变化率和导数(三个课时教案).

变化率和导数(三个课时教案).
变化率和导数(三个课时教案).

第一章导数及其应用

第一课时:变化率问题

教学目标:

1.理解平均变化率的概念;

2.了解平均变化率的几何意义;

3.会求函数在某点处附近的平均变化率

教学重点:平均变化率的概念、函数在某点处附近的平均变化率;

教学难点:平均变化率的概念.

教学过程:

一.创设情景

为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;

二、求曲线的切线;

三、求已知函数的最大值与最小值;

四、求长度、面积、体积和重心等。

导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率

我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?

? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33

4)(r r V π=

? 如果将半径r 表示为体积V 的函数,那么343)(π

V V r =

分析:

3

43)(π

V V r =,

⑴当V 从0增加到1时,气球半径增加了

)(62.0)0()1(dm r r ≈-

气球的平均膨胀率为

)/(62.00

1)

0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了

)(16.0)1()2(dm r r ≈-

气球的平均膨胀率为)/(16.01

2)1()2(L dm r r ≈--

可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.

思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?

1

212)

()(V V V r V r -- h

t

o

问题2 高台跳水

在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速

v 度粗略地描述其运动状态?

思考计算:5.00≤≤t 和21≤≤t 的平均速度v 在5.00≤≤t 这段时间里,)/(05.40

5.0)0()5.0(s m h h v =--=;

在21≤≤t 这段时间里,)/(2.81

2)1()2(s m h h v -=--=

探究:计算运动员在49

650≤≤t 这段时间里的平均速度,并

思考以下问题:

⑴运动员在这段时间内使静止的吗?

⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()49

65(h h =,

所以)/(0049

65

)

0()4965

(

m s h h v =--=, 虽然运动员在49

650≤≤t 这段时间里的平均速度为)/(0m s ,但

实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:

1.上述问题中的变化率可用式子

1

212)()(x x x f x f --表示, 称

为函数f (x )从x 1到x 2的平均变化率 2.若设12x x x -=?,

)()(12x f x f y -=?

(这里x ?看作是对于x 1

的一个“增量”可用x 1+x ?代替x 2,同样)()(2

1

x f x f y 代替可用+?) 3. 则平均变化率为=

??x

y x

x f x x f x x x f x f ?-?+=

--)

()()()(111212 思考:观察函数f (x )的图象

平均变化率=??x

f

1

212)

()(x x x f x f --表示什么?

直线AB 的斜率 三.备选例题

44

.043.041.040.01.0,21)(12、、、、的值为()时,,则在、已知函数例D C B A y x x x x f y ?=?=+==例2、已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ?+-?+-,则=??x

y .

解:)1()1(22x x y ?+-+?+--=?+-,

∴x x

x x x y ?-=?-?+-+?+--=

??32

)1()1(2

四.课堂练习

1.质点运动规律为32+=t s ,则在时间)3,3(t ?+中相应的平

x 1

x 2

O

y y =f (x )

f (x 1)

f (x 2)

△x = x 2-x 1

△y =f (x 2)-f (x 1) x

均速度为 . 五.回顾总结 1.平均变化率的概念

2.函数在某点处附近的平均变化率 六.布置作业

上的平均变化率

在区间,变式训练,求函数、金榜时平均变化率

值变化率,并求当上的平均的在区间,求,例、金榜]2,2[1222

1,1],[12)(12120002x x y P x x x x x x x f y P ?++==?=?++==

第二课时 导数的概念

教学目标:

1.了解瞬时速度、瞬时变化率的概念; 2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;

3.会求函数在某点的导数

教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念. 教学过程: 一.创设情景 (一)平均变化率

(二)探究:计算运动员在49

650≤≤t 这段时间里的平均速

度,并思考以下问题:

⑴运动员在这段时间内使静止的吗?

⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结

合图形可知,)0()49

65

(h h =, 所以)/(0049

65

)

0()4965

(

m s h h v =--=, 虽然运动员在49

650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然

h

t

o

运动,并非静止,可以说明用平均速度不能精确描述运

动员的运动状态.

二.新课讲授

1.瞬时速度

我们把物体在某一时刻的速度称为瞬时速度。运

动员的平均速度不能反映他在某一时刻的瞬时速度,

那么,如何求运动员的瞬时速度呢?比如,2

t=时的

瞬时速度是多少?考察2

t=附近的情况:

思考:当t?趋近于0时,平均速度v有什么样的变化趋势?

