手性分子药物与人类健康

手性分子药物与人类健康
手性分子药物与人类健康

手性分子药物与人类健康

班级:药学三班

姓名:王威

学号:20121240310

【摘要】

目的

阐明药物手性的概念及其药理活性。

方法

综述手性分子的研究历史和药物手性对药理作用的影响。结果

手性药物有着不同的药理活性,对人体产生各种生理效应,对其进行合理的分离纯化可以减小药物毒副作用,增强药效,同时能够带来巨大的经济效益。

结论

通过对手性药物药理活性的研究能更深入地理解或积极地预期一些药物相互作用,为临床合理用药提供依据。

【关键词】手性药物; 药理活性

近年来,药物手性的临床意义已引起了人们的注意,手性药物的开发已成为国际热点。目前,世界正在开发的1200种新药中有3/3是手性药物。手性药物有的以消旋体(racemate)形式上市,有些以单一对映体(enantiomer)上市。手性药物发展的潜势是十分巨大的。手性药物带来了巨大的经济效益,其市场范围包括手性药物制剂,手性原料药和手性中间体。2000年全世界的手性药物销售额突破了1200亿美元,其中制剂就有900亿美元[1]。因此,研究手性药物为临床合理使用手性药物及研制开发优对映体新药,具有重要的意义。

1、手性药物相关问题简述

分子结构基团在空间排列不同的化合物称为立体异构体,其中在空间上不能重叠,互为镜像关系的立体异构体称为对映体,这一对化合物就像人的左右手一样,称为具有手性;当药物分子中碳原子上连接有4个不同的基团时,该碳原子被称为手性中心(也称不对称中心),相应的药物被称作手性药物(chiral drug)。对映体之间,除了使偏振光偏转(旋光性)的程度相同而方向相反外,其他理化性质相同。因此,对映体又称光学异构体[2]。

分子手性在自然界生命活动中起着极为重要的作用,即手性是生命过程的基本特征。作为生命活动重要基础的大分子如核酸、蛋白质、多糖等均具有手性。因此说,人类的生命本身就依赖于手性识别。如人们对L - 氨基酸和D - 糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。手性的研究可以追溯到1874 年第一位化学诺贝尔奖获得者JHVan’t Hoff。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像-两者互为镜像[3]。1956年Pfeiffer根据对映体之间药理活性的差异,总结出一条规则:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体(eutomer)与活性低的异构体(distomer)之间活性比例(eudismicratio)越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50 年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用,结果在欧洲导致1.2万例胎儿致残,即海豹肢,于是1961年该药从市场上撤消。后来发现沙利度胺R 型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,所以无论是S型还是R型,作为药物都有致畸作用。因此对不同对映体药理活性的研究已经显得刻不容缓。

2、手性药物的活性

手性药物进人体内后,其药理作用是通过与体内靶分子之间的严格手性匹配和分子识别能力而实现的[4]。即通过与体内酶、核酸等大分子中固有的结合位产生诱导契合,抑制(或激活)该大分子的生理活性,从而达到治疗目的。目前,手性药物的活性大致有以下几个类别。

2.1、对映体之间有相同或相近的某一活性

如普萘洛尔左旋体和右旋体具有杀灭精子的作用,其对映体均可作为避孕药[5]。抗凝血药华法林(warfarin)以外消旋体供药,研究发现其S-(- )异构体的抗凝血作用比R-(+ )体强2 ~6倍,但S- (- )异构体在体内消除率亦比R-(+ )体大 2 ~5倍,所以,实际抗凝血效力相似[6]。属于这类药物已见报道的有抗组织按药异丙嗪(promethazine),降眼压药噻吗洛尔(timolol),局麻药丙胺卡因(priocaine)、英卡胺(encainide),抗肿药呋氟啶(ftorafur),平喘药丙羟茶碱(proxyphylline),抗心律失常药氟卡尼(flecainide)等。

2.2一个对映体具有显著的活性但其对映体活性很低或无此活性

一般认为若某一对映体只有外消旋的1%的药理活性,

则可以认为其无活性。因为这微小的活性可能来源于掺杂于该单一对映体中微量的活性单一对映体。例如氯苯吡胺(扑尔敏,chlorpheniramine)右旋体的抗组胺作用比左旋体强100 倍。吡酮酸等抗菌药氧氟沙星(氟嗪酸Ofloxacin)[7]的S-(- )-异构体是抗菌活性体,而R-(+ )-异构体则无活性。属于这一类的主要药物是非甾体抗炎药(NSAID)的α-芳基丙酸类化合物,如萘普生[8](naproxen)、布洛芬(ibuprofen)等。

