生物大分子的组成特点及多样性的原因

1.9生物组织中还原性糖、脂肪、蛋白质和DNA的鉴定 1.10选择透过性膜的特点 1.11细胞膜的物质交换功能 1.12线粒体和叶绿体共同点 1、具有双层膜结构 2、进行能量转换 3、含遗传物质——DNA 4、能独立地控制性状 5、决定细胞质遗传 6、内含核糖体 7、有相对独立的转录翻译系统 8、能自我分裂增殖 水 被选择的离子和小分子 其它离子、小分子和大分子 亲脂小分子 高浓度——→低浓度 不消耗细胞能量(A TP) 离子、不亲脂小分子 低浓度——→高浓度 需载体蛋白运载 消耗细胞能量(ATP)

1.13真核生物细胞器的比较 1.14细胞有丝分裂中核内DNA、染色体和染色单体变化规律 注:设间期染色体数目为2N个,未复制时DNA含量为2a。 1.15理化因素对细胞周期的影响 注:+表示有影响 1.16细胞分裂异常(或特殊形式分裂)的类型及结果

概念结构设计

二、概念结构设计(周三上午交) 要求: 给出各个分E-R图,并加以文字描述 给出全局E-R图,并加以文字描述 各分E-R图合并成全局E-R图过程中所作的处理,加以文字描述 1.实体E-R图 图1 员工实体E-R图 员工实体的属性包括员工姓名、性别、编号、所属部名、身份证、地址、联系方式7个属性。

图2 商品实体E-R图 商品实体的属性包括条形码、单价、规格、型号、生产厂家、名称、库存量7个属性。 图3 仓库实体E-R图 仓库实体属性包括总面积、地点、仓库号、名称4个属性。

图4 消费者实体E-R图 消费者实体的属性包括编号、姓名、联系方式、会员等级、会员积分4个属性。 图5 供应商实体E-R图 供应商实体属性包括供应商地址、供应商名称、供应商联系方式、供应商报价4个属性。

2.联系E-R图 图6售卖关系E-R图 售卖关系是发生在商品实体与消费者实体之间的。一个商品可以卖给任何一位消费者,每位消费者可以购买超市中的任何一个商品。它们之间的关系是m:n。 图7取货关系E-R图 取货关系发生在商品与仓库之间。一个仓库可以存放任何一件商品,每一件商品可以存放在任何一个仓库。它们之间的关系是m:n。

图8 供货关系E-R 图 供货关系发生在商品与供货商之间。每个商品可以有不同的供应商供应,每个供应商可以供应商不同的商品。它们之间的关系是m:n 。 图9超市管理系统综合E-R 图 超市管理系统综合E-R 图中存在发生关系的实体有商品、消费者、仓库、供应商4个实体。商品与消费者之间存在着售卖关系。一件商品可以售卖给任何一位消费者。每位消费者可以购买任何一件商品。商品与仓库之间存在着存放和取货关系。一件商品可以存放在任何一个仓库,每个仓库可以存放任何一件商品。商品与供应商之间存在着供货关系。每个商品可以有不同的供应商供应,每个供应商可以供应商不同的商品。

高中生物选修三概念图总汇编

专题1 基因工程概念图汇编 一、本专题技术名词 主要:基因工程(DNA重组技术)、目的基因、基因文库、PCR(聚合酶链式反应)、基因表达载体、DNA分子杂交技术、蛋白质工程 次要:限制性内切酶(限制酶)、DNA连接酶、基因组文库、部分基因文库(cDNA文库)、启动子、终止子、标记基因、基因治疗 二、本专题总概念图 三、本专题分概念图: 1.1 DNA重组技术的基本工具

