过氧化甲乙酮工艺危险分析及安全防护

过氧化甲乙酮工艺危险分析及安全防护
过氧化甲乙酮工艺危险分析及安全防护

过氧化甲乙酮工艺危险分析及安全防护

随着玻璃钢行业的迅速发展,喷射、缠绕等机械化程度的提高,液体固化剂过氧化甲乙酮逐渐代替了传统的糊状固化剂过氧化苯甲酰及过氧化环已酮,其产量逐年增加,然而爆炸事故也接连不断,有必要对其工艺及危险因素进行探讨,以避免和减少事故的发生。一、过氧化甲乙酮的特性

过氧化甲乙酮没有单一的化学结构,是各种结构的混合物,混合比无一固定的比值,因合成条件而异,如工艺选择不当或条件控制不严,即生成环状过氧化物,从而更富有爆炸性。

分子结构中含有过氧键,常温能被金属(钴、铁、镍、铜等)还原,分解出自由基,能打开乙烯基的双键而应用于工业中;过氧键极不稳定,受温度或机械能影响分解放热而引起爆炸,一般活性氧含量越高,分解温度越低,危险性越大(理论活性氧含量为18.2%),故此产品不能绝对纯,工业中以50%~60%邻苯二甲酸二甲酯作稀释剂,其技术指标为:无色透明液体,活性氧含量≥9%,半衰期;10h(105℃);其凝固点-20℃以下,闪点72℃(克利夫兰开杯法),自燃点177℃,发泡分解温度75℃;产品不溶于水,易溶于低级酮、醚、醇、邻苯二甲酸二甲酯、聚酯树脂。

二、工艺流程

过氧化甲乙酮生产工艺流程

合成反应基本上在反应釜中密闭间歇进行,反应要保持较低的温度,通过冷却带走反应热,为满足工艺要求,厂家一般选用双氧水含量大于30%的双氧水,工艺中严格控制双氧水的加入速度,速度过快,温度急剧上升,环状产物增多,易失控而导致爆炸。为保证产品的贮存安定性并保证产品稳定不分层,需加入一定量的络合剂(氨基酸碱金属盐、多元酸碱金属盐、磷酸碱金属盐等)和共溶剂(乙二醇、乙二醇单甲醚等)。

三、原料性能

甲乙酮:无色液体,有类似丙酮的气味;溶于水、乙醚、乙醇,可混溶于油类;属第3.2类中闪点易燃液体;熔点-85.9℃,沸点79.6℃,闪点-9℃,饱和蒸气压(kPa)9.49/20℃,引燃温度404℃,最小引燃能量0.27mJ,爆炸上限11.4(%,V/V),爆炸下限1.7(%,V/V);其蒸气与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸;与氧化剂等能发生剧烈的化学反应;其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃;在《建筑设计防火规范》中火险分级为甲类。

双氧水MSDS

双氧水(MSDS)安全使用说明书 1.产品/公司标识 商品名称:双氧水 英文名称: Hydrogen peroxide 分子式:H 2O 2 分子量: CAS号:7722-84-1 MSDS编号:06 生效日期:2009-5-15 2.组分信息 化学物质英文名称CAS RN 含量(%)过氧化氢 Hydrogen peroxide 7722-84-1 % 3.危险性概述 危险性类别:第类氧化剂。 燃烧爆炸危险:本品助燃,具强刺激性。 健康危害:吸入本品蒸气或雾对呼吸道有强烈刺激性。眼直接接触液体可致不可逆损伤甚至失明。口服中毒出现腹痛、胸口痛、呼吸困难、呕吐、一时性运动和感觉障碍、体温升高等。个别病例出现视力障碍、癫痫样痉挛、轻瘫。长期接触本品可致接触性皮炎。 接触途径:由呼吸道、消化道、皮肤侵入。 4.急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 5.消防措施 危险特性:爆炸性强氧化剂。过氧化氢本身不燃,但能与可燃物反应放出大量热量和氧气而引起着火爆炸。过氧化氢在pH值为~时最稳定,在碱性溶液中极易分解,在遇强光,特别是短波射线照射时也能发生分解。当加热到 100℃以上时,开始急剧分解。它与许多有机物如 糖、淀粉、醇类、石油产品等形成爆炸性混合物,在撞击、受热或电火花作用下能发生爆炸。过氧化氢与许多无机化合物或杂质接触后会迅速分解而导致爆炸,放出大量的热量、氧和水蒸气。大多数重金属(如铁、铜、银、铅、汞、锌、钴、镍、铬、锰等)及其氧化物和盐类都是活性催化剂,尘土、香烟灰、碳粉、铁锈等也能加速分解。浓度超过74%的过氧化氢,在具有适当的点火源或温度的密闭容器中,能产生气相爆炸。 灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器

过氧化甲乙酮项目投资计划书

过氧化甲乙酮项目投资计划书 xxx投资公司

过氧化甲乙酮项目投资计划书目录 第一章概述 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目建设背景及必要性分析 一、产业政策及发展规划 二、鼓励中小企业发展 三、宏观经济形势分析 四、区域经济发展概况 五、项目必要性分析 第三章建设规划方案 一、产品规划 二、建设规模 第四章选址可行性分析 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价 第五章工程设计可行性分析

一、建筑工程设计原则 二、项目工程建设标准规范 三、项目总平面设计要求 四、建筑设计规范和标准 五、土建工程设计年限及安全等级 六、建筑工程设计总体要求 七、土建工程建设指标 第六章建设风险评估分析 一、政策风险分析 二、社会风险分析 三、市场风险分析 四、资金风险分析 五、技术风险分析 六、财务风险分析 七、管理风险分析 八、其它风险分析 九、社会影响评估 第七章实施进度计划 一、建设周期 二、建设进度

三、进度安排注意事项 四、人力资源配置 五、员工培训 六、项目实施保障 第八章投资情况说明 一、项目估算说明 二、项目总投资估算 三、资金筹措 第九章项目经营效益分析 一、经济评价综述 二、经济评价财务测算 二、项目盈利能力分析 第十章附表 附表1:主要经济指标一览表 附表2:土建工程投资一览表 附表3:节能分析一览表 附表4:项目建设进度一览表 附表5:人力资源配置一览表 附表6:固定资产投资估算表 附表7:流动资金投资估算表