2.3对映体有相同、但强弱程度有差异的某一活性抗癌药环磷酰胺(cy - clophosphamide),其手性中心不是在通常的碳原子,而在磷原子。其(S)-异构体活性是(R)-异构体的2倍,然而,对映体毒性几乎相同。有时一个异构体具有较强的副作用,也应予考虑。如氯胺酮(ketamine)是以消旋体上市的麻醉镇痛剂,但具有致幻等副作用,进一步的药理研究证实(S)-异构体活性是(R)-异构体的1/3,却伴随着较强的副作用。

2.4对映体具有不同性质的药理活性,可以分几种情况来讨论。

2.4.1对映体的不同活性,可起到“取长补短、相辅相成”的作用。一个突出的例子是利尿药茚达立酮(indacrinone)[9]。其(R)-异构体具有利尿作用,但有增加血中尿酸的副作用;而(S)-异构体有促进尿酸排泄的作

用。进一步的研究表明对映体达到一定比例能取得最佳疗效。又如,多巴酚丁胺,其左旋体为α受体激动剂,对β受体激动作用较轻微;而右旋体为β受体激动剂,对α受体激动作用较轻微。因此消旋体给药能增加心肌收缩力,但不加快心率和升高血压。

2.4.2对映体存在不同性质的活性,可开发成2个药物。丙氧芬(propoxyphene)[10]的右旋体(2S、3R)为镇痛药,但左旋体(2R、3S)具有镇咳作用,现在两者已分别作为镇痛药和镇咳药应用于临床。柳胺苄心定(labetalol)是一种心血管药,具有α1阻滞活性的β阻滞剂,产生β阻滞作用的主要RR体,而α1阻滞活性则归因于SR体,用于治疗高血压的是RR体。

2.4.3一个对映体具有疗效,而其对映体产生副作用或毒性。青霉胺(Penicillamine)的 D -型体是代谢性疾病和铅、汞等重金属中毒的良好治疗剂,但它的L -型体会导致骨髓损伤,嗅觉和视觉衰退以及过敏反应等。临床上只能用D -青霉胺。L-多巴有抗震颤麻痹症作用,而D-多巴有使粒细胞减少等副作用[11]。四咪唑的(S)-(-)-异构体具有广谱、高效的驱虫性,而(R)-(+)-异构体不但药效较低,而且会引起呕吐等副作用。过敏反应等:芬氟拉明(fenfluramine)是食欲抑制药,作为减肥药物,它的药理活性主要由R-(+)异构体产生,而S-(-)异构体无活性,且

会导致头晕、嗜睡的不良反应。

2.4.4对映体具有相反的活性。巴比妥类药物的对映体对中枢神经系统发生相反的作用,如1-甲基-5-苯基-5-丙基巴比土酸,其(R)-异构体有镇静、催眠活性,而(S)-异构体引起惊厥[12]。R-扎考必利对5-HT3具有拮抗作用,而S-构体对其产生激动作用[13]。

3、手性药物的不良反应及影响

手性药物对映体与人体内的酶、受体、离子通道等生物大分子作用,表现出错综复杂的对映体选择性,它们的药代动力学、药效学特征将对临床应用手性药物带来极大的挑战,往往会产生意想不到的毒性反应和不良作用。由于人体内的细胞色素P450酶谱系的遗传多样性,表现出对手性药物代谢特征的不同造成毒副作用的原因是比较复杂的,此外肝、肾功能有缺陷会促使手性药物的肝代谢和肾排泄过程发生改变,以及手性药物不同对映体间的相互作用等等是引起不良反应的因素。例如,非洛地平(felodipine)是一手性药物,由于左旋体和右旋体药代动力学的不同,其不良反应也不同,具体表现为头痛和面部潮红,右旋体与左旋体和消旋体比较,不良反应的发生率更高[14]。

4、结论

目前以单一对映体上市的药物为数不多,尤其是合成药物,但随着人民对健康要求的不断提高,获得疗效好,毒副作用低的单一对映体是药学工作者必须重视的问题。深入研究手性药物临床合理应用并开展对映体特异性的治疗药物监测对提高合理用药水平,避免毒副作用和不良反应具有深远意义。

【参考文献】

1王普善.手性药物的开发正当时机.精细与专用化学品,1998,(15):1-2.

2王炜,廖愚生.浅谈手性药物的研究与发展.淮南职业技术学院学报,2002,2(3):122-124.

3马纪伟,闫东良.手性和手性药物.井冈山医专学报,2005,12(3):24-26.

4许关姐,刘玲玲.手性药物.中国药学杂志,2001,36(3):152.

5Ahmed S,Imai T,Otagiri M. Stereoselectivity in cutaneous hydr-nlysis and tranadermal transport of prodrug. Enantiomer,1997,2(3-4):181.

6陈亮,何风慈.手性药物的药动学、药效学及不良反应.药物不良反应杂志,2003,2:73-76.

7Stahlmann Ralf.Clinical toxicological aspects of

fluoroquinolone- s.Toxicol Lett,2002,127(1-3):269.

