课时跟踪检测(十七) 变化率与导数、导数的运算

课时跟踪检测(十七)  变化率与导数、导数的运算
课时跟踪检测(十七)  变化率与导数、导数的运算

课时跟踪检测(十七) 变化率与导数、导数的运算

一抓基础,多练小题做到眼疾手快

1.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )

A .(1,3)

B .(-1,3)

C .(1,3)和(-1,3)

D .(1,-3)

解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C.

2.曲线f (x )=2x -e x 与y 轴的交点为P ,则曲线在点P 处的切线方程为( )

A .x -y +1=0

B .x +y +1=0

C .x -y -1=0

D .x +y -1=0

解析:选C 曲线f (x )=2x -e x 与y 轴的交点为(0,-1).

且f ′(x )=2-e x ,∴f ′(0)=1.

所以所求切线方程为y +1=x ,

即x -y -1=0.

3.(2018·温州模拟)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 017)=( )

A .1

B .2

C .12 017

D .2 0182 017

解析:选D 令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x

+1,故f ′(2 017)=12 017+1=2 0182 017

.故选D. 4.若曲线f (x )=x sin x +1在x =π2

处的切线与直线ax +2y +1=0 相互垂直,则实数a =________.

解析:因为f ′(x )=sin x +x cos x ,所以f ′????π2=sin π2+π2cos π2

=1.又直线ax +2y +1=0的斜率为-a 2

,所以1×????-a 2=-1,解得a =2. 答案:2

5.(2018·杭州模拟)已知函数f (x )=x 33-b 2

x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处切线的斜率的最小值是________.

解析:因为a >0,b >0,f ′(x )=x 2-bx +a ,所以g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a

=a b +b a ≥2,当且仅当a =b =1时取等号,所以斜率的最小值为2.

答案:2

二保高考,全练题型做到高考达标

1.曲线y =e x -ln x 在点(1,e)处的切线方程为( )

A .(1-e)x -y +1=0

B .(1-e)x -y -1=0

C .(e -1)x -y +1=0

D .(e -1)x -y -1=0

解析:选C 由于y ′=e -1x ,所以y ′| x =1

=e -1,故曲线y =e x —ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.

2.(2018·开封模拟)已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =

( )

A .-1

B .1

C .3

D .4

解析:选C 对于y =x 3+mx +n ,y ′=3x 2+m ,∴k =3+m ,又k +1=3,1+m +n =3,可解得n =3.

3.(2018·台州测试)已知f (x )=x 2+2f ′(1),则f (0)等于( )

A .2

B .4

C .-2

D .-4

解析:选B 由已知f (x )=x 2+2f ′(1),

得f ′(x )=2x ,所以f ′(1)=2,所以f (x )=x 2+4,

所以f (0)=4.故选B.

4.(2018·衡水调研)曲线y =1-2x +2

在点(-1,-1)处的切线方程为( ) A .y =2x +1

B .y =2x -1

C .y =-2x -3

D .y =-2x -2 解析:选A ∵y =1-2x +2=x x +2

, ∴y ′=x +2-x (x +2)2=2(x +2)2

,y ′| x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2,

∴所求切线方程为y +1=2(x +1),即y =2x +1.

5.已知f (x )=ln x ,g (x )=12x 2+mx +72

(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )

A .-1

B .-3

C .-4

D .-2

解析:选D ∵f ′(x )=1x ,

∴直线l 的斜率为k =f ′(1)=1,又f (1)=0,

∴切线l 的方程为y =x -1.

g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),

则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72

,m <0, 解得m =-2.

6.(2018·浙江金华十校联考)已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________,b =________.

解析:由f (x )=x 3+ax +b ,得f ′(x )=3x 2+a ,由题意,得f ′(1)=3+a =2,解得a =-1.又在切线方程中,当x =1时,y =-3,所以f (1)=13-1×1+b =-3,解得b =-3.

答案:-1 -3

7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.

解析:由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13

,因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由图可知f (3)=1,所以g ′(3)

=1+3×???

?-13=0. 答案:0

8.(2018·杭二期中)设函数F (x )=ln x +a x (0<x ≤3)的图象上任意一点P (x 0,y 0)处切线

的斜率k ≤12

恒成立,则实数a 的取值范围为________. 解析:由F (x )=ln x +a x (0<x ≤3),得F ′(x )=x -a x 2(0<x ≤3 ),则有k =F ′(x 0)=x 0-a x 20

≤12在(0,3]上恒成立,所以a ≥????-12x 20+x 0max .当x 0=1时,-12x 20+x 0在(0,3]上取得最大值12

,所以a ≥12

. 答案:???