聚合工艺危险性分析

编号:SM-ZD-28969 聚合工艺危险性分析Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

聚合工艺危险性分析 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1固有危险性 固有危险性是指聚合反应中的原料、产品、中间产品等本身具有的危险有害特性。 1.1火灾危险性 参加聚合反应介质的自聚和燃爆危险性: 单烯烃聚合单体包括液态的乙烯、丙烯、氯乙烯、苯乙烯等,都属于甲类火灾危险性易燃液体。二烯聚合所指的单体主要包括丁二烯、双环戊二烯、苯乙烯、丙烯腈、乙烯、丙烯等都是易燃物质,其蒸气能与空气形成爆炸性混合物。有些单体的储存温度低于沸点,所以需要在氮气保护下储存。有些单体是在压力下储存,在向储罐投单体前,应彻底用氮气置换。除乙烯、丙烯外其他单体都有自聚的特性,生成聚合物后容易堵塞输送管道。二烯烃(丁二烯、双环戊二烯)不仅能自聚,而且还能生成过氧化物,这是一种有爆炸危险的不稳定物质。

作业条件危险性分析和预先危险性分析方法简介

作业条件危险性分析和预先危险性分析方法简介 1、预先危险性分析 1.1 方法简介 预先危险性分析法(Preliminary Hazard Analysis,PHA)又称初步危险分析。主要用于对危险物质和装置的主要工艺区域等进行分析。它常被用于评价项目、装置等开发初期阶段的物料、装置、工艺过程以及能量失控时可能出现的危险性类别、条件及可能造成的后果,作宏观的概略分析,其目的是辨识系统中潜在的危险有害因素,确定其危险等级,防止这些危险有害因素失控导致事故的发生。 1.2 预先危险性分析主要作用 1)大体识别与系统有关的主要危险有害因素; 2)分析、判断危险有害因素导致事故发生的原因; 3)评价事故发生对人员及系统产生的影响,事故可能造成的人员伤害和系统破坏、物质损失情况; 4)确定已识别危险有害因素的危险性等级; 5)提出消除或控制危险有害因素的对策措施。 1.3 预先危险性分析步骤 1)对系统的产生目的、操作条件和周围环境进行调研; 2)搜集同类生产过程中发生过的事故,查找能够造成故障、物质损失和人员伤害的危险性; 3)根据经验、技术诊断等方法确定危险源; 4)识别危险形成条件,研究危险因素转变成事故的触发条件; 5)进行危险性分级,确定其危险程度,找出重点控制的危险源; 6)制定危险防范措施。 1.4 预先危险性危险等级 在分析系统危险性时,为了衡量危险性的大小及其对系统的破坏程度,将各类危险性划分为四个等级,见下表。 危险性等级划分表 2、作业条件危险性分析 2.1 简介 作业条件危险性评价法(格雷厄姆——金尼法)是作业人员在具有潜在危险性环境中进行作业时的一

种危险性半定量评价方法。它是由美国人格雷厄姆(K.J.Graham )和金尼(G.F.Kinney )提出的,他们认为影响作业条件危险性的因素有三个: 1)发生事故或危险事件的可能性(L ); 2)人员暴露于危险环境的频繁程度(E ); 3)事故一旦发生可能产生的后果(C )。 用这三个因素分值的乘积 D =L ×E ×C 来评价作业条件的危险性,D 值越大,作业条件的危险性越大。 式中,D 为作业条件的危险性;L 为事故或危险事件发生的可能性;E 为暴露于危险环境的频率;C 为发生事故或危险事件的可能结果。 2.2 取值与计算方法 1)发生事故或危险事件的可能性 事故或危险事件发生的可能性与其实际发生的概率相关。在实际生产条件中,事故或危险事件发生的可能性范围非常广泛,将事故或危险事件发生可能性的分值从实际上不可能的事件为0.1,经过完全意外有极少可能的分值1,确定到完全会被预料到的分值10为止(表2.2-1)。 表2.2-1 事故发生的可能性分值(L ) 2) 暴露于危险环境的频率 作业人员暴露于危险作业条件的次数越多、时间越长,则受到伤害的可能性也就越大。为此,K ·J ·格雷厄姆和G ·F ·金尼规定了连续出现在潜在危险环境的暴露频率分值为10,一年仅出现几次非常稀少的暴露频率分值为1。暴露于潜在危险环境的分值见表 2.2-2。 表2.2-2 暴露于危险环境的频繁程度分值(E ) 3) 发生事故或危险事件的可能结果 造成事故或危险事故的人身伤害或物质损失可在很大范围内变化,以工伤事故而言,可以从轻微伤害到许多人死亡,其范围非常宽广。因此,K ·J ·格雷厄姆和G ·F ·金尼需要救护的轻微伤害的可能结果, 它值规定为1,以此为一个基准点;而将造成许多人死亡的可能结果规定为分值100,作为另一个参考点。在两个参考点1~100之间,插入相应的中间值,列出表2.2-3 所示的可能结果的分值。 表2.2-3 事故造成的后果分值(C )

危险化学品知识及工艺危险性分析.

对本建设项目危险有害因素的辨识,主要依据《企业职工伤亡事故分类》GB6441-1986、《生产过程危险和有害因素分类与代码》GB/T13861-1992、《职业病范围和职业病患者处理办法的规定》(1987年11月5日卫生部、劳动人事部、财政部、中华全国总工会发布)等法规、标准的规定。 3.1 危险有害物质的识别和确认分析结果 3.1.1原料、中间产品、最终产品理化性能指标 本建设项目原料:乙醇、甲酸、乙二醛、硝酸、硫酸、氢氧化钠等。 产品:甲酸乙酯、乙醛酸。副产品:乙二酸、硝酸钠、亚硝酸钠 中间产物:一氧化氮,为有毒气体。 辅助材料:氨,制冷介质,为有毒气体。 本建设项目中主要物质的危险特性见 3.0.0-1、3.0.0-2。