8杨藻衰.药理学与药物治疗学.北京:人民卫生出版社,2000,106.

9Meidan YH. Chiraldrug analysis.Chemical & Engineering News, 1990,68(2):38.

10郑虎.药物化学.北京:中国医药科技出版社,2000,233. 11钱呜蓉,陈亚坤,曾苏.手性药物的研究策略.中国现代应用药学杂志,2004,21(6):461-464.

12蒋兆艰,吴笑春.手性药物的对映体选择性与临床应用.中国药房,2001,12(3):162.

13Ho IK,Harris RA.Mechanism of action of barbiturates.Ann Rev Phannacol Ttoxicol,1981,21:83.

14Aberg J,Edgar B,Grind M,et al.Vsodilating properties and pharmnacokinetic of S-and R-elodipine in man. Clin Pharmacol Ther,1995,57(2):67.

选修三 分子结构与性质

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。 3.说出δ键和π键的明显差别和一般规律。 教学重点、难点: 价层电子对互斥模型 教学过程: [复习引入] NaCl、HCl的形成过程

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

分子的性质

分子的性质 《选修三第二章第三节分子的性质》导学案(第3课时)学习 时间 2011 — 2012学年上学期周【课标要求】知识与技能要 求: 1、从分子结构的角度,认识“相似相溶”规律。2、了解“手性 分子”在生命科学等方面的应用。3、能用分子结构的知识解释无机 含氧酸分子的酸性。【复习】分子的极性判断标准,分子间作用力 对物质性质的影响。【阅读与思考】阅读教材P50“溶解性”部分内容,什么事“相似相容”原理?溶解度影响因素?“相似相容”原理有 何应用?【思考与交流】1.比较NH3和CH4在水中的溶解度。怎 样用相似相溶规律理解它们的溶解性不同? 2.为什么在日常生活 中用有机溶剂(乙酸乙酯等)溶解油漆而不用水? 3.在一个小试管里 放入一小粒碘晶体,加入约5 mL蒸馏水,观察碘在水中的溶解性(若有不溶的碘,可将碘水溶液倾倒在另一个试管里继续下面的实验)。在碘水溶液中加入约1 mL四氯化碳(CCl4),振荡试管,观察 碘被四氯化碳萃取,形成紫红色的四氯化碳溶液。再向试管里加入 1mL浓碘化钾(KI)水溶液,振荡试管,溶液紫色变浅,这是由于在 水溶液里可发生如下反应:I2+I-===I-3。实验表明碘在纯水还 是在四氯化碳中溶解性较好?为什么?【实践】每个同学亮出自己 的左又手。看能否完全重合?【科学史话】P52-53【回顾与思考】 H2S04和HN03是强酸,而H2S03和HN02是弱酸,即从酸性强弱 来看:H2S03Br2>Cl2>F2,Rn>Xe>Kr>Ar>Ne>He(2)对物质溶解性的影响如: 在273 K、101 kPa时,氧气在水中的溶解量(49 cm3?L-1)比氮气在 水中的溶解量(24 cm3?L-1)大,就是因为O2与水分子之间的作用 力比N2与水分子之间的作用力大所导致的。【典例解悟】1.欲提取 碘水中的碘,不能选用的萃取剂是()A.酒精B.四

手性与手性药物

手性与手性药物 【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 Abstract:Recently,clinical sigmificance of chiral drug attracts wide attention.Exploration of chiral drug was an heated discussion of internatiomal research.The paper expounded the concept of chirality and drug ,chiral actual meaning of research,and progresses on the research of chiral drug,showed that market foreground of chiral drug was extensive. Key words:Chirality;Chiral drug. 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。

在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法 非对映体结晶法适用于拆分外消旋化合物,利用天然旋光纯手性拆分试剂与消旋化合物

手性分子与手性药物1

有机化学 ——手性分子和手性药物 12应化一班 高钰(120911103) 胡傲(120911106) 文正(120911118) 鲍敏(120911126) 李梦园(120911132) 张艳(120911146) 郑丽(120911150)

手性分子 手性:实物和其镜像不能重叠的现象 手性碳:连有4个不同的原子或基团的碳原子(“*”)手性分子:不能与其镜像重合的分子 如何判断一个分子是否有手性? ●最直接法:画其对映体,看是否重合 ●观察有无手性碳: ●若分子中只含有一个手性碳,即为手性分子●若分子中含有2个以上手性碳,视情况分析●观察其结构中是否具有对称因素(对称面、对 称中心及其它对称因素);一般说来,如果分子既没有对称面有无对称中心,分子就具有手性。