?12,+∞ 9.(2018·杭州六校联考)已知函数f (x )=13

x 3-ax +1.若对任意m ∈R ,直线y =-x +m 都不是曲线y =f (x )的切线,求实数a 的取值范围.

解:因为对任意m ∈R ,直线y =-x +m 都不是曲线y =f (x )的切线,

所以f ′(x )=x 2-a ≠-1对x ∈R 成立,

只要f ′(x )=x 2-a 的最小值大于-1即可,

而f ′(x )=x 2-a 的最小值为f (0)=-a ,

所以-a >-1,即a <1.

故实数a 的取值范围为(-∞,1).

10.已知函数f (x )=x 3-4x 2+5x -4.

(1)求曲线f (x )在点(2,f (2))处的切线方程;

(2)求经过点A (2,-2)的曲线f (x )的切线方程.

解:(1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2,

即x -y -4=0.

(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-

8x 0+5,

∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),

又切线过点P (x 0,x 30-4x 20+5x 0-4),

∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),

整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,

∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.

三上台阶,自主选做志在冲刺名校

1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+

154x -9都相切,则a 等于( ) A .-1或-2564

B .-1或214

C .-74或-2564

D .-74

或7 解析:选A 因为y =x 3,所以y ′=3x 2,

设过点(1,0)的直线与y =x 3相切于点(x 0,x 30),

则在该点处的切线斜率为k =3x 20,

所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.

又点(1,0)在切线上,所以x 0=0或x 0=32

. 当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564

; 当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154

x -9相切,可得a =-1.

综上,a 的值为-1或-2564

. 2.(2018·温州月考)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R).

(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;

(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.

解:f ′(x )=3x 2+2(1-a )x -a (a +2).

(1)由题意得?????

f (0)=b =0,f ′(0)=-a (a +2)=-3, 解得b =0,a =-3或1.

(2)∵曲线y =f (x )存在两条垂直于y 轴的切线,

∴关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, ∴Δ=4(1-a )2+12a (a +2)>0,

即4a 2+4a +1>0,∴a ≠-12

. ∴a 的取值范围是????-∞,-12∪????-12,+∞.

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点 (2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D .y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( ) A .3 B .3 C. 32 D .6 4. 设P 为曲线2 :23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范 围为0,4π?? ???? ,则点P 的横坐标的取值范围为( ) A . []0,1 B .[]1,0- C .11,2??--???? D .1,12?? ???? 5. 已知2 3 ()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ). A . n B .1n - C . (1)2 n n - D . 1 (1)2 n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2

7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5 9. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线1 2 y x =垂直的切线,则实数m 的取值范围是( ) A. 12m ≤- B. 1 2 m >- C. 2m ≤ D. 2m > 10. 函数y=f (x )的图象如图所示,则导函数 y=f'(x )的图象可能是( ) A . B . C . D . 11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2 '()() 0xf x f x x -<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2) 12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

人教版高中数学全套教案导学案111变化率问题

1. 1.1变化率问题课前预习学案。知道平均变化率的定义。,课本中的问题1,2 预习目标:“变化率问题”预习内容:气球膨胀率问题1 气球,,随着气球内空气容量的增加我们都吹过气球回忆一下吹气球的过程,可以发现 ,如何描 述这种现象呢?的半径增加越来越慢.从数学角度43?r?r)V(dmVL r)气球的体积:(单位:之间的函数关系是)与半径(单位33V?)r(V V r,如果将半径那么表示为体积的函数3?4在吹气球问题中,当空气容量V从0增加到1L时,气球的平均膨胀率为__________ 当空气容量V从1L增加到2L时,气球的平均膨胀率为__________________ 当空气容量从V增加到V时,气球的平均膨胀率为_____________21问题2 高台跳水 h 与起跳后)单位:m在高台跳水运动中,,运动员相对于水面的高度h(2如何用运动+10. +6.5-4.9tt 的时间t(单位:s)存在函数关系h(t)= v? 粗略地描述其运动状态员在某些时间段内的平均速度v5t.?00?=_________________ 这段 时间里,在v2?t?1=_________________ 这段时间里,在ot 问题3 平均变化率????xffxx到从已知函数,则变化率可用式子_____________,此式称之为函数1x?xx看做是相表示=___________,可把,即习惯上用 ___________.x??x?x122x?xx__________________,代替对于类似有的一个“增量”,可用,?x)?f(x?211_______________________ 于是,平均变化率可以表示为提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 课内探究学案 1.学习目标理解平均变化率的概念; 2.了解平均变化率的几何意义; .