表3.0.0-1 物质的理化特性表 序号名称外观与形状 熔点 (-℃) 沸点(-℃) 饱和蒸气压 (kPa) 相对密度(水=1) 溶解性备注 1 乙醇无色液体,有酒香-114.1 78.3 5.33 0.79 混溶于水,可溶于氯仿、甘油、醚多种有机溶剂 2 甲酸无色透明发烟液体,有强 烈刺激性酸味 8.2 100.8 0.67 1.23 与水混溶,不溶于烃类,可混溶 于乙醇 3 乙二醛淡黄色液体,微有臭味15 50.5 29.3 1.1 4 溶于水、醇、醚 4 硝酸无色透明发烟液体,有酸味-42 86 4.4 1.50 5 硫酸无色透明油状液体,无嗅10.5 330 0.13 1.083 与水混溶 6 甲酸乙酯无色流动液体,有芳香气味-79 54.3 13.33 0.92 微溶于水,溶于苯、乙醇、乙醚等多数有机溶剂 7 乙醛酸淡黄色透明液体,有芳香气 味 98 111 1mmHg 1.42 溶于水,微溶于苯、乙醇、乙醚等 多数有机溶剂 8 氢氧化钠溶液纯品为无色液体无资料无资料无资料无资料与水混溶 9 乙二酸无色透明结晶体189.5 100℃升 华 1.90 易溶于乙醇,溶于水,微溶于乙 醚,不溶于苯和氯仿。 10 硝酸钠 无色透明或白微带黄色的菱 形结晶,味微苦,易潮解。306.8 无资料无资料 2.26水=1 易溶于水、液氨,微溶于乙醇、 甘油。 11 亚硝酸钠 白色或淡黄色细结晶,无臭, 略有咸味,易潮解271 320(分 解) 无资料 2.17水=1 易溶于水,微溶于乙醇、甲醇、 乙醚。 12 氨无色有刺激性气体-77.7 -33.5 506.62(4.7 ℃) 0.6空气=1 易溶于水、乙醇、乙醚。 13 一氧化氮无色气体-163.6-151无资料无资料微溶于水 2

危险性分析方法

第七章危险性分析方法 对于现代化的化工生产装置须实行现代化安全管理,也就是从系统的观念出发,运用科学分析方法识别、评价、控制危险,使系统达到最佳安全。 应用系统工程的原理和方法预先找出影响系统正常运行的各种事件出现的条件,可能导致的后果,并制定消除和控制这些事件的对策,以达到预防事故、实现系统安全的目的。 辨别危险、分析事故及影响后果的过程就是危险性分析。 危险性分析有定性分析和定量分析两种类型: 定性分析 找出系统存在的危险因素,分析危险在什么情况下能发生事故及对系统安全影响的大小,提出针对性的安全措施控制危险。 它不考虑各种危险因素发生的数量多少。(本章主要介绍定性危险分析方法) 定量分析 在定性分析的基础上,进一步研究事故或故障与其影响因素之间的数量关系,以数量大小评定系统的安全可靠性。定量危险性分析也就是对系统进行安全性评价。(在第八章进行讨论) 7.1 安全检查表 7.1.1 概述 安全检查表(SCL,Safety Check List)是进行安全检查和诊断的清单。 在编制安全检查表时,通常是把检查对象作为系统,将系统分割成若干个子系统, 按子系统制定。 安全检查表是最早开发的一种系统危险性分析方法,也是最基础、最简便的识别危险的方法。该法应用最多且广泛。 在我国目前安全检查表不仅用于定性危险性分析,有的还对检查项目给予量化,用于系统的安全评价。 安全检查表的优点: 1.安全检查是进行安全管理的重要手段,安全检查表是由各种专业人员事先经过充分的分析和讨论,集中了大家的智慧和经验而编制出来的,按照安全检查表进行检查就会避 免传统安全检查时的一些弊端,能全面找出生产装置的危险因素和薄弱环节; 2.它简明易懂,易于掌握,实施方便; 3.应用范围广,项目的设计、施工、验收,机械设备的设计、制造,运行装置的日常操作、作业环境、运行状态及组织管理等各个方面都可应用; 4.编制安全检查表的依据之一是有关安全的规程、规范和标准。 安全检查表还可对系统进行安全性评价。 7.1.2 安全检查表编制的步骤和依据 1、编制的步骤: 先组成一个由工艺、设备、操作及管理人员的编制小组,并大致按以下几步开展工作: (1)熟悉系统:详细了解系统的结构、功能、工艺流程、操作条件、布置和已有的安 全卫生设施等。 (2)搜集有关安全的法规、标准和制度及同类系统的事故资料,作为编制安全检查表 的依据。 (3)按功能或结构将系统划分成若干个子系统或单元,逐个分析潜在的危险因素。 (4)确定安全检查表的检查内容和要点,并按照一定的格式列成表。 2、编制的依据:

(完整版)化学品安全技术说明书大全MSDS

化学品安全技术说明书大全(MSDS)