最直接法 两者不能重合,是手性分子 两者能重合,不是手性分子

观察有无手性碳 有手性碳,是手性分子 有手性碳,但不是手性分子 有手性碳(两个及两个以上)的不一定是手性分子

对称性 (一)对称面:假想有一个平面它可以把分子分割成互为镜像的两半,这个平面就叫对称面。 (二)对称中心:在分子中取一点P,画通过P点的任一直线,若在与P点等距离的此直线两端为相同原子(团),则P点即为该分子的对称中心。 (三)对称轴:如果穿过分子画一条直线,分子以它为轴旋转一定角度后,可以获得与原来分子相同的形象,这一直线即为该分子的对称轴。

R/S构型标记法 (一)R/S构型标记法命名规则 1、根据次序规则,排列成序,a>b>c>d; 2、把最小的d基团放在最远,其它三个朝向自己; 3、观察a b c顺序,若呈顺时针为R-构型;呈逆时针为S-构型。(二)由费歇尔投影式确定R/S构型的方法

手性药物的不对称合成90 (3)

手性药物及其不对称合成 [摘要]近年来不对称合成法应用在手性药物及药物中间体的制备中,使手性药物得到了快速的发展,不少手性药物及其中间体已经实现了工业化生产。本文介绍了手性药物及获取手性药物的方法,对不对称合成法尤其是不对称催化法在手性药物工业制备中的应用进行了综述。 [关键词]手性药物;制备;不对称合成;不对称催化 Chiral Drugs and Asymmetric Synthesis Abstract: In recent years ,since the asymmetric synthesis has been used in preparation of the chiral drugs and pharmaceutical intermediates ,there has been fast development in preparation of chiral drugs ,some of which has been already synthesed in industry scale .What is chiral drugs and the ways to abtain the chiral drugs are introduced .The methods of asymmetric synthesis,especially asymmetric catalytic reaction used in synthesis chiral drugs are reviewed . Key words :chiral drugs ,preparation , asymmetric synthesis;asymmetric catalytic synthesis 1 引言 2001 年10 月10 日,瑞典皇家科学院决定将2001年度诺贝尔化学奖授予在催化不对称反应领域做出突出贡献的3 位科学家:威廉·诺尔斯,野依良治与巴里·夏普赖斯。他们利用手性催化剂大大提升了单一对映异构体的产率,为手性药物的制备以及其他行业的发展都做出了突出的贡献。【1】 :2手性药物 手性药物(chiral drug)是指其分子立体结构和它的镜像彼此不能够重合的

手性药物研究技术指导原则

2 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完 全重叠的性质,正如人的左右手之间的关系,称之为手性,具有手性的化合物即称 为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都 具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和 核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗等作用 的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异 构体所产生的药理效应就可能不同。手性化合物除了通常所说的含手性中心的化合 物外,还包括含有手性轴、手性平面、螺旋手性等因素的化合物。在本指导原则中 所指的手性药物主要是指含手性中心的化合物,其它类型的手性药物研发也可参考 本指导原则的基本要求。 手性药物是指分子中含有手性中心(也叫不对称中心)的药物,它包括单一的立 体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同 构型的立体异构体的药理作用也可能不同,大致可分为以下几种情况【1】 : (1)药物的药理作用完全或主要由其中的一个对映体产生。如S-萘普生的镇 痛作用比其R 异构体强35倍。 (2)两个对映体具有完全相反的药理作用。如新型苯哌啶类镇痛药-哌西那朵 的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。 (3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副作用即由其右旋 体产生。 (4)两个对映体的药理作用不同,但合并用药有利。如降压药-萘必洛尔的右 旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗 高血压药物茚达立酮【2】 的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进 一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 (5)两个对映体具有完全相同的药理作用【3】 。如普罗帕酮的两个对映体即具有 相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差 异,美国FDA在其关于开发立体异构体新药的政策【4】 中要求在对手性药物进行药理毒 理研究时,应分别获得该药物的立体异构体,进行必要的比较研究,以确定拟进一 步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究 提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学相关技术指 导原则的基础上,充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药 学研究提供一般性的指导。本指导原则中所涉及的手性药物主要针对单一的立体异 构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本 指导原则时,还应具体问题具体分析,在遵循药物研发的自身规律以及手性药物一 般要求的基础上,根据所研制药物的特点,进行针对性的研究。如采用本指导原则 以外的研究手段与方法,则该方法或手段的科学性和可行性必须经过必要的验证。

手性分子与手性药物

. . . . . 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. . . . . 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. . . . . 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. . . . . 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. . . . . Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