结论:当t?趋近于0时,即无论t从小于2的一边,还是从大于2的一边趋近于2时,平均速度v都趋近于一

个确定的值13.1

-.

从物理的角度看,时间t?间隔无限变小时,平均速度v就

无限趋近于史的瞬时速度,因此,运动员在2

t=时的瞬

时速度是13.1/m s

-

为了表述方便,我们用0

(2)(2)lim 13.1t h t h t

?→+?-=-?

表示“当2t =,t ?趋近于0时,平均速度v 趋近于定值

13.1-”

小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。 2 导数的概念

从函数y =f (x )在x =x 0处的瞬时变化率是:

000

0()()lim

lim x x f x x f x f

x x

?→?→+?-?=?? 我们称它为函数()y f x =在0

x x =出的导数,记作

'0()

f x 或

0'|x x y =,即

0000

()()

()lim

x f x x f x f x x

?→+?-'=?

说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率 (2)

x x x ?=-,当

x ?→时,

x x →,所以

0000

()()

()l i m

x f x f x f x x x ?→-'=

- 三.典例分析

例1.求函数y =3x 2在x =1处的导数.

例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2

()715(08)

f x x

x x =-+≤≤,计算第

2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的

意义.

解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'

(2)

f 和'

(6)f

根据导数定义,0(2)()

f x f x f

x x

+?-?=

?? 22(2)7(2)15(27215)3x x x x

+?-+?+--?+==?-?

所以0

(2)lim lim (3)3x x f

f x x

?→?→?'==?-=-?

同理可得:(6)5f '=

在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h 的速率下降,

在第6h 附近,原油温度大约以5

/C h 的速率上升.

注:一般地,'

()f x 反映了原油温度在时刻0

x 附近的变化情况.

例3、质点运动规律为32+=t s ,求质点在3t =的瞬时速度为.

四.课堂练习

1.例2中,计算第3h 时原油温度的瞬时变化率,并说明它的意义

2.求质点运动规律为22t s =,求质点在2t =的瞬时速度 五.回顾总结

1.瞬时速度、瞬时变化率的概念 2.导数的概念

六.布置作业、

课本P10 A 组 第2和第4题

)

(2141)4,1(3)(64435)(,333/22x f x

y y x P x x f y P x x x x f y P )()求:(),及附近一点(的图像上取一点、曲线,、金榜处的导数在求函数,例、金榜???+?++===+==

第三课时 导数的几何意义

教学目标:

1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念;

3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;

教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;

教学难点:导数的几何意义. 教学过程: 一.创设情景

(一)平均变化率、割线的斜率 (二)瞬时速度、导数

我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数

0()f x '的几何意义是什么呢?

二.新课讲授

(一)曲线的切线及切线的斜率:如图 3.1-2,当

(,())(1,2,3,4

n n n P x f x n =

沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?

我们发现,当点n

P 沿着曲线无限接近点P 即Δx →0时,割线n

PP 趋近于确定的位置,这个确定位置的直线PT 称

为曲线在点P 处的切线.

问题:⑴割线n

PP 的斜率n

k 与切线PT 的斜率k 有什么关

系?

⑵切线PT 的斜率k 为多少? 容易知道,割线n

PP 的斜率是00

()()

n n

n f x f x k

x x -=

-,当点n P 沿着曲线无限接近点P 时,n

k 无限趋近于切线PT 的斜率k ,即

0000

()()

lim

()x f x x f x k f x x

?→+?-'==?

说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.

这个概念: ①提供了求曲线上某点切线的斜率的一种方法;

图3.1-2

②切线斜率的本质—函数在0

x x =处的导数.

(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. (二)导数的几何意义:

函数y =f (x )在x =x 0处的导数等于在该点0

(,())x f x 处的切

线的斜率, 即

0000

()()

()lim

x f x x f x f x k x

?→+?-'==?

说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;

②求出函数在点0

x 处的变化率000

()()

()lim

x f x x f x f x k x

?→+?-'==?