全国优质课-导数的概念

《普通高中课程标准实验教科书—数学选修2-2》人教A版 导数的概念 2018年10月

《1.1.2导数的概念(第一课时)》教学设计 开封高中张传涛 一、教学内容解析 本节课是人教A 版《普通高中课程标准实验教科书--数学选修2-2》,第一章第一节1.1.2的第一课时--导数的概念.导数是微积分的核心概念之一,它是研究函数增减、变化快慢、最大(小)值等问题的最一般、最有效的工具.考虑到高中学生认知水平,没有采用一般的:数列----数列的极限----函数的极限----导数这种建立概念的方式,而是从变化率入手,用形象直观的“逼近”定义导数.这样一来,一方面排除了因难以理解极限的形式化定义,而对导数本质理解的干扰,将更多的精力放在对导数本质与内涵的理解上;另一方面,学生对逼近的思想有了丰富的直观基础和一定理解,有利于大学学习严格的极限定义.本节课将导数概念的建立划分为两个阶段:首先明确瞬时速度和切线斜率的含义,然后去掉物理背景和几何背景,由两个实例出发,抽象出一般函数的瞬时变化率的概念,给出导数的定义.借助信息技术,通过让学生亲自计算、几何画板展示等方法,让学生体会逼近的思想和用已知探求未知的思考方法.基于以上分析,确定本节课教学重点为:建立导数概念及对导数思想和内涵的理解. 二、教学目标设置 本节的中心任务是形成导数概念.概念形成通过两个实例抽象得出: (1)借助高台跳水问题,明确瞬时速度的含义; (2)借助抛物线的割线逼近切线的问题,明确切线斜率的含义; (3)以速度模型为出发点,结合切线斜率抽象出导数概念,使学生认识到导数就是瞬 时变化率,理解导数内涵. (4)通过平均变化率的计算,让学生切身体会逼近思想,渗透以已知探求未知的思考 方法,提升数据处理和数学抽象的核心素养. 三、学生学情分析 1.重点中学的学生,思维活跃,善于动脑.在高一年级的物理课程中学习过瞬时速度; 在之前函数零点的学习过程中,已有利用“二分法”逼近函数零点的经验,“逼近”的思想对于学生而言,并不陌生.因此,学生已经具备了一定的认知基础. 2.可能存在的问题: (1)使学生能通过观察发现:运动的物体在某一时刻附近的一段时间内的平均速度在 时间间隔越来越小时,逐渐趋于一个确定的值,而且这个确定值就是物体在该时刻的瞬时速度.这个过程学生难以想象,同时数值逼近的运算繁琐,但又不能采取简单的方式告知学生,而是要学生通过实际的计算,在计算过程中,充分感知当||t ?趋于0时, t h ??趋于一个定值,当||x ?趋于0时,x y ??趋于一个定值. (2)在实际教学中,学生需要用到思想方法和表达形式的迁移,即把从平均速度到瞬 时速度过渡中所运用的“逼近”的思想方法迁移到从平均变化率到瞬时变化率的过渡,从对一个具体函数在一个确定点的瞬时变化率的表达式迁移到任意一个函数在任意一点的瞬时变化率的表达,这样的探究方法可能会导致学生的不适应而产生困难. 因此,如何引导学生根据生活中具体的实例,结合已有的知识经验,通过“逼近”的 方法,由特殊到一般,用类比的方法归纳探究出导数的概念是本节课的难点. 四、教学策略分析

导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2 D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

高中数学《函数的单调性与导数》公开课优秀教学设计

教学设计 普通高中课程标准实验教科书《数学》选修1-1 (人教A版) 函数的单调性与导数 (第一课时) 《函数的单调性与导数》教学设计 课题:函数的单调性与导数 教材:人教A版《数学》选修1-1 课时:1课时 教材分析: 函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容. 《数学课程标准》中与本节课相关的要求是:结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 函数的单调性是函数的重要性质之一.在必修一中学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应