手性分子与旋光性

手性分子和旋光性 一、手性分子与非手性分子 不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,其关系正和左、右手的关系相似,因此现在普遍地称这类分子为手 它可以写出结构式(i)和(ii),(i)和(ii)与左、右手一样具有实体和镜象的关系,因此乳酸是一个手性分子。实体和镜象互称为对映体。一对对映体从表观上看,它们是“非常对称”的,这种实体和镜象不能重叠的而表观上或结构上又“非常对称”的关系可看作是一种“特殊的对称”。 从对称因素考虑,乳酸只有一个C 简单对称轴,任何一个物体或分子旋转360° 1 (n=1)时,都可复原。为了和许多其它只具有C n>1简单对称轴的手性分子区别开来,所以把这种手性分子称为不对称分子,而后者称为非对称分子。 乳酸分子还有一个特点,它的一个碳原子和四个不同的基团相连,这种碳原子称为不对称碳原子或手性碳原子,氮、磷、硫原子也可连接不同的基团,这种原子,均可称为手性中心。现在已知绝大多数手性分子(不对称分子)含有一个或多个不对称碳原子,但并不能因此就将含有手性碳原子作为产生手性分子的绝对条件,产生手性分子的必要与充分条件是实体和镜象不能重叠。

二、对映体和光活性 实体和镜象不能重叠的分子成为一对对映体。这二者的物理性质及化学性质,如溶解度、熔点、密度、焓等,都是相同的。它们的化学反应性能也是相同的,只有在特殊的环境下,如在手性溶剂或试剂存在下,才表现出差异,生物体内的大多数反应是在手性的环境下进行的。但一对对映体对偏振光的作用不同,一个可以把偏振光向左旋,另一个则把偏振光向右旋,而非手性分子对偏振光没有这种作用,因此手性分子又称为光活性分子。光活性并不是手性分子的唯一特征,个别手性分子显示不出旋光性来,因此用手性这个名词,就更恰当一些。偏振光是检查手性分子的一种最常用的方法,因此需要对它略加讨论。 普通的光线含有各种波长的射线,是在各个不同的平面上振动的,图3-1(i)代表一束光线朝着我们的眼睛直射过来,它包含有在各个平面上(如A,B,C,D…)振动的射线,假若使光线通过一个电气石制的棱镜,又叫尼可尔(Nicol)棱镜,一部分射线就被阻挡不能通过,这是因为这种棱镜具有一种特殊的性质,只有和棱镜的晶轴平行振动的射线才能全部通过。假若这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的射线才可通过,这种通过棱镜的光叫做平面偏光。图3-1(ii)表示凡在虚线平面上振动的射线都将受到全部地或者部分地阻挡。图3-1(iii)表示通过棱镜的光线是仅含有在箭头所示平面上振动的偏光。 用两块电气石制的棱镜放在眼睛和一个光源之间,若两个棱镜的轴彼此平行,则通过第一个棱镜的射线也可通过第二个棱镜,我们看到的是透明的图3-2(i),若两个棱镜的轴互相垂直,通过第一个棱镜的射线就不能通过第二个棱镜,此时看到两镜相交处是不透明的[图3-2(ii)]。电气石棱镜对于光的作用可以用一本书和一

手性分子与手性药物

. 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

手性药物的合成综述

手性合成的综述 姓名: 学号: 专业: 院系: 目录 手性合成的概念与简介 (2) 手性药物的合成的发展历程 (3) 手性合成的方法 (5) 几种手性药物合成方法的比较 (7) 化学—酶合成法合成手性药物的实例 (7) 手性药物的研究现状和展望 (10) 参考资料 (13) 手性药物的概念与简介 手性(英文名为chirality, 源自希腊文cheir)是用来表达化合物分子结构不对称性的术语。人的手是不对称的,左手和右手相互不能叠合,彼此是实物和镜像的关系,这种关系在化学中称为“对映关系”,具有对映关系的两个物体互为“对映体”。 化合物的手性与其空间结构有关,因为化合物分子中的原子的排列是三维的。例如,图1中表示乳酸分子的结构式1 a和1 b,虽然连接在中心碳原子上的4个基团,即H, COOH, OH和CH3都一样,但它们却是不同的化合物。它们之间的关系如同右手和左手之间的关系一样,互为对映体。 手性是人类赖以生存的自然界的本质属性之一。生命现象中的化学过程都是在高度不对称的环境中进行的。构成机体的物质大多具有一定空间构型,如组成蛋白质和酶的氨基酸为L-构型,糖为D-构型,DNA的螺旋结构为右旋。在机体