1,1,1-三氯乙烷化学品安全技术说明书 第一部分:化学品名称 化学品中文名称: 1,1,1-三氯乙烷 化学品英文名称: 1,1,1-trichloroethane 中文名称2:甲基氯仿 英文名称2: methyl chloroform 技术说明书编码: 612 CAS No.: 71-55-6 分子式: C2H3Cl3 分子量: 133.42 第二部分:成分/组成信息 有害物成分含量 CAS No. 1,1,1-三氯乙烷≥95.0% 71-55-6 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:急性中毒主要损害中枢神经系统。轻者表现为头痛、眩晕、步态蹒跚、共济失调、嗜睡等;重者可出现抽搐,甚至昏迷。可引起心律不齐。对皮肤有轻度脱脂和刺激作用。 环境危害: 燃爆危险:本品可燃,有毒,具刺激性。 - 第四部分:急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。食入:饮足量温水,催吐。就医。 第五部分:消防措施 危险特性:遇明火、高热能燃烧,并产生剧毒的光气和氯化氢烟雾。与碱金属和碱土金属能发生强烈反应。与活性金属粉末(如镁、铝等)能发生反应, 引起分解。 有害燃烧产物:一氧化碳、二氧化碳、氯化氢、光气。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。喷水保持火场容器冷却,直至灭火结束。灭火剂:雾状水、泡沫、二氧化碳、砂土。 第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。从上风处进入现场。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴直接式防毒面具(半面罩),戴安全防护眼镜,穿防毒物渗透工作服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、碱类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。保持容器密封。应与氧化剂、碱类、食用化学品分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 第八部分:接触控制/个体防护 职业接触限值 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3): 20 TLVTN: OSHA 350ppm,1910mg/m3; ACGIH 350ppm,1910mg/m3 TLVWN: ACGIH 450ppm,2460mg/m3 监测方法:气相色谱法 工程控制:严加密闭,提供充分的局部排风和全面通风。 呼吸系统防护:空气中浓度超标时,应该佩戴直接式防毒面具(半面罩)。紧急事态抢救或撤离时,佩戴空气呼吸器。眼睛防护:戴安全防护眼镜。 身体防护:穿防毒物渗透工作服。 手防护:戴防化学品手套。 其他防护:工作现场禁止吸烟、进食和饮水。工作完毕,淋浴更衣。单独存放被毒物污染的衣服,洗后备用。注意个人清洁卫生。 第九部分:理化特性 主要成分:含量: 工业级一级≥95.0%; 二级≥91.0%; 三级≥90.0%。 外观与性状:无色液体。 pH: 熔点(℃): -32.5 沸点(℃): 74.1

过氧化甲乙酮用途是什么

过氧化甲乙酮用途是什么 过氧化甲乙酮,属于无色透明液体,但是它容易挥发,在低温升高时,溶解度会降低,在生活当中的用途主要是作为,涂料油墨或者是润滑油,拖拉机以及硫化促进剂,可是要注意的是它的危害也比较大,吸入食入或者是经皮细肉的话,都会对我们的健康造成影响,长期接触可引发皮炎。 ★一、用途 1、用作醋酸纤维素、丙烯酸树脂、醇酸树脂、涂料、油墨等的溶剂,染料的粘结剂,润滑油脱蜡剂,硫化促进剂等 2、用作测定镉、铜和汞的试剂、色谱分析标准物质和半导体光刻用溶剂 3、GB 2760-96规定为允许使用的食用香料。主要用于配制干酪、咖啡和香蕉型香精。亦可用作萃取溶剂。

4、丁酮主要用作溶剂,如用于润滑油脱蜡、涂料工业及多种树脂溶剂、植物油的萃取过程及精制过程的共沸精馏,其优点是溶解性强,挥发性比丙酮低,属中沸点酮类溶剂。丁酮还是制备医药、染料、洗涤剂、香料、抗氧化剂以及某些催化剂的是中间体,合成抗脱皮剂甲基乙基酮肟、聚合催化剂甲基乙基酮过氧化物、阻蚀剂甲基戊炔醇等,在电子工业中用作集成电路光刻后的显影剂。 5、丁酮是制备杀螨剂吡螨胺的原料。 6、是有机合成原料,可作溶剂。在炼油工业中作润滑油的脱蜡剂,同时用于医药、涂料、染料、洗涤剂、香料和电子等工业。液体油墨的溶剂。化妆品中用于指甲油的制造,作为低沸点溶剂,能降低指甲油的黏度,有快干性。 ★二、危害

侵入途径:吸入、食入、经皮吸收。 健康危害:对眼、鼻、喉、粘膜有刺激性。长期接触可致皮炎。本品常与2-己酮混合应用,能加强2-己酮引起的周围神经病现象,但单独接触丁酮未发现有周围神经病现象。 燃爆危险:该品易燃,具刺激性。

过氧化氢MSDS

过氧化氢 第一部分化学品名称 化学品中文名称:过氧化氢 化学品英文名称:hydroge n peroxide 中文别称:双氧水 CAS No.: 7722-84-1 分子式:H2O2 分子量: 第二部分成分/组成信息 第三部分危险性概述 危险性类别: 侵入途径: 健康危害: 吸入本品蒸气或雾对呼吸道有强烈刺激性。眼直接接触液体 可致不可逆损伤甚至失明。口服中毒出现腹痛、胸口痛、呼吸困难、呕吐、 一时性运动和感觉障碍、体温升高等。个别 病例出现视力障碍、癫痫样痉挛、轻瘫。长期接触本品可致接触性皮炎。环境危害: 燃爆危险:本品助燃,具强刺激性。 第四部分急救措施

皮肤接触:脱去污染的衣着,用大量流动清水冲洗。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少 15分钟。就医。 吸入: 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,

给输氧。如呼吸停止,立即进行人工呼吸。就医。 饮足量温水,催吐。就医。 爆炸性强氧化剂。 过氧化氢本身不燃, 但能与可燃物反应放 出大量热量和氧气而引起着火爆炸。过氧化氢在 pH 值为 ~ 时最稳定, 在碱性溶液中极易分解, 在遇强光, 特别是短波 射线照射时也能发生分解。当加热到 100C 以上时,开始急 剧分解。它与许多有机物如糖、 淀粉、醇类、石油产品等形 成爆炸性混合物, 在撞击、受热或电火花作用下能发生爆炸。 过氧化氢与许多无机化合物或杂质接触后会迅速分解而导 致爆炸,放出大量的热量、氧和水蒸气。 大多数重金属(如 铁、铜、银、铅、汞、锌、钴、镍、铬、锰等)及其氧化物 和盐类都是活性催化剂, 尘土、香烟灰、 碳粉、铁锈等也能 加速分解。浓度超过 74%的过氧化氢,在具有适当的点火源 或温度的密闭容器中,能产生气相爆炸。 氧气、水。 消防人员必须穿全身防火防毒服, 在上风向灭火。 尽可能将 容器从火场移至空旷处。 喷水保持火场容器冷却, 直至灭火 结束。处在火场中的容器若已变色或从安全泄压装置中产生 声音,必须马上撤离。 水、雾状水、干粉、砂土。 迅速撤离泄漏污染区人员至安全区, 并进行隔离, 严格限制 出入。建议应急处理人员戴自给正压式呼吸器,穿防毒服。 尽可能切断泄漏源。 防止流入下水道、 排洪沟等限制性空间。 用砂土、蛭石或其它惰性材料吸收。也可以用大量水冲洗, 洗水稀释后放入废水系统。 食入: 第五部分 消防措施 危险特性: 有害燃烧产物: 灭火方法: 灭火剂: 第六部分 泄漏应急处理 应急处理: 小量泄漏:

过氧化甲乙酮工艺危险分析及安全防护

过氧化甲乙酮工艺危险分析及安全防护 随着玻璃钢行业的迅速发展,喷射、缠绕等机械化程度的提高,液体固化剂过氧化甲乙酮逐渐代替了传统的糊状固化剂过氧化苯甲酰及过氧化环已酮,其产量逐年增加,然而爆炸事故也接连不断,有必要对其工艺及危险因素进行探讨,以避免和减少事故的发生。一、过氧化甲乙酮的特性 过氧化甲乙酮没有单一的化学结构,是各种结构的混合物,混合比无一固定的比值,因合成条件而异,如工艺选择不当或条件控制不严,即生成环状过氧化物,从而更富有爆炸性。 分子结构中含有过氧键,常温能被金属(钴、铁、镍、铜等)还原,分解出自由基,能打开乙烯基的双键而应用于工业中;过氧键极不稳定,受温度或机械能影响分解放热而引起爆炸,一般活性氧含量越高,分解温度越低,危险性越大(理论活性氧含量为18.2%),故此产品不能绝对纯,工业中以50%~60%邻苯二甲酸二甲酯作稀释剂,其技术指标为:无色透明液体,活性氧含量≥9%,半衰期;10h(105℃);其凝固点-20℃以下,闪点72℃(克利夫兰开杯法),自燃点177℃,发泡分解温度75℃;产品不溶于水,易溶于低级酮、醚、醇、邻苯二甲酸二甲酯、聚酯树脂。 二、工艺流程

过氧化甲乙酮生产工艺流程 合成反应基本上在反应釜中密闭间歇进行,反应要保持较低的温度,通过冷却带走反应热,为满足工艺要求,厂家一般选用双氧水含量大于30%的双氧水,工艺中严格控制双氧水的加入速度,速度过快,温度急剧上升,环状产物增多,易失控而导致爆炸。为保证产品的贮存安定性并保证产品稳定不分层,需加入一定量的络合剂(氨基酸碱金属盐、多元酸碱金属盐、磷酸碱金属盐等)和共溶剂(乙二醇、乙二醇单甲醚等)。 三、原料性能 甲乙酮:无色液体,有类似丙酮的气味;溶于水、乙醚、乙醇,可混溶于油类;属第3.2类中闪点易燃液体;熔点-85.9℃,沸点79.6℃,闪点-9℃,饱和蒸气压(kPa)9.49/20℃,引燃温度404℃,最小引燃能量0.27mJ,爆炸上限11.4(%,V/V),爆炸下限1.7(%,V/V);其蒸气与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸;与氧化剂等能发生剧烈的化学反应;其蒸气比空气重,能在较低处扩散到相当远的地方,遇明火会引着回燃;在《建筑设计防火规范》中火险分级为甲类。

工艺危险性分析报告

山东天泰钢塑有限公司 工艺危险性分析报告 一、产品及工艺简介 1)1、3、4号线生产工艺:将硫磺块放入燃硫炉内燃烧,产生二氧化硫气体,经引风机引入旋风除尘器进行净化,再进入风冷器和水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。 2)2号线生产工艺:将硫磺块放入溶硫池中,再经泵打入焚硫炉内,同时鼓风机向焚硫炉内鼓入空气,液体硫磺与空气在焚硫炉内燃烧,产生二氧化硫气体,吹入旋风除尘器进行净化,再进入余热锅炉、水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。本生产线在焚硫炉后设置的余热锅炉产生的蒸汽,输送回粗硫池和精馏池熔化硫磺,可达到节能降耗的目的。 3)5号线生产工艺:将硫磺块放入粗硫池内用蒸汽熔化,经过过滤器滤去杂质,打入精硫池中,再经泵打入焚硫炉内,同时鼓风机向焚硫炉内鼓入空气,液体硫磺与空气在焚硫炉内燃烧,产生二氧化硫气体,吹入旋风除尘器进行净化,再进入余热锅炉、水冷器降温冷却,然后进入吸收塔,自吸收塔塔顶喷淋氨水或循环液进行二氧化硫

的吸收。该项目吸收采用三级吸收,一级吸收塔吸收约85%,可得到成品液,二级吸收塔吸收约12%,三级吸收塔吸收约3%,经调和后,制得成品亚硫酸铵溶液。本生产线在焚硫炉后设置的余热锅炉产生的蒸汽,输送回粗硫池和精馏池熔化硫磺,可达到节能降耗的目的。 反应方程式为: S+O 2=SO 2 2NH 3·H 2 O+SO 2 =(NH 4 ) 2 SO 3 +H 2 O 3)生产工流程简图如下图所示。 二、工艺的危险性分析及处置措施 1生产装置 1.1生产过程危险因素分析 ①管路输送物料过程中,系统密封不严,发生物料泄漏,可能发生火灾、爆炸、中毒窒息事故。 ②设备、设施防静电设施不合格,物料流速过快,有可能产生静电火花引发火灾爆炸事故。 ③设备、法兰、管道密封不严或锈蚀穿孔,发生高温物料喷溅,可能发生中毒、灼烫事故。 ④作业场所通风不良,可能发生中毒和窒息事故。 ⑤操作人员劳动防护用品穿戴不齐或失效,也可能发生意外事故。 ⑥开停车前后,检修过程系统没有整体置换或置换不完全,系统内物料和空气形成爆炸性混合气体,遇明火、火花有引发火灾爆炸的