1.2 基因工程的基本操作程序 1.3 基因工程的应用 1.4 蛋白质工程的崛起

专题2 细胞工程概念图汇编 一、本专题技术名词 主要:细胞工程、植物细胞工程、动物细胞工程、植物组织培养技术、植物体细胞杂交技术、动物细胞培养、核移植技术、克隆动物、动物细胞融合(细胞杂交)、单克隆抗体次要:细胞脱分化、愈伤组织、全能性、杂种细胞、人工种子、细胞贴壁、原代培养、合成培养基、生物反应器、杂交瘤技术、生物导弹 二、本专题总概念图 三、本专题分概念图 2.1 植物细胞工程 2.1.1 植物细胞工程的基本技术 2.1.1.1 植物组织培养技术

2.1.1.2 植物体细胞杂交技术 2.1.2 植物细胞工程的实际应用 2.2 动物细胞工程 2.2.1 动物细胞工程的基本技术(一)2.2.1.1 动物细胞培养

2.2.1.2 体细胞核移植和克隆动物 2.2.2 动物细胞工程的基本技术(二)2.2.2.1 动物细胞融合 2.2.2.2 单克隆抗体

专题3 胚胎工程概念图汇编 一、本专题技术名词 主要:胚胎工程、体内受精、精子、卵子、受精、胚胎发育、体外受精、试管动物技术、胚胎移植、胚胎分割、胚胎肝细胞(ES或EK细胞) 次要:卵泡、精子获能、卵黄膜、封闭作用、原生质滴、放射冠、透明带、卵裂期、桑葚胚、囊胚、原肠胚、供体、受体 二、本专题总概念图: 三、本专题分概念图 3.1 体内受精和早期胚胎发育 3.1.1 精子与卵子的发生 3.1.1.1 精子的发生

结构力学概念题

1.自由度:确立体系几何位置所需的独立坐标数; 稳定:结构保持原有的平衡形式; 稳定自由度:确定结构失稳时所有可能所变形状态所需独立参数数目; 结构动力自由度:为了确定运动过程中任意时候全部质量的位置所需的独立几何参数的数目;结构静力自由度:指结构独立运动方式的个数; 2.几何组成分析的目的和意义: 3.梁、刚架、桁架、拱、索这些结构的目的、特点、联系和区别?(主要从他们的内力、受力特点出发) 4.虚功原理和能量原理的联系与区别? 5.图乘法与积分法联系与区别? 6.影响线的概念:单位位移荷载作用下某一位置变化规律的图形; 性质:起点至终点,荷载不经过处不绘制弯矩图; 静定结构的内力(反力)影响线是直线或折线,位移影响线是曲线;超静定结构的内力和位移影响线都是曲线; 影响线应用(最值内力和位移)(静力法和机动法) 7.[K]物理意义:K ij表示Δj=1单独作用下引起的沿Δi方向的结点力(考法:求总刚) 8.动力计算:①单自由度:W=(1/mδ)1/2=(k/m)1/2 ②2个自由度:刚:︳k-w2M︳=0 柔度:|uδ-I/w2|=0 9.强迫振动的概念: 10.极限荷载(考点塑性变形,最终破坏是由于结构由几何不变—>几何可变)极限分析方法,塑性铰,破坏结构,三个定理

在结构极限荷载的分析中,上限定理指:平衡条件所求得的荷载≥极限荷载(破坏)下限定理:所求荷载≤极限荷载 结构处于极限状态下应满足平衡、屈服、单向机构三条件。 11.超静定结构的特点:①内力不能由平衡条件唯一确定,需考虑变形条件②非荷载因素只有引起结构变形时才能产生内力③荷载下内力与EI的相对值有关,非荷载下内力与EI的绝对值有关; 12.静定结构的特性:静定结构只有在荷载作用下产生内力,其他作用时只引起位移和变形。静定结构有弹性支座和弹性结点时,内力与刚性支座和刚性结点一样,但位移不同; 13.W≤0 ﹤=﹥无多余约束的几何不变 14.M=EIy″ M=P(δ-y) 15.位移法可以静定也可以超静定; 16.单刚中K ij的物理意义 等效结点荷载的等效原则:结构在等效荷载作用下,结构的结点位移与实际荷载作用下的结点位移相等; (几何不变体系:结构;几何可变体系:机构) 17.静定结构在小变形G=Eε条件下适用 静定结构位移计算:Δ=Δp﹢Δt﹢Δc Δp= Δt= Δc= 18.力矩分配法的概念:

常用建筑结构设计计算软件和结构概念设计

常用结构计算软件与结构概念设计 1、结构计算软件的局限性、适用性和近似性。 随着计算机结构分析软件的广泛应用和普及,它使人们摆脱了过去必须进行的大量的手工计算,使人们的工作效率得以大幅度的提高。与此同时,人们对结构计算软件的依赖性也越来越大,有时甚至过分地相信计算软件,而忽略了结构概念设计的重要性。由于种种原因,目前的结构计算软件总是存在着一定的局限性、适用性和近似性,并非万能。如:结构的模型化误差;非结构构件对结构刚度的影响;楼板对结构刚度的影响;温度变化在结构构件中产生的应力;结构的实际阻尼(比);回填土对地下室约束相对刚度比;地基基础和上部结构的相互作用等等。有些影响因素目前还无法给出准确的模型描述,也只能给出简化的表达或简单的处理,受人为影响较大。加之,建筑体型越来越复杂,这就对结构计算软件提出了更高的要求,而软件本身往往又存在一定的滞后性。正是因为如此,结构工程师应对所用计算软件的基本假定、力学模型及其适用范围有所了解,并应对计算结果进行分析判断确认其正确合理、有效后方可用于工程设计。 2、现阶段常用的结构分析模型 实际结构是空间的受力体系,但不论是静力分析还是动力分析,往往必须采取一定的简化处理,以建立相应的计算简图或分析模型。目前,常用的结构分析模型可分为两大类:第一类为平面结构空间协同分析模型;另一类为三维空间有限元分析模型。 1) 平面结构空间协同分析模型。将结构划分若干片正交或斜交的平面抗侧力结构,但对任意方向的水平荷载和水平地震作用,所有正交或斜交的抗侧力结构均参与工作,并按空间位移协调条件进行水平力的分配。楼板假定在其自身平面内刚度无限大。这一分析模型目前已经很少采用。其主要适用于平面布置较为规则的框架结构、框-剪结构、剪力墙结构等。 2) 三维空间有限元分析模型。将建筑结构作为空间体系,梁、柱、支撑均采用空间杆单元,剪力墙单元模型目前国内有薄壁杆件模型、空间膜元模型、板壳单元模型以及墙组元模型。楼板可假定为弹性,也可假定在其自身平面内刚度无限大,还可假定楼板分块无限刚。该模型以节点位移为未知量,由矩阵位移法形成线性方程组求解。

结构设计概念设计的区别

结构设计概念设计 概念设计与结构设计有区别吗?答案是肯定的,搞过多年设计的人们大概都记得:刚毕业从事设计的时候,往往一个简单的工程设计我们都无从下手,而让计算某个构件或设计一个单根构件却是轻而易举的事情,为什么呢?原因是我们刚毕业时没有经验、没有结构的整体概念,也就是说我们不会概念设计。 那么概念设计是什么呢?我认为概念设计是依据个人经验,结合建筑功能要求、结构安全等级、抗震设防等级、地质资料、当地材料、当地自然环境等进行的定性设计过程,其概念设计的主要内容包括:确定三缝设置、结构体系、基础形式和埋深、主要构件的几何尺寸等。 结构设计则是概念设计的逆向过程,其设计是依据概念设计的总体要求、力学和数学的原理由定量(内力、配筋、稳定和变形)过度到定性(规范规定的构造要求)的一个过程。 我们可以对两者的设计过程和要求进行对比见下表: ------------------------------------------------------------------ 内容:概念设计:结构设计 ------------------------------------------------------------------ 个人经验:需要丰富的实践经验:需要扎实的理论基础 ------------------------------------------------------------------ 设计过程:先粗后细(确定方案先先细后粗(计算后按构造要:何尺 求估算后设计)寸、估算经济指标) ------------------------------------------------------------------ 知识要求:政策、法规、施工技术、建应用专业成果:规范应用 筑:力学、数学、专业知识、规:经济 ------------------------------------------------------------------ 设计成果:定性:定量 ------------------------------------------------------------------ 主要工作内容:收集分析资料和建筑方案:计算和绘制施工图 ------------------------------------------------------------------ 影响造价的方法:结构体系优选:优化理论的应用 ------------------------------------------------------------------ 影响造价幅度:非常大:一般 ------------------------------------------------------------------ 决定施工的难度:概念设计决定:影响很小 ------------------------------------------------------------------ 设计低质的危害:致命性的整体危害:局部性的不安全 ------------------------------------------------------------------ 从对比表中我们可以看出概念设计的重要性,然而现在我们许多设计人员过于理论化,任何情况下首先讲的是计算结果,而忽视结构构造。甚至于一些单位的总工不参与设计的前期概念设计阶段,而只对着计算书审核设计图纸。我们有些新参加工作的同志有时那着书本和计算书与审核人员较劲。特别是现在在我们这个行业神话了计算机的应用,一切按计算结果设计,这是一种不正常的现象。例如:现在三维结构软件分析的次梁支座负弯距很小,是因为理论计算的支座位移大,而实测的支座位移却比理论计算的结果小的多。 当然不能强调了概念设计的重要性,就轻视设计过程的计算,没有单根构件的安全就没有整体结构的安全,我说的目的是,在我们的设计工作中概念设计和结构设计同等重要。