的代谢和调控过程中所涉及的物质(如酶和细胞表面的受体)一般也都具有手性,在生命过程中发生的各种生物-化学反应过程均与手性的识别和变化有关。 由自然界的手性属性联系到化合物的手性,也就产生了药物的手性问题。手性药物是指药物的分子结构中存在手性因素,而且由具有药理活性的手性化合物组成的药物,其中只含有效对映体或者以有效的对映体为主。这些对映异构体的理化性质基本相似,仅仅是旋光性有所差别,分别被命名为R-型(右旋)或S-型(左旋)、外消旋。药物的药理作用是通过与体内的大分子之间严格的手性识别和匹配而实现的。 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予分子手性催化的主要贡献者。自然界里有很多手性化合物,这些手性化合物具有两个对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。当一个手性化合物进入生命体时,它的两个对映异构体通常会表现出不同的生物活性。对于手性药物,一个异构体可能是有效的,而另一个异构体可能是无效甚至是有害的。手性制药就是利用化合物的这种原理,开发出药效高、副作用小的药物。在临床治疗方面,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性。因而具有十分广阔的市场前景和巨大的经济价值。目前世界上使用的药物总数约为1900种手性药物占50%以上,在临床常用的200种药物中,手性药物多达114种。全球2001年以单一光学异构体形式出售的市场额达到1 472亿美元,相比于2000年的1 330亿美元增长了10%以上。预计手性药物到2010年销售额将达到2 000亿美元。 在许多情况下,化合物的一对对映异构体在生物体内的药理活性、代谢过程、代谢速率及毒性等存在显著的差异。另外在吸收、分布和排泄等方面也存在差异,还有对映体的相互转化等一系列复杂的问题。但按药效方面的简单划分,可能存在三种不同的情况:1、只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用,如治疗帕金森病的L-多巴(图2中a),其对映异构体对帕金森病无治疗效果,而且不能被体内酶代谢,右旋体聚积在体内可能对人体健康造成影响;2、一对对映异构体中的两个化合物都有等同的或近乎等同的药理活性,如盖替沙星(图2中b),其左旋体和右旋体的活性差别不大;3、两种对映体具有完全不同的药理活性,如镇静药沙利度胺(又名反应停,图2中c),(R)-对映体具有缓解妊娠反应作用, (S)-对映体是一种强力致畸剂[1,2]。因此,1992年3月FDA发布了手性药物的指导原则,明确要求一个含手性因素的化学药物,必须说明其两个对映体在体内的不同生理活性,药理作用,代谢过程和药物动力学情况以考虑单一对映体供药的问题。目前,手性药物受到世界各国的关注和重视,手性药物的合成也成为目前各国研究的一项迫切的任务。 手性药物的合成的发展历程

手性药物质量控制研究技术指导原则

手性药物质量控制研究技术指导原则 一、概述 三维结构的物体所具有的与其镜像的平面形状完全一致,但在三维空间中不能完全重叠的性质,正如人的左右手之间的关系,称之为手性。具有手性的化合物即称为手性化合物。手性是自然界的一种基本属性,组成生物体的很多基本结构单元都具有手性,如组成蛋白质的手性氨基酸除少数例外,大都是L-氨基酸;组成多糖和核酸的天然单糖也大都是D构型。作为调节人类的相关生命活动而起到治疗作用的药物,如果在参与体内生理过程时涉及到手性分子或手性环境,则不同的立体异构体所产生的生物活性就可能不同。手性化合物除了通常所说的含手性中心的化合物外,还包括含有手性轴、手性平面、手性螺旋等因素的化合物。在本指导原则中所指的手性药物主要是指含手性中心的药物,其它类型的手性药物也可参考本指导原则的基本要求。 手性药物是指分子结构中含有手性中心(也叫不对称中心)的药物,它包括单一的立体异构体、两个以上(含两个)立体异构体的不等量的混合物以及外消旋体。不同构型的立体异构体的生物活性也可能不同,大致可分为以下几种情况【1】: 1)药物的生物活性完全或主要由其中的一个对映体产生。如S -萘普生在体外试验的镇痛作用比其R异构体强35倍。 2)两个对映体具有完全相反的生物活性。如新型苯哌啶类镇痛药-哌西那朵的右旋异构体为阿片受体的激动剂,而其左旋体则为阿片受体的拮抗剂。

3)一个对映体有严重的毒副作用。如驱虫药四咪唑的呕吐副作用是由其右旋体产生的。 4)两个对映体的生物活性不同,但合并用药有利。如降压药-萘必洛尔的右旋体为β-受体阻滞剂,而左旋体能降低外周血管的阻力,并对心脏有保护作用;抗高血压药物茚达立酮【2】的R异构体具有利尿作用,但有增加血中尿酸的副作用,而S异构体却有促进尿酸排泄的作用,可有效降低R异构体的副作用,两者合用有利。进一步的研究表明,S与R异构体的比例为1:4或1:8时治疗效果最好。 5)两个对映体具有完全相同的生物活性【3】。如普罗帕酮的两个对映体都具有相同的抗心率失常作用。 正是由于手性药物的不同立体异构体在药效、药代及毒理等方面都可能存在差异,美国FDA在其关于开发立体异构体新药的政策【4】中要求在对手性药物进行药理毒理研究时,应分别获得该药物的各立体异构体,进行必要的比较研究,以确定拟进一步开发的药物。所以手性药物药学研究的主要任务就是为药物的筛选与进一步研究提供足够数量与纯度的立体异构体。本指导原则是在一般化学药物药学指导原则的基础上,并充分考虑手性药物的特殊性而起草的,其目的是为手性药物的药学研究提供一般性的指导。本指导原则中所说的手性药物主要针对单一的立体异构体、两个以上(含两个)立体异构体组成的不等量混合物。 由于手性药物的研发是一项探索性很强的工作,情况也比较复杂,所以在使用本指导原则时,还应具体问题具体分析:在遵循药品研发的自身规律以及手性药物一般要求的基础上,根据所研制药物的