用. 在前几节课中,学生学习了平均变化率,瞬时变化率,导数的定义和几何意义等内容,在本节课中,学生将要在此基础上学习通过导数来研究函数的单调性,掌握研究函数单调性的更一般方法,进而为后面学习函数的极值,最值等作出知识铺垫,打下能力基础,进行方法指导,因此,本节课可以起到承上启下,完善建构,拓展提升的作用. 学生学情分析: 课堂学生为高二年级的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点. 在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性. 教学目标: 结合实例,借助几何直观探索并了解函数的单调性与导数的关系:能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 难点:探索并了解函数的单调性与导数的关系. 借助几何直观,通过实例探索并了解函数的单调性与导数的关系;理解并掌握利用导数判断函数单调性的方法,会用导数求函数的单调区间;体会导数方法在研究函数性质中的一般性和有效性,同时感受和体会数学发展的一般规律. 教学策略分析: 根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索函数的单调性与导数的关系;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象. 本节课的教学设计也是围绕这些目标,让学生自主探究,充分参与课堂,并从中体会学习的成功和快乐. 本节课时学习过导数的概念和运算后,首次运用导数解决函数相关问题的一节课,如何激发学生的兴趣,使其探索和运用新的工具即导数解决单调性问题是本节课的关键,利用手边胡工具,更好的分析这个过程,运用信息技术确认加深理解. 充分利用学生已有的基础,分析原函数的单调性与导数正负之间的关系,本着由形到数,由数到形,数形结合的思想. (一)创设情境,引发冲突.

2018届北师大版 变化率与导数 单元测试

题组层级快练(十五) 1.y =ln(-x)的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=ln(x) D .y ′=-ln(-x) 答案 B 2.(2017·广东五校协作体联考)曲线y =x +1 x -1 在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′= (x +1)′(x -1)-(x +1)(x -1)′(x -1)2 =-2 (x -1)2 ,故曲线在(3,2)处的切线的斜率k =y ′|x =3=- 2(3-1) 2=-1 2,故选D. 3.曲线f(x)=2e x sinx 在点(0,f(0))处的切线方程为( ) A .y =0 B .y =2x C .y =x D .y =-2x 答案 B 解析 ∵f(x)=2e x sinx ,∴f(0)=0,f ′(x)=2e x (sinx +cosx),∴f ′(0)=2,∴所求切线方程为y =2x. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3 2t 2+2t ,那么速度为零的 时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s =13t 3-3 2t 2+2t ,∴v =s ′(t)=t 2-3t +2. 令v =0,得t 2-3t +2=0,t 1=1或t 2=2. 5.设正弦函数y =sinx 在x =0和x =π 2附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系 为( ) A .k 1>k 2 B .k 1

高中数学第三章.1变化率问题3.1.2导数的概念学案含解析新人教A版选修7.doc

3.1.1 & 3.1.2 变化率问题 导数的概念 [提出问题] 假设下图是一座山的剖面示意图,并建立如图所示的平面直角坐标系.A 是出发点,H 是山顶.爬山路线用函数y =f (x )表示. 自变量x 表示某旅游者的水平位置,函数值y =f (x )表示此时旅游者所在的高度.设点 A 的坐标为(x 1,y 1),点 B 的坐标为(x 2,y 2). 问题1:若旅游者从点A 爬到点B ,且这段山路是平直的,自变量x 和函数值y 的改变量Δx ,Δy 分别是多少? 提示:自变量x 的改变量为Δx =x 2-x 1,函数值的改变量为Δy =y 2-y 1. 问题2:Δy 的大小能否判断山路的陡峭程度? 提示:不能. 问题3:怎样用数量刻画弯曲山路的陡峭程度呢? 提示:对山坡AB 来说,Δy Δx =y 2-y 1 x 2-x 1可近似地刻画. 问题4:能用Δy Δx 刻画山路陡峭程度的原因是什么? 提示:因Δy Δx 表示A ,B 两点所在直线的斜率k ,显然,“线段”所在直线的斜率越大, 山路越陡.这就是说,竖直位移与水平位移之比Δy Δx 越大,山路越陡;反之,山路越缓. 问题5:从点A 到点B 和从点A 到点C ,两者的Δy Δx 相同吗? 提示:不相同.