我所理解的结构概念设计

摘要:针对目前建筑结构设计当中墨守成规的现象,提倡采用概念设计思想来促进结构工程师的创造性,推动结构设计的发展。所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确力学分析或在规范中难以规定的问题中,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。 关键词:高层建筑;结构设计;概念设计 一、前言 在不断的结构设计研究与实践中,人们积累了大量有益的经验,并体现在设计规范、设计手册、标准图集等等。随着计算机技术和计算方法的发展,计算机及其结构程序在结构工程中得到大量地应用,每个设计单位都在为彻底甩掉图板而做努力。结果给部分结构工程师造成一种错觉,觉得结构设计很简单,只需遵循规范、手册、图集,等待建筑师给出一个空间形成的方案(非结构的),使用计算机,然后设法去完成它,自己只不过是一个东拼西凑的计算机画图匠而已。这不仅不能有效地运用他们的知识、精力和时间,而且还会与建筑师的交流中产生分歧与矛盾。 二、概念设计的重要性 概念设计是展现先进设计思想的关键 ,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计 ,并能有意识地处理构件与结构、结构与结构的关系。一般认为概念设计做得好的结构工程师 ,随着他的不懈追求 , 其结构概念将随他的年龄与实践的增长而越来越丰富 ,设计成果也越来越创新、完善。遗憾的是 ,随着社会分工的细化 ,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计 ,缺乏创新 ,更不愿 (不敢 )创新 ,有的甚至拒绝对新技术、新工艺的采纳 (害怕承担创新的责任 )。大部分工程师在一体化计算机结构程序设计全面应用的今天 ,对计算机结果明显不合理、甚至错误而不能及时发现。随着年龄的增长 ,导致他们在大学学的那些孤立的概念都被逐渐忘却 ,更谈不上设计成果的不断创新。强调概念