得到曲线在点0

(,())x f x 的切线的斜率;

③利用点斜式求切线方程. (二)导函数:

由函数f (x )在x =x 0处求导数的过程可以看到,当时,0

()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一

个函数,我们叫它为f (x )的导函数.简称导数,记作:()f x '或y ',

即:

()()

()lim

x f x x f x f x y x

?→+?-''==? 三.典例分析

例1.(课本例7)如图3.1-3,它表示跳水运动中高度随时间变化的函数

2() 4.9 6.510

h x x x =-++,根据图像,请描述、

比较曲线()h t 在0

t 、1

t 、2

t 附近的变化情况. 解:我们用曲线()h t 在0

t 、1t 、2

t 处的切线,

刻画曲线()h t 在上述三个时刻附近的变化情况.

(1) 当0

t t =时,曲线()h t 在0

t 处的切线

0l 平行于x 轴,所以,在0t t =附近曲

线比较平坦,几乎没有升降.

(2) 当1

t t =时,曲线()h t 在1

t 处的切线1

l 的斜率1

()0h t '<,

所以,在1

t t =附近曲线下降,即函数2

() 4.9 6.510

h x x

x =-++在1

t t =附近单调递减.

(3) 当2

t t =时,曲线()h t 在2

t 处的切线2l 的斜率2

()0h t '<,

所以,在2

t t =附近曲线下降,即函数2

() 4.9 6.510

h x x

x =-++在2

t t =附近单调递减.

从图3.1-3可以看出,直线1

l 的倾斜程度小于直线2

l 的

倾斜程度,这说明曲线在1

t 附近比在2

t 附近下降的缓慢.

例2:求曲线y =f (x )=x 2+1上的横坐标为1的点处的切线方程.

四.课堂练习

1.课本P10 A 组第5题 2.(备选练习)

2抛物线y=x 在点P 处的切线与直线4x-y+2=0平行,求点P 坐标和切线方程

五.回顾总结

1.曲线的切线及切线的斜率; 2.导数的几何意义 六.布置作业

220000

11

12

213

322

x 、(金榜P5,变式训练)求曲线y=在点(,2)处的切线斜率,并写出切线方程

、(金榜P7,课堂基础达标)求曲线y=2x-x 在点(1,1)处的切线方程

、(金榜P7,课堂基础达标)已知曲线y=x -2上一点P(1,-),则过点的切线的倾斜角为()

A 、30

B 、45

C 、135

D 、165

高三数学一轮复习14.变化率与导数学案

高三数学一轮复习 14.变化率与导数学案 【学习目标】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点 处的导数的定义和导数的几何意义,理解导函数的概念. 2.熟记基本导数公式,掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数. 预 习 案 1.导数的概念 (1)f(x)在0x x =处的导数就是f(x)在0x x =处的 ,记作:0 / x x y =或()0/ x f 即 (2)当把上式中的0x 看做变量x 时,f ′(x)即为f(x)的 ,简称导数,即 3.基本初等函数的导数公式 (1)C ′= (C 为常数); (2)(x n )′= (n ∈Q * ); (3)(sin x )′= ; (4)(cos x )′= ; (5)(a x )′= ; (6)(e x )′= ; (7)(log a x )′= ; (8)(ln x )′= . 4.两个函数的四则运算的导数 若u (x )、v (x )的导数都存在,则 (1)(u ±v )′= ; (2)(u ·v )′= ; (3)(u v )′= ; (4)(cu )′= (c 为常数). 【预习自测】 1.某汽车的路程函数是s (t )=2t 3-12 gt 2(g =10 m/s 2 ),则当t =2 s 时,汽车的加速度是( ) A .14 m/s 2 B .4 m/s 2 C .10 m/s 2 D .-4 m/s 2 2.计算:(1)(x 4-3x 3 +1)′=________. (2)(ln 1x )′=________. (3)(x e 2x )′=________. (4)函数y =log 2(ax 3 )的导数为________. 3.曲线y =x e x +2x +1在点(0,1)处的切线方程为________. 4.设正弦函数y =sin x 在x =0和x = π 2 附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系为( ) A .k 1>k 2 B .k 1