[导入新知] 函数的平均变化率 对于函数y =f (x ),给定自变量的两个值x 1,x 2,当自变量x 从x 1变为x 2时,函数值从 f (x 1)变为f (x 2),我们把式子f x 2-f x 1 x 2-x 1 称为函数y =f (x )从x 1到x 2的平均变化率. 习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1 的一个“增量”,可用x 1+Δx 代替x 2.类似地,Δy =f (x 2)-f (x 1).于是,平均变化率可表示为 Δy Δx . [化解疑难] 1.正确理解增量Δx 与Δy Δx 是自变量x 在x 0处的改变量,不是Δ与x 的乘积,Δx 的值可正,可负,但不能为0.Δy 是函数值的改变量,可正,可负,也可以是0.函数的平均变化率为0,并不一定说明函数f (x )没有变化. 2.平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.利用平均变化率的大小可以刻画变量平均变化的趋势和快慢程度. [提出问题] 一质点的运动方程为s =8-3t 2 ,其中s 表示位移,t 表示时间. 问题1:试求质点在[1,1+Δt ]这段时间内的平均速度. 提示:Δs Δt = 8-+Δt 2 -8+3×1 2 Δt =-6-3Δt . 问题2:当Δt 趋近于0时,“问题1”中的平均速度趋近于什么?如何理解这一速度? 提示:当Δt 趋近于0时,Δs Δt 趋近于-6.这时的平均速度即为t =1时的瞬时速度. [导入新知] 1.瞬时速度的概念 物体在某一时刻的速度称为瞬时速度: 设物体运动的路程与时间的关系是s =s (t ),当Δt 趋近于0时,函数s (t )在t 0到t 0 +Δt 之间的平均变化率s t 0+Δt -s t 0 Δt 趋近于一个常数,把这个常数称为瞬时速 度. 2.导数的定义

变化率与导数测试题

变化率与导数测试题Last revision on 21 December 2020

变化率与导数测试题 一、选择题: 1、函数y =x 2co sx 的导数为( ) A 、y ′=2xcosx -x 2sinx B 、y ′=2xcosx+x 2sinx C 、 y ′=x 2cosx -2xsinx D 、y ′=xcosx -x 2sinx 2设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .1 2 - D .2- 3、已知函数2()21f x x =-的图象上一点(11),及邻近一点(11)x y +?+?,,则y x ??等于( ) A.4 B.42x +? C.4x +? D.24()x x ?+? 4、曲线3 () 2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( ) A.( 1 , 0 ) B.( 2 , 8 ) C.( 1 , 0 )或(-1, -4) D.( 2 , 8 )和或(-1, -4) 5、已知32()(6)1f x x ax a x =++++,f '(x)=0有不等实根,则a 的取值范围为( ) A .12a -<< B .36a -<< C .1a <-或2a > D .3a <-或6a > 6、在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D . 0 7、已知,12132431()cos ,()(),()(),()() ()(),n n f x x f x f x f x f x f x f x f x f x -''''=====则 2008()f x = ( ) A. sin x B. sin x - C. cos x D. cos x - 8、32()32f x ax x =++,若(1)4f '-=,则a 的值等于( ) A .319 B .316 C .313 D .310 9、某汽车的路程函数是3221 2(10m/s )2 s t gt g =-=,则当2t s =时,汽车的加速度是( )

(完整版)变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x =x0 . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

课时跟踪检测(十七) 变化率与导数、导数的运算

课时跟踪检测(十七) 变化率与导数、导数的运算 一抓基础,多练小题做到眼疾手快 1.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)和(-1,3) D .(1,-3) 解析:选C f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. 2.曲线f (x )=2x -e x 与y 轴的交点为P ,则曲线在点P 处的切线方程为( ) A .x -y +1=0 B .x +y +1=0 C .x -y -1=0 D .x +y -1=0 解析:选C 曲线f (x )=2x -e x 与y 轴的交点为(0,-1). 且f ′(x )=2-e x ,∴f ′(0)=1. 所以所求切线方程为y +1=x , 即x -y -1=0. 3.(2018·温州模拟)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 017)=( ) A .1 B .2 C .12 017 D .2 0182 017 解析:选D 令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x +1,故f ′(2 017)=12 017+1=2 0182 017 .故选D. 4.若曲线f (x )=x sin x +1在x =π2 处的切线与直线ax +2y +1=0 相互垂直,则实数a =________. 解析:因为f ′(x )=sin x +x cos x ,所以f ′????π2=sin π2+π2cos π2 =1.又直线ax +2y +1=0的斜率为-a 2 ,所以1×????-a 2=-1,解得a =2. 答案:2 5.(2018·杭州模拟)已知函数f (x )=x 33-b 2 x 2+ax +1(a >0,b >0),则函数g (x )=a ln x +f ′(x )a 在点(b ,g (b ))处切线的斜率的最小值是________. 解析:因为a >0,b >0,f ′(x )=x 2-bx +a ,所以g ′(x )=a x +2x -b a ,则g ′(b )=a b +2b -b a =a b +b a ≥2,当且仅当a =b =1时取等号,所以斜率的最小值为2.