过氧化氢MSDS

过氧化氢 HS ;2847000000
过氧化氢化学式为 H2O2,俗称双氧水,外观为无色透明液体,是一种强氧化剂,适用 于伤口消毒及环境、食品消毒。
中文名: 外文名: 别名: 化学式:
编辑本段基本信息
过氧化氢 Hydrogen peroxide 双氧水 H2O2
相对分子质量: 化学品类别: 管制类型: 储存:
34.0
无机物--过氧化物
过氧化氢(*)(易制爆)
用瓶口有微孔的塑料瓶装阴凉保存
球棍模型
[1]
中文名称:过氧化氢 中文同义词:双氧水;氢过氧化物;二氧化二氢;过氧化氢(85%);双氧水(85%);50%双氧 水;HTP 英文名称:Hydrogen peroxide 英文同义词:PERONE;PERHYDROL;PERHYDROL(R);PERDROGEN;PEROXIDE; SUPEROXOL;60%solution;60%solutioninwater;Albone 35 毒害物质数据:7722-84-1(Hazardous Substances Data) 职业标准:TWA 1.4 毫克/立方米; STEL 4.2 毫克/立方米[2]
编辑本段物理性质
CAS 号
7722-84-1
[2]

熔点(℃) 沸点(℃) 折射率 EINECS 登录号 密度 闪点
-33 °C
[2] [2]
108 °C 1.3350
[2] [2] [2]
231-765-0
1.13 g/mL at 20 °C 107°C
水溶液为无色透明液体,溶于水、醇、乙醚,不溶于石油醚。[3]纯的过氧化氢是一种淡 蓝色粘稠状液体。[4] 纯过氧化氢是淡蓝色的粘稠液体,熔点-0.43 °C,沸点150.2 °C。凝固点时固体密度 为1.71g/cm3,密度随温度升高而减小。它的缔合程度比 H2O 大,所以它的介电常数和沸 点比水高。纯过氧化氢比较稳定,若加热到153 °C 便猛烈的分解为水和氧气。
纯过氧化氢
过氧化氢分子为椅型结构,左图为气态时的结构,右图为固态晶体时的结构。 过氧化氢可溶于乙醇、乙醚,不溶于苯。对有机物有很强的氧化作用,一般作为氧化 剂使用。[5]
MSDS
Name: Hydrogen Peroxide 35 wt.% Solution in Water Stabilized P.A. Material Safety Data Sheet Synonym Carbamide peroxide; Hydrogen dioxide; Peroxide; Hydroperoxide; Urea peroxide; Hydrogen peroxide 100

过氧化甲乙酮工艺危险分析及安全防护正式样本

文件编号:TP-AR-L3306 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 过氧化甲乙酮工艺危险分析及安全防护正式样本

过氧化甲乙酮工艺危险分析及安全 防护正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 随着玻璃钢行业的迅速发展,喷射、缠绕等机械 化程度的提高,液体固化剂过氧化甲乙酮逐渐代替了 传统的糊状固化剂过氧化苯甲酰及过氧化环已酮,其 产量逐年增加,然而爆炸事故也接连不断,有必要对 其工艺及危险因素进行探讨,以避免和减少事故的发 生。 一、过氧化甲乙酮的特性 过氧化甲乙酮没有单一的化学结构,是各种结构 的混合物,混合比无一固定的比值,因合成条件而

异,如工艺选择不当或条件控制不严,即生成环状过氧化物,从而更富有爆炸性。 分子结构中含有过氧键,常温能被金属(钴、铁、镍、铜等)还原,分解出自由基,能打开乙烯基的双键而应用于工业中;过氧键极不稳定,受温度或机械能影响分解放热而引起爆炸,一般活性氧含量越高,分解温度越低,危险性越大(理论活性氧含量为18.2%),故此产品不能绝对纯,工业中以50%~60%邻苯二甲酸二甲酯作稀释剂,其技术指标为:无色透明液体,活性氧含量≥9%,半衰期;10h (105℃);其凝固点-20℃以下,闪点72℃(克利夫兰开杯法),自燃点177℃,发泡分解温度75℃;产品不溶于水,易溶于低级酮、醚、醇、邻苯二甲酸二甲酯、聚酯树脂。

危险性分析方法

第八章危险性分析方法 辨别危险、分析可能发生的事故及其影响后果的过程就是危险性分析。 危险性分析是为防止危险造成事故所采取的手段,其作用是为制定防止事故发生的对策提供依据。 危险性分析需要运用系统工程的原理和方法。危险性分析有定性分析和定量分析两种类型: ①定性分析:找出系统存在的危险因素,分析危险在什么情况下能发生事故,以及对系统安全影响的大小,提出针对性的安全措施控制危险。定性分析不对各种危险因素作定量评价,本章主要介绍定性危险性分析方法。 ②定量分析:在定性分析的基础上,进一步研究事故或故障与其影响因素之间的数量关系,以数量大小评定系统的安全可靠性。在第八章介绍。 危险、危害因素 8.1.1危险因素与危害因素 危险因素是指突发性造成人身伤亡和财产损失的因素。危险因素强调突发性和瞬间作用; 危害因素是指可能造成人身伤害、职业病、财产损失和作业环境破坏的因素。危害因素强调在一定时间范围内的积累作用。 危险因素和危害因素二者有时难以区分,故有时统称为危险因素,更多的是并称为危险、危害因素。 8.1.2危险、危害因素分类 根据GB/T 13816—92《生产过程危险和危害因素分类与代码》的规定,按导致事故和职业危害的直接原因,将生产过程中的危险、危害因素分为6 类: 1、物理性危险、危害因素 (1)设备、设施缺陷如强度不够、刚度不够、运动件外露、制动器缺陷、外形缺陷等。 (2)防护缺陷如无防护、防护不当、防护距离不够、防护设施缺陷等。 (3)电危害 (4)噪声危害 (5)振动危害 (6)电磁辐射 如电离辐射:X 射线、高能电子束等;非电离辐射:激光、紫外线等。 (7)运动物危害如固体抛射物、液体飞溅物、气流冲击、岩土滑动等。 (8)明火 (9)能造成灼伤的高温物质 (10)能造成冻伤的低温物质 (11)粉尘与气溶胶(不包括爆炸性、有毒性粉尘与气溶胶) (12)作用环境不良如采光照明不良、安全过道缺陷、通风不良、气温过高或过低、空气质量差等。 (13)信号缺陷如无信号设施、信号不清、信号失准、信号选用不当等。 (14)标志缺陷如无标志、标志不清、标志不规范、标准位置不当等。 (15)其他物理危险和危害因素 2、化学危险和危害因素