手性药物发展趋势_附件

手性药物的发展趋势 手性药物在新药的设计、研究、开发、上市是一个主要的课题[1–4]。立体化学结构是药理学的一个重要方面[1]。在过去的几十年中,药典的主导力量是外消旋体,但是自从1980年新技术的出现,允许显著数量的纯对映体的药剂,人们对药物作用的立体化学的认识和兴趣有所增加[2-4]。 立体选择性生物分析的进步,导致了立体选择性药效学和药代动力学的重要性的新的认识,使对映体对整体药物作用的相对贡献出现了差异。当一种对映体负责感兴趣的活性,与其成对的对应体可能是无效的,拥有一些感兴趣的活性,可能是活性对映体的拮抗剂,也可能是希望的或不希望的单独的活动[3-5]。考虑到这些可能性,似乎是纯立体化学药物的主要优势,比如说总给药剂量减少,治疗窗增大,减少主体间变异以及剂量-反应关系间更精准的估计[3,4]。这些因素导致在企业和一些监管机构越来越偏爱单一对映体。手性药物的监管始于美国,1992年美国出版了一本正式的方针关于手性药物的发展,这份文件的题目是新立体异构体药物的政策声明[6]。紧接着,1994年欧盟发表了手性活性药物的研究[7]开始了对手性药物的监管。申请人必须认识到新药中手性药物的存在,企图分离立体异构体,评估不同的立体异构体对感兴趣的活性的不同的贡献,并且做出理性的选择对上市的立体异构体的形式。 单一对映体形式的手性药物的全球销售额持续增长。单一对映体剂型的药的市场份额在逐年增长,从1996年的27%(744亿美元),到1997年的29%,1998年的30%,1999年的32%,2000年的34%,2001年的38%,到2002年其市场份估计到了39%(1519亿美元)[8-13]。 排名前十的单一对映体药物(每年销售额大于10亿美元)是:阿托伐他汀

手性分子药物与人类健康

手性分子药物与人类健康 班级:药学三班 姓名:王威 学号:20121240310

【摘要】 目的 阐明药物手性的概念及其药理活性。 方法 综述手性分子的研究历史和药物手性对药理作用的影响。结果 手性药物有着不同的药理活性,对人体产生各种生理效应,对其进行合理的分离纯化可以减小药物毒副作用,增强药效,同时能够带来巨大的经济效益。 结论 通过对手性药物药理活性的研究能更深入地理解或积极地预期一些药物相互作用,为临床合理用药提供依据。

【关键词】手性药物; 药理活性 近年来,药物手性的临床意义已引起了人们的注意,手性药物的开发已成为国际热点。目前,世界正在开发的1200种新药中有3/3是手性药物。手性药物有的以消旋体(racemate)形式上市,有些以单一对映体(enantiomer)上市。手性药物发展的潜势是十分巨大的。手性药物带来了巨大的经济效益,其市场范围包括手性药物制剂,手性原料药和手性中间体。2000年全世界的手性药物销售额突破了1200亿美元,其中制剂就有900亿美元[1]。因此,研究手性药物为临床合理使用手性药物及研制开发优对映体新药,具有重要的意义。 1、手性药物相关问题简述 分子结构基团在空间排列不同的化合物称为立体异构体,其中在空间上不能重叠,互为镜像关系的立体异构体称为对映体,这一对化合物就像人的左右手一样,称为具有手性;当药物分子中碳原子上连接有4个不同的基团时,该碳原子被称为手性中心(也称不对称中心),相应的药物被称作手性药物(chiral drug)。对映体之间,除了使偏振光偏转(旋光性)的程度相同而方向相反外,其他理化性质相同。因此,对映体又称光学异构体[2]。