1.1变化率与导数第1课时 精品教案

1.1变化率与导数 【课题】:1.1.1变化率问题 【教学目标】: (1)知识目标: ○1感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。○2理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。 (2)情感目标:让学生充分体会到生活中处处有数学。 (3)能力目标:提高学生学习能力与探究能力、归纳表达能力。【教学重点】: 正确理解平均变化率; 【教学难点】: 平均变化率的概念。 【课前准备】:powerpoint 【教学过程设计】:

(基础题) 1.物体自由落体的运动方程是:()2 12 S t gt =,求1s 到2s 时的平均速度. 解:213 14.72 S S g m -= = ,211t t s -=,

则()21 21 14.7/S S v m s t t -= =- 2.水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体 积 (单位:3 cm ),计算第一个10s 内V 的平 均变化率。 注: (10)(0)100 V V -- 3.已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变 化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。 4.某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。 (难题) 5.思考: (1)课本P4思考题 (2)在高台跳水运动中,运动员相对水面的高度h (单位:m )与起跳后的时间t (单位: s )存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在65 049 t ≤≤这段时间里的平均速度, 并思考下面的问题: ○ 1运动员在这段时间里是静止的吗? ○ 2你认为用平均速度描述运动员的运动状态有什么问题吗? 答案: ○1不是. ○2不能客观描述运动员的运动状态. T(月) 3 9 12 t t V 1.025)(-? =

变化率与导数同步练习(有答案)

变化率与导数同步练习(有答案) 人教新课标版(A)选修1-1 3.1 变化率与导数同步练习题 【基础演练】题型一:变化率问题与导数概念一般地,我们称为平均变化率,如果时,存在,称此极限值为函数在处的导数,记作,请根据以上知识解决以下1~5题。 1. 一质点运动的方程为,则在一段时间内相应的平均速度为 A. B. C. D. 2. 将半径为R的球加热,若球的半径增加△R,则球的体积增加△y约等于 A. B. C. D. 3. 已知函数的图象上一点(1,2)及邻近一点,则等于 A. 2 B. 2x C. 2+△x D. 2+△ 4. 自变量变到时,函数值的增量与相应自变量的增量之比是函数 A. 在区间上的平均变化率 B. 在处的 变化率 C. 在处的变化量 D. 在区间上的导数 5.若函数在处的导数为A,求。 题型二:导数的物理意义在物体的运动规律中,如果,那么物体的瞬时速度;如果,那么物体的加速度,请根据以上知识解决以下6~7题。 6. 若一物体运动方程如下:求物体在或时的速度。 7. 质点M按规律做直线运动,则质点的加速度a=___________。 题型三:导数的几何意义导数的几何意义:函数在处的导数,即曲线在点P()处切线的斜率为,相应的切线方程是,请根据以上知识解决以下8~9题。 8. 下面说法正确的是 A. 若不存在,则曲线在点(,)处没有切线 B. 若曲线在点()处有切线,则必存在 C. 若不存在,则曲线在点()处的切线斜率不存在 D. 若曲线在点()处没有切线,则可能存在 9. 已知曲线C:。(1)求曲线C上横坐标为1的点处的切线方程(2)第(1)小题中的切线与曲线C是否还有其他的公共点? 【互运探究】[学科内综合] 10. 设,在处可导是在(a,b)内可导的 A. 充分非必要条件 B. 必要而非充分条件 C. 充要条件D. 既非充分又非必要条件 11. 如图3-1-1表示物体运动的路程随 时间变化的函数的图象,试根据图象,描述、比较曲线在、、附近的变化情况,并求出时的切线的方程。 [学科间综合] 12. 两工厂经过治理,污水的排放量(W)与时间(t)的关系如图所示,试指出哪一个厂治污效果较好?