30%过氧化氢 MSDS

物料安全资料(MSDS) 30%过氧化氢 第一部分化学品及企业标识化学品中文名称:过氧化氢30% 化学品英文名称:Hydrogen peroxide30%water solution 企业名称:广州市新港化工有限公司 地址:广州市海珠区工业大道中274号首层 邮编:510280 电子邮件地址:xg108@https://www.360docs.net/doc/4b10372659.html,; xghg2000@https://www.360docs.net/doc/4b10372659.html, 传真号码:(86)(020)(84314925) 企业应急电话:(86)(020)(84307896) 技术说明书编码: 生效日期:年月日 第二部分成分/组成信息 纯品□混合物■化学品名称:过氧化氢30% 化学品分子式: H 2O 2 分子量:34.1 有害物成分含量 CAS号 过氧化氢 30% 7722-84-1 第三部分危险性概述 危险性类别:第5.1类氧化剂 侵入途径:吸入、食入、经皮吸收。 健康危害:刺激黏膜。呼吸道受损。皮肤灼烧。 环境危害:在高浓度下对浮游生物有毒性。 燃爆危险:引发燃烧。 第四部分急救措施 吸入:迅速脱离现场至空气新鲜处。就医。 皮肤接触:脱去被污染的衣着,用清水彻底冲洗皮肤。轻敷聚乙二醇400。 眼睛接触:立即提起眼睑,用大量流动清水冲洗至少10 分钟。立即就医。 食入:让受害者饮足量水,避吐(有穿孔危险)。立即就医。不要试图中和。 第五部分消防措施 危险特性:几乎不燃。如果有氧气泄露,会加大火势。 灭火方法及灭火剂:根据周围环境选择合适的灭火器。 有害燃烧产物: 灭火注意事项:没有配备化学防护衣和供氧设备请不要待在危险区。防止化学品进入地表水和地下水。 第六部分泄漏应急处理 个人防护:不要吸入蒸汽/浮质。避免物质接触。确保室内空气畅通。 环境保护措施:化学品未经处理严禁向环境排放。 清洁/吸收措施:采用安全的方法将泄漏物收集回收或运至废物处理场所处理,根据化学品

气站安全管理及工艺操作危险有害因素辨识及分析

气站安全管理及工艺操作危险有害因素辨识及 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

某气站安全管理及工艺操作危险、有害因素辨识及分析(1)单位主要负责人、安全管理人员及从业人员,安全意识淡漠,工作期间存在违章指挥和违章作业。 (2)安全管理制度制定的不完善或制度完善,但执行不到位有章不遵。 (3)操作人员没有经过相应岗位的技术和安全培训,或者经培训但考核不合格的人员,上岗作业,因其操作能力及事故处理能力差,极易造成操作失误,而引发事故。 (4)采购不合格设备、材料及用品,极易引发事故。 (5)没有制定操作人员巡检制度,操作人员没有对自己管辖的设备进行定期巡检,不易发现事故隐患,从而导致事故扩大化。 (6)操作人员不能坚守岗位,存在串岗、睡岗等不良现象,不能及时发现事故隐患,而导致事故的发生。 (7)由于操作人员大意或失误,操作人员向已经装满液化气的储罐继续充装,储罐在未安装高低液位报警仪及安全阀失灵不能及时卸压情况下,会导致储罐超压爆炸事故。

(8)液化石油气储罐安装的高低液位报警仪失灵或未安装高低液位报警仪以及操作人员未及时观察储罐的液位情况下,储罐的充装量超过了最高安全限度,在高温天气,液化气会大量气化,罐内的压力随之升高,在没有安装喷淋设施或喷淋设施没有及时投用,加之安全阀失灵,会造成储罐超压爆炸。 (9)在向钢瓶充装液化石油气时,操作人员脱离岗位,造成钢瓶超装,又没有检称情况下易造成钢瓶超压爆裂。 (10)操作人员穿普通衣物,尤其是化纤衣物,因产生静电,产生火花;穿钉子鞋,与地面碰撞产生火花,使用易产生静电或火花的设备或工具,很可能引起爆炸。 (11)雷雨天进行操作,很容易受到雷击,引起火灾、爆炸事故。 (12)充装前,未按规定进行检瓶,使用不合格的气瓶充装了液化气,可能造成钢瓶泄漏或爆裂而导致事故的发生。 (13)卸车时,未接气相平衡管,或无高液位自动回流装置,或无高液位报警装置,可能使储罐充装过量,易造成储罐超压而导致储罐超压爆裂,造成火灾事故的发生。

几种安全性分析方法的比较

对安全性分析的几种方法的比较 FMEA故障模式影响分析、FTA故障树分析; PFMEA过程失效模式及后果分析、HAZOP危险与可操作性分析、ZSA区域安全性分析、PHA初步危险分析。 区别: 一、PFMEA(Process Failure Mode and Effects Analysis)过程失效模式及后果分析 PFMEA是由负责制造/装配的工程师/小组主要采用的一种分析技术,用以最大限度地保证各种潜在的失效模式及其相关的起因/机理已得到充分的考虑和论述。 PFMEA的分析原理 PFMEA的分析原理如下所示,它包括以下几个关键步骤: (1)确定与工艺生产或产品制造过程相关的潜在失效模式与起因; (2)评价失效对产品质量和顾客的潜在影响; (3)找出减少失效发生或失效条件的过程控制变量,并制定纠正和预防措施; (4)编制潜在失效模式分级表,确保严重的失效模式得到优先控制; (5)跟踪控制措施的实施情况,更新失效模式分级表。 模式及后果分析 (1)“过程功能/要求”:是指被分析的过程或工艺。该过程或工艺可以是技术过程,如焊接、产品设计、软件代码编写等,也可以是管理过程,如计划编制、设计评审等。尽可能简单地说明该工艺过程或工序的目的,如果工艺过程包括许多具有不同失效模式的工序,那么可以把这些工序或要求作为独立过程列出; (2)“潜在的失效模式”:是指过程可能发生的不满足过程要求或设计意图的形式或