高中数学导数之变化率问题

冷世平之教案设计【高二下】 选修2-2第一章导数及其应用第1课时 1 课题:§1.1.1变化率及导数的概念 三维目标: 1、 知识与技能 ⑴理解平均变化率的概念; ⑵了解瞬时速度、瞬时变化率的概念; ⑶理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; ⑷会求函数在某点的导数或瞬时变化率; ⑸理解导数的几何意义。 2、过程与方法 ⑴通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数; ⑵通过动手计算培养学生观察、分析、比较和归纳能力; ⑶通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。 3、情态与价值观 ⑴通过学生的积极参与、学习变化率与导数的知识,培养学生思维的科学性、严密性,不断认识数形结合和等价转化的数学思想; ⑵通过运动的观点体会导数的内涵,使学生掌握导数的概念,从而激发学生学习数学的兴趣; ⑶通过对变化率与导数的学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神 教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成,导数及几何意义的理解。 教学难点:在平均变化率的基础上去探求瞬时变化率,导数及几何意义的理解。 教学过程: 一、引入课题: 为了描述现实世界中运动、过程等变化的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度。 二、讲解新课: 【探究1】气球膨胀率 同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢, 从数学角度,如何描述这种现象呢? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是34 ()3 V r r π=,如果将半径r 表示为体积V 的函数, 那么()r V 。 【分析】⑴当V 从0增加到1时,气球半径增加了(1)(0)0.62()r r dm -≈,气球的平均膨胀率为(1)(0)0.62(/)10 r r dm L -≈-;⑵当V 从1增加到2时,气球半径增加了(2)(1)0.16()r r dm -≈,气球的平均膨胀率为(2)(1)0.16(/)21 r r dm L -≈-。可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了。 【思考】当空气容量从1V 增加到2V 时,气球的平均膨胀率是多少? 【答案】2121 ()()r V r V V V -- 【探究2】高台跳水

变化率与导数学案95012

§1.1 变化率与导数学案 §1.1.1 变化率问题 学习目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率. 教学重点:平均变化率的概念、函数在某点处附近的平均变化率. 教学难点:平均变化率的概念. 教学过程: (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 分析: (1)当V 从0增加到1时,气球半径增加了 气球的平均膨胀率为 (2)当V 从1增加到2时,气球半径增加了 气球的平均膨胀率为 可以看出: 思考: 当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2 ++-=t t t h .如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算: 5.00≤≤t 和21≤≤t 的平均速度 探究: 计算运动员在49 65 0≤≤t 这段时间里的平均速度,并思考 以下问题:(1)运动员在这段时间内是静止的吗? (2)你认为用平均速度描述运动员的运动状态有什么问题吗? (二)平均变化率概念 1.上述问题中的变化率可用式子1212) ()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变 化率. 2.若设12x x x -=?, )()(12x f x f f -=?(这里x ?看作是对于1x 的一个“增量”可用x x ?+1代替2x ,

高中数学变化率问题教案

§1.1.1变化率问题 教学目标 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少 ?

优秀教案21-变化率与导数

第三章 导数及其应用 3.1 变化率与导数(1) 教材分析 导数是微积分的核心概念之一.它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具,因而也是解决诸如运动速度、物种繁殖率、绿化面积增长率,以及用料最省、利润最大、效率最高等实际问题的最有力的工具.在本章,我们将利用丰富的背景与大量实例,学习导数的基本概念与思想方法;通过应用导数研究函数性质、解决生活中的最优化问题等实践活动,初步感受导数在解决数学问题与实际问题中的作用.教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的. 课时分配 本节课的教学内容选自人教社普通高中课程标准实验教科书(A 版)数学选修1-1第三章第一节的《变化率与导数》,《导数的概念》是第2课时,主要讲解导数的概念及利用定义求导数. 教学目标 重点: 通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念. 知识点:导数的概念. 能力点:掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤 教育点:通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验 自主探究点:通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要 过程. 考试点:利用导数的概念求导数. 易错易混点:对0x ?→的理解,0,0,x x ?>?<0,0x x ?>?≠但0x ?≠. 拓展点:导数的几何意义. 教具准备 多媒体课件和三角板 课堂模式 学案导学

变化率与导数、导数的计算学案(高考一轮复习)

20XX 年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

3.1 变化率与导数 教学设计 教案

教学准备 1. 教学目标 知识与技能 1.理解平均变化率的概念. 2.了解瞬时速度、瞬时变化率、的概念. 3.理解导数的概念 4.会求函数在某点的导数或瞬时变化率. 过程与方法 理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率. 情感、态度与价值观 感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力. 2. 教学重点/难点 教学重点 平均变化率的概念. 教学难点 平均变化率概念的形成过程. 3. 教学用具 多媒体、板书 4. 标签 教学过程 教学过程设计

创设情景、引入课题 【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。 【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。 新知探究 1.变化率问题 探究1 气球膨胀率 【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? 气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是 如果将半径r表示为体积V的函数,那么 【分析】 (1)当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 (2)当V从1增加到2时,气球半径增加了 气球的平均膨胀率为