3.1 变化率与导数 教学设计 教案

教学准备 1. 教学目标 知识与技能 1.理解平均变化率的概念. 2.了解瞬时速度、瞬时变化率、的概念. 3.理解导数的概念 4.会求函数在某点的导数或瞬时变化率. 过程与方法 理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率. 情感、态度与价值观 感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力. 2. 教学重点/难点 教学重点 平均变化率的概念. 教学难点 平均变化率概念的形成过程. 3. 教学用具 多媒体、板书 4. 标签 教学过程 教学过程设计

创设情景、引入课题 【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。 【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。 新知探究 1.变化率问题 探究1 气球膨胀率 【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是 如果将半径r表示为体积V的函数,那么 【分析】 (1)当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 (2)当V从1增加到2时,气球半径增加了 气球的平均膨胀率为

高中数学《导数的概念及其几何意义》公开课教学设计

《导数的概念及其几何意义》 一、教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书(A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义. 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具,它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理. 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展,同时为后继研究导数的几何意义及应用打下必备的基础,具有承前启后的重要作用. 二、学生学情分析 1.导数是对变化率的一种“度量” 实际生活中,学生最为熟悉的一种变化率就是物体的运动速度.学生在1.1.1小结学习了导数的物理意义,掌握了变化率,在高一年级的物理课程中学习过瞬时速度,因此,学生已经具备了一定的认知基础,他们不会对新知识感到无所适从. 2.可能存在的问题: (1)“逼近”的思想对于学生而言,还是比较陌生,需要精心设计教学活动,比如借助物理知识等,激发学生的兴趣,从学生已有的知识背景出发,帮助学生经历从平均速度到瞬时速度,从平均变化率到瞬时变化率的过渡. (2)使学生能通过观察发现:运动的物体在某一时刻的平均速度在时间间隔越来越小时,逐渐趋于一个不变的常数,而且这个常数就是物体在这一时刻的瞬时速度.这个过程学生难以想象,同时数值逼近的运算繁琐,但又不能采取简单的方式告知学生,而是要学生通过实际的计算,在计算过程中,充分感知当||t ?趋于0时,t h ??趋于一个定值;当||x ?趋于0时,x y ??趋于一个定值. (3)在实际教学中,学生需要用到思想方法和表达形式的迁移,即把从平均速度到瞬时速度过渡中所运用的“逼近”的思想方法迁移到从平均变化率到瞬时变化率的过渡,从对一个具体函数在一个确定点的瞬时变化率的表达式迁移到任意一个函数在任意一点的瞬时变化率

(完整版)变化率与导数练习题及答案

【巩固练习】 一、选择题 1.(2015春 保定校级月考)函数在一点的导数是( ) A.在该点的函数值的增量与自变量的增量的比 B.一个函数 C.一个常数,不是变数 D.函数在这一点到它附近一点之间的平均变化率。 2.(2015春 淄博校级月考)在曲线2 2y x =+的图象上取一点(1,3)及邻近一点()1,3x y +?+?,则 y x ?? 为( ) A. 12x x ?+ +? B. 2x ?+ C. 1x x ?-? D. 1 2x x ?-+? 3.一直线运动的物体,从时间t 到t t +?时,物体的位移为s ?,那么t s t ??→?0lim 为 ( ) A .从时间t 到t t +?时,物体的平均速度 B .时间t 时该物体的瞬时速度 C .当时间为t ?时该物体的速度 D .从时间t 到t t +?时位移的平均变化率 4. 已知函数)(x f y =,下列说法错误的是( ) A. )()(00x f x x f y -?+=?叫函数增量 B. x x f x x f x y ?-?+= ??) ()(00叫函数在[x x x ?+00,]上的平均变化率 C. )(x f 在点0x 处的导数记为y ' D. )(x f 在点0x 处的导数记为)(0x f ' 5.一木块沿某一斜面自由下滑,测得下滑的水平距离s 与时间t 之间的函数关系为2 18 s t =, 则t=2 s 时,此木块在水平方向的瞬时速度为( ) A .2 B .1 C . 12 D .14 6. 设()4f x ax =+,若'(1)2f =,则a=( ) A .2 B .-2 C .3 D .不确定 7.(2015秋 泗县校级期末)若()f x 在(),-∞+∞可导,且 (2)() 13lim x f a x f a x ?→+?-=?,则'()f a =( ) A. 23 B.2 C.3 D.32