手性与手性药物

【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为d-构型,氨基酸为l-构型,蛋白质和dna的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对l一氨基酸和d一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺r型具有镇静作用,而s型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是s型还是r型,作为药物都有致畸作用。1984年荷兰药理学家ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他的一系列论述的发表,引起药物部门广泛的重视。2001年诺贝尔化学奖授予了3位美日科学家,表彰他们在手性催化氢化反应和手性催化氧化反应领域所做出的重大贡献。目前,研究和发展新的手性技术,借此获得光学纯的手性药物,已成为许多实验室和医药公司追求的目标。 2 药物的手性 据统计,1800个药物,具有手性中心的就有1026种,占57%。现在市场上只有61种药物是以单对映体形式存在,其余均为外消旋体(左、右旋各半)混合形式。研究表明,不同的对映体在人体内的药理,代谢过程,毒性和疗效存在着显著差异[2-5],大致有以下几个类别: 2.1 对映体之间有相同或相近的某一活性 2.2 一个对映体具有显著的活性但其对映体活性很低或无活性 一般认为若某一对映体只有外消旋体的1%的药理活性,则可以认为其无活性。因为这微小的活性可能来源于掺杂于该单一对映体中微量的活性单一对映体。例如氯苯吡胺(扑尔敏,ehlorpheniramine)右旋体的抗组胺作用比左旋体强100倍。抗菌药氧氟沙星的s-(-)-异构体是抗菌活性体,而r-(+)-异构体则无活性。属于这一类的药物还有是氯霉素、芬氟拉明、吲哚美辛等。 2.3 对映体有相同、但强弱程度有差异 某一活性抗癌药环磷酰胺(ey-elophosphamide),其手性中心不是在通常的碳原子,而在磷原子。其(s)-异构体活性是(r)-异构体的2倍,然而,对映体毒性几乎相同。有时一个异构体具有较强的副作用,也应予考虑。如氯胺酮(ketamine)是以消旋体上市的麻醉镇痛剂,但具有致幻等副作用,进一步的药理研究证实(s)-异构体活性是(r)-异构体的三分之一,却伴随着较强的副作用。

分子的性质(知识点总结+典例导析)

分子的性质 【学习目标】 1、知道极性共价键和非极性共价键;结合常见物质分子立体结构会判断极性分子和非极性分子。 2、理解范德华力、氢键的概念及其对物质性质的影响。 3、从分子结构的角度,认识“相似相溶”规律。 4、了解“手性分子”的结构及其在生命科学等方面的应用。 5、能用分子结构的知识解释无机含氧酸分子的酸性。 【要点梳理】 要点一、共价键的极性--极性键和非极性键 1、分类依据: 共用电子对是否偏移,发生偏移为极性键;不发生偏移为非极性键。 说明:极性键中共用电子对偏向的一方带负电荷用δ-表示;共用电子对偏离的一方带正电荷用δ+表示。 2、判断技巧: 形成共价键的两原子是否为同种原子,如相同,为非极性键;如不同,为极性键。 原子电负性(元素非金属性)差值越大的,共用电子对偏移程度大,键的极性就越大。 要点诠释:化学键类型和物质类别的关系 1)、不含有化学键的物质:稀有气体分子。 2)、只含非极性共价键的物质:同种非金属元素构成的单质。如:H2、P4、金刚石等 3)、只含极性共价键的物质:一般是不同非金属元素构成的共价化合物。如:HCl、NH3等 4)、既有非极性共价键又有极性共价键的物质:如:H2O2、C2H2、CH3CH3、C6H6等 5)、只含有离子键的物质:活泼金属与活泼非金属元素形成的化合物。如:Na2S、CsCl、K2O、NaH等 6)、既有离子键又有非极性键的物质:如:Na2O2、CaC2等 7)、既有离子键又有极性键的物质:如:NaOH 8)、有离子键、共价键、配位键组成的物质:如:NH4Cl 要点二、分子的极性 1、非极性分子: 正负电荷中心重合的分子称为非极性分子,它的分子中各个键的极性的向量和等于零。 例如:X2型双原子分子(如H2、Cl2、Br2等)、XY n型多原子分子中键的极性互相抵消的分子(如CO2、CCl4等)都属非极性分子。 2、极性分子: 正负电荷中心不重合的分子称为极性分子,它的分子中各个键的极性向量和不等于零。 例如:XY型双原子分子(如HF、HCl、CO、NO等),XY n型多原子分子中键的极性不能互相抵消的分子(如SO2、H2O、NH3等)都属极性分子。 3、分子极性的判断方法: (1)全部由非极性键构成的分子一般是非极性分子。(O3例外) (2)由极性键构成的双原子分子一定是极性分子。 (3)在含有极性键的多原子分子中,如果结构对称则键的极性得到抵消,其分子为非极性分子。 如果分子结构不对称,则键的极性不能完全抵消,其分子为极性分子。 (4)ABn型分子极性简便判别方法 A.孤对电子法 在ABn型分子中,若中心原子A无孤对电子(未成对电子),则是非极性分子,若中心原子A有孤对电子则是极性分子。 例如:CO2、CH4、SO3中心原子(C、S)无孤对电子,是非极性分子。而像H2O、NH3、NP3中心原子(O、N)有孤对电子,则为极性分子。 B.空间形状法

相关文档
最新文档