(word完整版)数学北师大版高中选修2-2北师大版高中数学选修2-2第二章《变化率与导数》教案

北师大版高中数学选修2-2第二章《变化率与导数》全部教案 §1变化的快慢与变化率 第一课时变化的快慢与变化率——平均变化率 一、教学目标:1、理解函数平均变化率的概念; 2、会求给定函数在某个区间上的平均变化率,并能根据函数的平均变化率判断函数在某区间上变化的快慢。 二、教学重点:从变化率的角度重新认识平均速度的概念,知道函数平均变化率就是函数在某区间上变化的快慢的数量描述。 教学难点:对平均速度的数学意义的认识 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。 第二类问题是求曲线的切线的问题。 第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是

导数学案(有答案)

3.1.1平均变化率 课时目标 1.理解并掌握平均变化率的概念.2.会求函数在指定区间上的平均变化率.3.能利用平均变化率解决或说明生活中的实际问题. 1.函数f(x)在区间[x1,x2]上的平均变化率为____________.习惯上用Δx表示________,即__________,可把Δx看作是相对于x1的一个“__________”,可用__________代替x2;类似地,Δy=__________,因此,函数f(x)的平均变化率可以表示为________. 2.函数y=f(x)的平均变化率Δy Δx= f(x2)-f(x1) x2-x1 的几何意义是:表示连接函数y=f(x)图象 上两点(x1,f(x1))、(x2,f(x2))的割线的________. 一、填空题 1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号) ①在[x0,x1]上的平均变化率; ②在x0处的变化率; ③在x1处的变化率; ④以上都不对. 2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________. 3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则Δy Δx= ________. 4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________. 5.如图,函数y=f(x)在A,B两点间的平均变化率是________. 6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________. 7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______. 8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________. 二、解答题 9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

1.1变化率与导数第1课时 精品教案

1.1变化率与导数 【课题】:1.1.1变化率问题 【教学目标】: (1)知识目标: ○1感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。○2理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。 (2)情感目标:让学生充分体会到生活中处处有数学。 (3)能力目标:提高学生学习能力与探究能力、归纳表达能力。【教学重点】: 正确理解平均变化率; 【教学难点】: 平均变化率的概念。 【课前准备】:powerpoint 【教学过程设计】:

(基础题) 1.物体自由落体的运动方程是:()2 12 S t gt =,求1s 到2s 时的平均速度. 解:213 14.72 S S g m -= = ,211t t s -=,

则()21 21 14.7/S S v m s t t -= =- 2.水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体 积 (单位:3 cm ),计算第一个10s 内V 的平 均变化率。 注: (10)(0)100 V V -- 3.已知函数2 ()f x x =,分别计算()f x 在下列区间上的平均变 化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]。 4.某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。 (难题) 5.思考: (1)课本P4思考题 (2)在高台跳水运动中,运动员相对水面的高度h (单位:m )与起跳后的时间t (单位: s )存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在65 049 t ≤≤这段时间里的平均速度, 并思考下面的问题: ○ 1运动员在这段时间里是静止的吗? ○ 2你认为用平均速度描述运动员的运动状态有什么问题吗? 答案: ○1不是. ○2不能客观描述运动员的运动状态. T(月) 3 9 12 t t V 1.025)(-? =

(完整版)变化率与导数、导数的计算知识点与题型归纳

1 ●高考明方向 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1 x 的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则 求简单函数的导数. ★备考知考情 由近几年高考试题统计分析可知,单独考查导数运算的题目很少出现,主要是以导数运算为工具,考查导数的几何意义为主,最常见的问题就是求过曲线上某点的切线的斜率、方程、斜率与倾斜角的关系,以平行或垂直直线斜率间的关系为载体求参数的值,以及与曲线的切线相关的计算题.考查题型以选择题、填空题为主,多为容易题和中等难度题,如2014广东理科10、文科11. 2014广东理科10 曲线52-=+x y e 在点()0,3处的切线方程为 ; 2014广东文科11 曲线53=-+x y e 在点()0,2-处的切线方程为 ;