问题点,是对某具体工序不符合要求的描述。它可能是引起下一道工序的潜在失效模式,也可能是上一道工序失效模式的后果。典型的失效模式包括断裂、变形、安装调试不当等; (3)“失效后果”:是指失效模式对产品质量和顾客可能引发的不良影响,根据顾客可能注意到或经历的情况来描述失效后果,对最终使用者来说,失效的后果应一律用产品或系统的性能来阐述,如噪声、异味、不起作用等; (4)“严重性”:是潜在失效模式对顾客影响后果的严重程度,为了准确定义失效模式的不良影响,通常需要对每种失效模式的潜在影响进行评价并赋予分值,用1-10分表示,分值愈高则影响愈严重。“可能性”:是指具体的失效起因发生的概率,可能性的分级数着重在其含义而不是数值,通常也用1—10分来评估可能性的大小,分值愈高则出现机会愈大。“不易探测度”:是指在零部件离开制造工序或装备工位之前,发现失效起因过程缺陷的难易程度,评价指标也分为1—10级,得分愈高则愈难以被发现和检查出; (5)“失效的原因/机理”:是指失效是怎么发生的,并依据可以纠正或控制的原则来描述,针对每一个潜在的失效模式在尽可能广的范围内,列出每个可以想到的失效起因,如果起因对失效模式来说是唯一的,那么考虑过程就完成了。否则,还要在众多的起因中分析出根本原因,以便针对那些相关的因素采取纠正措施,典型的失效起因包括:焊接不正确、润滑不当、零件装错等; (6)“现行控制方法”:是对当前使用的、尽可能阻止失效模式的发生或是探测出将发生的失效模式的控制方法的描述。这些控制方法可以是物理过程控制方法,如使用防错卡具,或者管理过程控制方法,如采用统计过程控制(SPC)技术; (7)“风险级(RPN)”:是严重性、可能性和不易探测性三者的乘积。该数值愈大则表明这一潜在问题愈严重,愈应及时采取纠正措施,以便努力减少该值。在一般情况下,不管风险级的数值如何,当严重性高时,应予以特别注意;

危险与可操作性分析研究_杜廷召

July 2010现代化工第30卷第7期M oder n Che m ica l Industry 2010年7月 分析测试 危险与可操作性分析研究 杜廷召,田文德,任 伟 (青岛科技大学化工学院,山东青岛266042) 摘要:危险与可操作性分析(HAZOP)是过程工业中广泛应用的识别危险与操作性问题的安全分析技术之一,尤其是在化工、石化等高危行业。概述了危险与可操作性分析方法基本原理的基础上,将HAZOP 产生以来的相关研究做出分类并进行了综述,包括HAZ OP 特征研究、扩展HAZ OP 分析领域、开发自动化HAZ OP 分析专家系统和动态模拟辅助的HAZOP 分析。最后对HAZ OP 技术的研究前景做出了展望。 关键词:HAZ OP ;危险与可操作性分析;过程危险性分析;安全分析中图分类号:X937 文献标识码:A 文章编号:0253-4320(2010)07-0090-04 P rogress and pros pect in hazard and operability analysis DU Ting zhao ,TI AN W en de ,RE N W ei (Co llege of Che m ica l Eng ineer i ng ,Q i ngdao U niversity of Science &T echno l ogy ,Q ingdao 266042,Ch i na)Ab stract :H azard and Operab ility Ana l ys i s(HA ZOP )is one o f t he techn i ques m ost w ide l y used i n safety ana l ys i s to i dentify hazards and ope rability prob l em s in process i ndustry ,especiall y i n i ndustry w ith h i gh risk li ke che m i ca l i ndustry ,petrochem i ca l industry et al .T he funda m enta l pr i nciple ofHA ZOP i s rev ie w ed .T he resea rch re lated to HAZOP around the w orld is c lassified i nto four ca tego ries acco rd i ng to its research scope ,i nc l ud i ng character i stics study ,HAZOP scope ex tendi ng ,deve l opi ng auto m ated HAZOP expert system s and HAZOP aided w it h dyna m ic si m u l a ti on .T he resea rch prospect o fHAZOP i s prev i ewed i n the end . K ey w ords :HAZOP ;hazard and operability ana l y si s ;pro cess hazard analysis ;safe t y ana l ysis 收稿日期:2010-02-08 基金项目:山东省自然科学基金(ZR2009B M 033) 作者简介:杜廷召(1986-),男,硕士生,研究方向为化学工程,du ti ngz h ao @g m ai.l co m;田文德(1973-),男,副教授,博士,硕士生导师,研究方 向为过程系统工程。 HAZOP (H azar d and Operability Analysis)技术 最早是在20世纪60年代中期由英国帝国化学公司(I CI)首先开发应用的。最初定义为:HAZ OP 分析是由各专业人员组成的分析组对工艺过程的危险和操作性进行分析,即对新建或者已有的过程装置及工程本质进行正式的、系统的严格审查来评估单个装置的危险可能性和可能对整套装置造成的影响。HAZOP 分析的目的在于识别已有的高危险性装置的潜在危险,除去导致重大安全的问题,例如有毒物质泄漏、火灾和爆炸等。经过几十年的发展,HAZOP 分析不仅能够识别危险,而且可以辨识操作问题,其应用范围已经扩大到其他领域,例如医疗诊断系统、路况安全监测、可再生能源系统、可编程电子系统等。 1 HAZOP 分析基本原理 HAZOP 的理论依据是:工艺流程的状态参数(如温度、压力、流量等)一旦偏离规定的基准状态,就会发生问题或出现危险。它需要由一个由多学科 且经验丰富的成员组成的分析团队,首先依据过程 流程图和管道装置图将流程分为易处理的节点,以此确保对过程中的每一个装置进行分析;然后针对节点内的每个设备、操作逐一进行检验:匹配引导词(none ,less ,m ore 等)与工艺参数(fl o w,pressure ,te m perature 等)组成有意义的偏差及操作问题,并由偏差进行事故剧情的向前向后分析,最终辨识偏差原因并分析偏差后果。 常规HAZOP 分析流程 [1] 见图1 。 图1 常规HAZOP 分析流程图 90

相关文档
最新文档