结构概念设计课程大纲-上海交通大学船舶海洋与建筑工程学院

《结构概念设计》课程大纲课程代码CV305 课程名称中文名:结构概念设计 英文名:Conceptual Design for Structures 课程类别专业核心课修读类别必修学分 2 学时32 开课学期第6学期 开课单位船舶海洋与建筑工程学院土木工程系 适用专业土木工程专业 先修课程理论力学、材料力学、结构力学、混凝土结构原理、土力学与地基基础 教材及主要参考书1.现代结构设计的概念与方法,黄真,林少培,中国建筑工业出版 社,2010,第一版,ISBN:9787112116317。 2.Structural Concepts and Systems for Architects and Engineers, T. Y. Lin 等, 1988,ISBN:0471051861。 3.结构概念和体系,林同炎著,高立人等译,中国建筑工业出版 社,1999,ISBN:7112038103。 4.建筑概念设计与选型, 机械工业出版社,江见鲸等, 2004,ISBN: 7111142179。 一课程简介 我国老的土木工程专业教育体系过分强调结构细节的设计,而忽略结构整体概念设计,使培养出来的学生在结构设计的早期阶段不能发挥作用。而现代结构设计要求设计师在结构设计的早期阶段提出很好的结构体系和概念设计方案。好的概念设计可以保证结构的整体设计可行,使建筑方案更为完美,使建筑造价更为合理。因此,欧美国家大学十分重视结构概念设计的教学,已有成熟的教材和练习题。 本课程目的是让学生熟悉各种结构体系,学会从结构整体角度分析结构概念设计的关键问题,能在早期建筑设计的方案设计及初步设计阶段分析结构体系。本课程在教学中通过结构模型制作强调学生的动手能力和创新能力培养,通过手算练习培养学生作为工程师的直觉,通过双语教学提高学生的专业英语能力。二本课程所支撑的毕业要求 本课程支撑的毕业要求及比重如下:

高中生物必修2概念图汇编

第1章遗传因子的发现概念图汇编 一、本章核心概念: 主要:基因的分离定律,基因的自由组合定律,正交,反交,杂交,自交,F1,F2,测交,相对性状,性状分离,遗传因子 次要:显性性状,隐性性状,显性遗传因子,隐性遗传因子,杂合子,纯合子,基因型,表现型,假说-演绎法 二、本章总概念图: 三、各节子概念图: 第1节孟德尔的豌豆杂交实验(一) 1.1 孟德尔的豌豆杂交实验(一)

第2节孟德尔的豌豆杂交实验(二) 1.2 孟德尔的豌豆杂交实验(二) 第2章基因和染色体的关系概念图汇编一、本章核心概念:

主要:减数分裂,受精作用,精子,卵子,减数第一次分裂,减数第二次分裂,等位基因,非等位基因,同源染色体,非同源染色体 次要:睾丸,卵巢,精原细胞,卵原细胞,初级精母细胞,初级卵母细胞,次级精母细胞,次级卵母细胞,极体,联会,四分体 二、本章总概念图: 三、各节子概念图: 第1节减数分裂和受精作用 2.1 减数分裂和受精作用

第2节基因在染色体上2.2 基因在染色体上 第3节伴性遗传 2.3 伴性遗传

第3章基因的本质概念图汇编 一、本章核心概念: 主要:DNA分子双螺旋结构,DNA半保留复制,基因,遗传信息,遗传效应,肺炎双球菌实验,噬菌体侵染细菌实验,碱基互补配对原则 次要:碱基,腺嘌呤,胸腺嘧啶,尿嘧啶,胞嘧啶,同位素示踪技术,密度梯度离心,解旋,DNA分子的多样性,DNA分子的特异性 二、本章总概念图: 三、各节子概念图: 第1节DNA是主要的遗传物质

3.1.1 肺炎双球菌转化实验 3.1.2 噬菌体侵染细菌实验 第2节DNA分子的结构 3.2 DNA分子的结构

管理信息系统的定义概念和结构

精心整理 第一篇概念篇 第一章管理信息系统的定义、概念和结构 1.1管理信息系统的定义 ?以书面或口头的形式,在合适的时间向经理、职员以及外界人员提供过去的、现在的、预测未来的有关企业内部及环境的信息,以帮助他们进行决策。 ?它是一个利用计算机硬件和软件,手工作业,分析、计划、控制和决策模型, 管理 护和 决策, 企业 切事物变 需要,其次有利于企产品或服 传真、电话 人为主的收集目的,支持企业高层决策、中层控制、基层运作的集成化的人机系统。 1.2 管理信息系统的概念 1.2.1概念 信息管理系统是一个人机系统: 机器: 计算机硬件 计算机软件:业务信息系统、知识工作系统、决策支持系统、经理支持系统。 各种办公设备和通讯设备 人:

高层决策人员、中层职能人员、基层业务人员 系统设计者: 人应该做什么?、计算机应该做什么?、人机如何交互? 管理信息系统是一个一体化系统或集成系统: 总体出发:保证共享数据、减少数据的冗余度,保证数据的兼容性和一致性。 个体:可以有自己的专用数据,但应在总体的规划之下,按照统一的标准、大纲。 数据库: 用数学模型分析数据,辅助决策。 财务 保存大量的信息,并能迅速地查询与综合,为组织的决策提供信息支持。 ●决策支持,这是管理信息系统的主要功能。利用数学方法和各种模型处 理信息,以期预测未来,并进行科学的决策。决策是为达到某一目的而在若干个可行方案中经过比较、分析,从中选择合适的方案并赋予实施的过程。 1.3 管理信息系统的结构 1.3.1 管理信息系统的概念结构: ●M I S总体结构由信息源、信息处理器、信息用户和信息管理者组成。信息 源是信息的来源或者说是以各种不同的方式存在的信息;信息处理器负责信息的传输、加工、存贮;信息用户是系统的使用者;信息管理者负责系统设计、实现、运行和维护。

结构概念设计

对结构概念设计的认识 【摘要】 给大家推荐一个用于结构设计的好资料。该资料特别适合刚从事结构设计的人员。 【关键词】 概念重要性、协同工作与结构体系、材料利用率、七个比值 1 概念设计的重要性 概念设计是展现先进设计思想的关键 ,一个结构工程师的主要任务就是在特定的建筑空间中用整体的概念来完成结构总体方案的设计 ,并能有意识地处理构件与结构、结构与结构的关系。一般认为概念设计做得好的结构工程师 ,随着他的不懈追求 , 其结构概念将随他的年龄与实践的增长而越来越丰富 ,设计成果也越来越创新、完善。遗憾的是 ,随着社会分工的细化 ,大部分结构工程师只会依赖规范、设计手册、计算机程序做习惯性传统设计 ,缺乏创新 ,更不愿 (不敢 )创新 ,有的甚至拒绝对新技术、新工艺的采纳 (害怕承担创新的责任 )。大部分工程师在一体化计算机结构程序设计全面应用的今天 ,对计算机结果明显不合理、甚至错误而不能及时发现。随着年龄的增长 ,导致他们在大学学的那些孤立的概念都被逐渐忘却 ,更谈不上设计成果的不断创新。强调概念设计的重要 ,主要还因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性 ,比如对混凝土结构设计 ,内力计算是基于弹性理论的计算方法 ,而截面设计却是基于塑性理论的极限状态设计方法 ,这一矛盾使计算结果与结构的实际受力状态差之甚远 ,为了弥补这类计算理论的缺陷 ,或者实现对实际存在的大量无法计算的结构构件的设计 ,都需要优秀的概念设计与结构措施来满足结构设计的目的。同时计算机结果的高精度特点 ,往往给结构设计人员带来对结构工作性能的误解 ,结构工程师只有加强结构概念的培养 ,才能比较客观、真实地理解结构的工作性能。概念设计之所以重要 ,还在于在方案设计阶段 ,初步设计过程是不能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念 ,选择效果最好、造价最低的结构方案 ,为此 ,需要工程师不断地丰富自己的结构概念 ,深入、深刻了解各类结构的性能 ,并能有意识地、灵活地运用它们。 2 协同工作与结构体系 协同工作的概念广泛存在于工业产品的设计和制造中 ,对于任一个工业产品 ,我们均不希望其在远未达到其设计寿命 (负荷、功能 )时 ,它的某些部件(或零件 )即出现破坏。对于建筑结构 ,协同工作的概念即是要求结构内部的各个构件相互配合 ,共同工作。这不仅要求结构构件在承载能力极限状态能共同受力 ,协同工作 ,同时达到极限状态 ,还要求他们能有共同的耐久寿命。结构的协同工作表现在基础与上部结构的关系上 ,必须视基础与上部结构为一个有机的整体 ,不能把两者割裂开来处理。举例而言 ,对砖混结构 ,必须依靠圈梁和构造柱将上部结构与基础连接成一个整体 ,而不能单纯依靠基础自身的刚度来抵御不均匀沉降 ,所有圈梁和构造柱的设置 ,都必须围绕这个中心。对协同工作的理解 ,还在于当结构受力时 ,结构中的各个构件能同时达到较高的应力水平。在多高层结构设计时 ,应尽可能避免短柱 ,其主要的目的是使同层各柱在相同的水平位移时 ,能同时达到最大承载能力 ,但随着建筑物的高度与层数的加大 ,巨大的竖向和水平荷载使底层柱截面越来越大 ,从而造成高层建筑的底部数层出现大量短柱 ,为了避免这种现象的出现 ,对于大截面柱 ,可以通过对柱截面开槽 ,使矩形柱成为田形柱 ,从而增大长细比 ,避免短柱的出现 ,这样就能使同层的抗侧力结构在相近的水平位移下 ,达到最大的水平承载力 ;而对于梁的 跨高比的限制 ,一般还没有充分认识到。实际上与长短柱混杂的效果一样 ,长、短梁在同一榀框架中并存 ,也是极为不利的 ,短跨梁在水平力的作用下 ,剪力很大 ,梁端正、负弯矩也很大 ,其配筋全部由水平力决定 ,竖向荷载基本不起作用 ,甚至于梁端正弯矩钢筋也会出现超筋现象 ,同时 ,由于梁的剪力增大 ,也会使支承柱的轴力大幅增大 ,这种设计是不符合协同工作原则的 ,同时 ,