一、知识梳理《名师一号》P39 知识点一导数的概念 (1)函数y=f(x)在x=x0处的导数 称函数y=f(x)在x=x0处的瞬时变化 率lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx 为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x =x0 . (2)称函数f′(x)=lim Δx→0f(x+Δx)-f(x) Δx为f(x)的导函数. 注意:《名师一号》P40 问题探究问题1 f′(x)与f′(x0)有什么区别? f′(x)是一个函数,f′(x0)是常数, f′(x0)是函数f′(x)在点x0处的函数值. 例.《名师一号》P39 对点自测1 1.判一判 (1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.() (2)f′(x0)与[f(x0)]′表示的意义相同.() (3)f′(x0)是导函数f′(x)在x=x0处的函数值.() 答案(1)×(2)×(3)√ 2

2.11-变化率与导数、导数的计算学案(高考一轮复习)

2014年高中数学一轮复习教学案 第二章 函数、导数及其应用 第11节 变化率与导数、导数的计算 一.学习目标: 1.了解导数概念的实际背景,理解导数的几何意义; 2.能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =1 x 的导数; 3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二.学习重、难点: 1.学习重点:能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 2.学习难点:理解导数的几何意义. 三.学习方法:讲练结合 四.自主复习: 1.导数的概念 (1)函数在x =x 0处的导数 函数y =f (x )在x =x 0处的瞬时变化率是__________________________=lim Δx →0 Δy Δx , 称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0 . (2)导函数:当上式中的x 0看作变量x 时,函数f ′(x )为f (x )的________. (3)导数的几何意义:f ′(x 0)是曲线y =f (x )在点P (x 0,f (x 0))处的________,相应的切线方程是_____________________.

2.基本初等函数的导数公式 3.运算法则 (1)[f(x)±g(x)]′=_________________; (2)[f(x)·g(x)]′=________________________; (3)[f(x) g(x) ]′=_______________________ (g(x)≠0).五.复习前测: 1.已知函数f(x)=sin x+ln x,则f′(1)的值为() A.1-cos1 B.1+cos1 C.cos1-1 D.-1-cos1

§1.1.1变化率问题教学设计

§1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r -- 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某

山东2021新高考数学一轮复习第二章函数导数及其应用2.10变化率与导数导数的计算学案含解析.doc

第十节变化率与导数、导数的计算 课标要求考情分析 1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数定义求函数y=c(c为常数),y =x,y=x2,y=x3,y= 1 x,y=x的导数. 4.能利用基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数,能求简单 的复合函数(仅限于形如f(ax+b)的复合函数) 的导数. 导数的概念和运算是高考的必考内容,一般 渗透在导数的应用中考查;导数的几何意义 常与解析几何中的直线交汇考查;题型为选 择题或解答题的第(1)问,低档难度. 知识点一导数的概念 1.函数y=f(x)与x=x0处的导数:函数y=f(x)在x=x0处的瞬时变化率lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=lim Δx→0 Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. 函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”. 2.导数的几何意义:函数f(x)在x=x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y -y0=f′(x0)(x-x0). 曲线y=f(x)在点P(x0,y0)处的切线是指P为切点,斜率为k=f′(x0)

的切线,是唯一的一条切线. 3.函数f (x )的导函数:称函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 为f (x )的导函数. 4.f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),[f ′(x 0)]′=0. 知识点二 导数公式及运算法则 1.基本初等函数的导数公式 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=n ·x n - 1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1) f ′(x )=a x ln a f (x )=e x f ′(x )=e x f (x )=lo g a x (a >0,且a ≠1) f ′(x )=1 x ln a f (x )=ln x f ′(x )=1 x (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 3.复合函数的导数 复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 1.思考辨析 判断下列结论正误(在括号内打“√”或“×”) (1)函数y =f (x )在x =x 0处的导数值与Δx 值的正、负无关.( √ ) (2)瞬时变化率是刻画某函数值在区间[x 1,x 2]上变化快慢的物理量.( × ) (3)在导数的定义中,Δx ,Δy 都不可能为零.( × ) (4)对于函数y =f (x ),当x 从x 1变为x 2时,函数值从f (x 1)变为f (x 2),若记Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则y =f (x )的平均变化率为Δy Δx =f (x 1)-f (x 2)x 1-x 2=f (x 2-Δx )-f (x 2) -Δx .( √ ) 解析:(1)由导数的定义知,函数在x =x 0处的导数值与x 0有关,所以正确. (2)瞬时变化率是刻画某一时刻变化快慢的物理量,所以错误.