(完整版)高二数学选修2-2《变化率与导数》单元练习题

高二数学选修2-2《变化率与导数》单元练习题 一.选择题 1. 某地某天上午9:20的气温为23.40℃,下午1:30的气温为15.90℃,则在 这段时间内气温变化率为(℃/min ) ( ) A. 03.0 B. 03.0- C. 003.0 D. 003.0- 2. =??--?+→?x x x f x x f 2)()(lim 000 x ( ) A. )(2 10x f ' B. )(0x f ' C. )(20x f ' D. )(-0x f ' 3. 若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 4. 曲线322+=x y 在点1-=x 处的切线方程为( ) A.14+=x y B. 54--=x y C. 14+-=x y D. 54-=x y 5. 曲线x x y πsin 2=过点)0,(πP 的切线方程是( ) A. 0=-+πy x B. 022=-+πy x C. 0222=--ππy x D. 0222=-+ππy x 6. 已知)1)(2)(1(-++=x x x y ,则='y ( ) A. 2223--+x x x B. 1432-+x x C. 2432-+x x D. 3432-+x x 7. 设210,,k k k 分别表示正弦函数x y sin =在2,4,0ππ== =x x x 附近的平均变化 率,则( ) A. 210k k k << B. 120k k k << C. 012k k k << D. 201k k k <<

(完整版)变化率与导数、导数的运算

让青春之光闪耀在为梦想奋斗的道路上。 1 第十节变化率与导数、导数的运算 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)导数的几何意义: 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). (3)函数f (x )的导函数: 称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.基本初等函数的导数公式 3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) [g (x )](g (x )≠0). 4.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

变化率问题 导数的概念

1.1变化率与导数 1.1.1变化率问题 1.1.2导数的概念 1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景. 2.会求函数在某一点附近的平均变化率.(重点) 3.会利用导数的定义求函数在某点处的导数.(重点、难点) 4.理解函数的平均变化率,瞬时变化率及导数的概念.(易混点) [基础·初探] 教材整理1函数的平均变化率 阅读教材P2~P4“思考”以上部分,完成下列问题. 1.函数的平均变化率 (1)对于函数y=f(x),给定自变量的两个值x1,x2,当自变量x从x1变为x2时,函数值从f(x1)变为f(x2),我们把式子____________称为函数y=f(x)从x1到x2的平均变化率. (2)习惯上用Δx表示x2-x1,即Δx=________,可把Δx看作是相对于x1的一个“增量”,可用x1+Δx代替x2;类似地,Δy=________.于是,平均变化率可表示为________.

2.平均变化率的几何意义 设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线y =f (x )上任意不同的两点,函数y =f (x )的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1=f (x 1+Δx )-f (x 1) Δx 为割线AB 的______,如图1-1-1 所示. 图1-1-1 【答案】 1.(1)f (x 2)-f (x 1)x 2-x 1 (2)x 2-x 1 f (x 2)-f (x 1) Δy Δx 2.斜率 判断(正确的打“√”,错误的打“×”) (1)由Δx =x 2-x 1,知Δx 可以为0.( ) (2)Δy =f (x 2)-f (x 1)是Δx =x 2-x 1相应的改变量,Δy 的值可正,可负,也可为零,因此平均变化率可正,可负,可为零.( ) (3)对山坡的上、下两点A ,B 中,Δy Δx =y 2-y 1 x 2-x 1可以近似刻画山坡的陡峭程 度.( ) 【答案】 (1)× (2)√ (3)√ 教材整理2 瞬时速度、导数的概念 阅读教材P 4~P 6“例1”以上部分,完成下列问题. 1.瞬时速度 (1)物体在__________的速度称为瞬时速度. (2)一般地,设物体的运动规律是s =s (t ),则物体在t 0到t 0+Δt 这段时间内的平均速度为Δs Δt =s (t 0+Δt )-s (t 0)Δt .如果Δt 无限趋近于0时, Δs Δt 无限趋近于某个常数v ,我们就说当Δt 趋向于0时,Δs Δt 的________是v ,这时v 就是物体在时刻t =t 0时的瞬时速度,即瞬时速度v =lim Δt →0 Δs Δt =lim Δt →0 s (t 0+Δt )-s (t 0)Δt .

相关文档
最新文档