结构的概念

结构的概念 保障建筑物能够安全使用的各部分构件,即结构。 建筑物用来形成一定空间及造型,并具有抵御人为和自然界施加于建筑物的各种作用力,结构就是抵御这些力的主要的建筑骨架。 结构的组成 1)水平构件板:平板,曲面板,斜板梁:直梁,曲梁,斜梁绗架,网架 2)垂直构件柱,墙体,框架,悬索等 3)其他构件如拱,券,兼有水平和垂直 结构的类型一 按照建筑材料划分 1.钢筋混凝土结构 2.砌体结构(砖,石等) 3. 钢结构 4.木结构 5.塑料结构 6.薄膜充气结构 按照主体结构形式划分 1.墙体结构 2.框架结构 3.框剪结构 4.筒体结构 5.绗架结构 6.拱形结构 7.网架结构(平面,球形) 8.空间薄壁结构(薄壳.折板.幕式) 9.钢索结构10.薄膜结构11.刚架结构 按照建筑体形划分 1.单层 2.多层 3.高层 4.超高层(大于100米) 5.大跨度(40~50米以上) 6.巨型(北航站楼,鸟巢,央视新楼等) 按照受力特点划分 1.平面结构体系 2.空间结构体系 第一章砌体结构 砌体结构的优点 1. 就地取材 2. 既是维护和分隔的需要,又是承重结构 3. 刚度较大 4. 施工简单进度快,技术要求低,设备简单 砌体结构的缺点 1. 比混凝土强度低,层数限制 2. 抗震性能差 3. 横墙间距受限制,不可能获得大空间 墙体布置方案 1.横墙承重 2. 纵墙承重 3. 终横墙承重 4. 内框承重 第二章梁 (框架) 1交叉梁结构2交叉梁边长影响3不等边楼层平面的交叉梁4对角正交网格5其他形式的交叉梁6 均等的三角形交叉梁7分级的正交交叉梁8分级的向心交叉梁9分级的向心交叉梁10斜交的均等交叉梁11三角的均等向心交叉梁12放射形的交叉梁 第三章刚架 1三铰刚架2铰接刚架组合3铰接刚架组合4铰接刚架组合5铰接刚架的建筑形式6完整刚架及多节间刚架7节间设计原理8多节间刚架的大跨度建筑9双向多节间刚架的大跨度建筑

相关文档
最新文档