变化率与导数教案

变化率与导数教案 Prepared on 24 November 2020

第三章 变化率和导数 3.1.1瞬时变化率—导数 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0 101) ()(x x x f x f k PQ --=, 设x 1-x 0=△x ,则x 1 =△x +x 0,

∴x x f x x f k PQ ?-?+= ) ()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+= ) ()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+= ) ()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的 斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率: t t s t t s ?-?+) ()(00 (3)瞬时速度:当无限趋近于0 时,t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常 数称为t=t 0时的瞬时速度 求瞬时速度的步骤: 1.先求时间改变量t ?和位置改变量)()(00t s t t s s -?+=? 2.再求平均速度t s v ??= 3.后求瞬时速度:当t ?无限趋近于0,t s ??无限趋近于常数v 为瞬时速度 (4)速度的平均变化率: t t v t t v ?-?+) ()(00 (5)瞬时加速度:当t ?无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这 个常数称为t=t 0时的瞬时加速度 注:瞬时加速度是速度对于时间的瞬时变化率

3.1变化率与导数(教学设计)(3)

3.1变化率与导数(教学设计)(3) 3.1.3导数的几何意义 教学目标: 知识与技能目标: 通过实验探究,理解导数的几何意义,体会导数在刻画函数性质中的作用。 过程与方法目标: 培养学生分析、抽象、概括等思维能力;通过“以直代曲”思想的具体运用,使学生达到思维方式的迁移,培养学生科学的思维习惯。 情感、态度与价值观目标: 渗透逼近和“以直代曲”思想,能激发学生的学习兴趣,培养学生不断发展、探索知识的精神,引导学生从有限中认识无限,体会量变和质变的辩证关系,感受数学思想方法的魅力。 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学过程: 一、复习回顾: 导数的概念: 从函数y =f (x )在x =x 0处的瞬时变化率是: 000 ()() lim lim x x f x x f x f x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0 ' |x x y =,即 0000 ()() ()lim x f x x f x f x x ?→+?-'=? 说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率 (2)0x x x ?=-,当0x ?→时,0x x →,所以000 ()() ()lim x f x f x f x x x ?→-'=- 二.创设情景,新课引入: (一)平均变化率、割线的斜率 (二)瞬时速度、导数 我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢? 三.师生互动,新课讲解: (一)曲线的切线及切线的斜率: 如图 3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n P P 的变化趋势是什么? 图3.1-2

《变化率问题与导数的概念》导学案

第1课时变化率问题与导数的概念 a 1.通过物理中的变化率问题和瞬时速度引入导数的概念. 2.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤. 3.通过构建导数概念,使学生体会极限思想,为将来学习极限概念积累学习经验. 4.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程. 借助多媒体播放2012年伦敦奥运会中国跳水运动员陈若琳夺得女子单人10米跳台冠军的视频.上节课我们已经学习了平均变化率的问题,我们知道运动员的平均速度不一定能够反映她在某一时刻的运动状态,而运动员在不同时刻的运动状态是不同的,我们需要借助于瞬时速度这样的量来刻画,那么我们如何才能求出运动员在某一时刻的瞬时速度呢? 问题1:根据以上情境,设陈若琳相对于水面的高度h (单位:m)与起跳后的时间t (单位:s) 存在函数关系h(t)=-4.9t2+6.5t+10,如果用她在某段时间内的平均速度描述其运动状态, 那么: (1)在0≤t≤0.5这段时间里,运动员的平均速度= . (2)在1≤t≤2这段时间里, 运动员的平均速度= . 问题2:函数y=f(x)从x1到x2的平均变化率公式是.如果用x1与增量Δx

表示,平均变化率的公式是. 问题3:函数f(x)在x=x0处的瞬时变化率的定义:一般地,函数y=f(x)在x=x0处的瞬时变化率是=,我们称它为函数y=f(x)在x=x 0处的导数,记作f'(x0)或y',即f'(x0)== . 问题4:在导数的定义中,对Δx→0的理解是:Δx>0,Δx<0,但. 1.已知函数y=f(x)=x2+1,当x=2,Δx=0.1时,Δy的值为(). A.0.40 B.0.41 C.0.43 D.0.44 2.设函数f(x)在点x0附近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)2(a,b为常数),则(). A.f'(x)=a B.f'(x)=b C.f'(x0)=a D.f'(x0)=b 3.一质点按规律s(t)=2t2运动,则在t=2时的瞬时速度为. 4.求y=2x2+4x在点x=3处的导数.

相关文档
最新文档