第三章化工原理-修订版-天津大学-

第三章化工原理-修订版-天津大学-
第三章化工原理-修订版-天津大学-

第三章 机械分离和固体流态化

1. 取颗粒试样500 g ,作筛分分析,所用筛号及筛孔尺寸见本题附表中第1、2列,筛析后称取各号筛面上的颗粒截留量列于本题附表中第3列,试求颗粒群的平均直径。

习题1附表

解:颗粒平均直径的计算 由

11i

a i G d d G

=∑

2204080130110

(500 1.651 1.168 1.1680.8330.8330.5890.5890.4170.4170.295

603015105

0.2950.2080.2080.1470.1470.1040.1040.0740.0740.053

=

?++++

+++++++++++++++ )

2.905=(1/mm)

由此可知,颗粒群的平均直径为d a =0.345mm.

2. 密度为2650 kg/m 3的球形石英颗粒在20℃空气中自由沉降,计算服从斯托克斯公式的最大颗粒直径及服从牛顿公式的最小颗粒直径。

解:20C 时,351.205/, 1.8110kg m Pa s ρμ-==??空气

对应牛顿公式,K 的下限为69.1,斯脱克斯区K 的上限为2.62 那么,斯脱克斯区:

max 57.4d m μ=

==

min 1513d m μ=

=

3. 在底面积为40 m 2的除尘室回收气体中的球形固体颗粒。气体的处理量为3600 m 3/h ,固体的密度3/3000m kg =ρ,操作条件下气体的密度3/06.1m kg =ρ,黏度为2×10-5 P a·s。试求理论上能完全除去的最小颗粒直径。

解:同P 151.例3-3

在降尘室中能被完全分离除去的最小颗粒的沉降速度u t , 则 36000.025/4003600

s t V u m s bl =

==? 假设沉降在滞流区,用斯托克斯公式求算最小颗粒直径。

min

17.5d um ===

核算沉降流型:6min 5

17.5100.025 1.06

R 0.0231210t et d u ρ

μ

--???=

==

假设合理。求得的最小粒径有效。

4. 用一多层降尘室除去炉气中的矿尘。矿尘最小粒径为8m μ,密度为4000 kg/m 3。除尘室长4.1 m 、宽1.8 m 、高4.2 m ,气体温度为427℃,黏度为3.4×10-5

P a·s,密度为0.5 kg/m 3。若每小时的炉气量为2160标准m 3,试确定降尘室隔

板的间距及层数。

解:由气体的状态方程PV nRT =有'

'

s s T V V T

=

则气体的流量为'34272732160

1.54/2733600

s V m s +=

?= 1.54

0.2034/1.8 4.2

s t V u m s bH =

==? 假设沉降发生在滞流区,用斯托克斯公式求最小粒径。

min

57.02d m μ===

核算沉降流型:6min e 5

57.02100.2080.5

R 0.17413.410

t t d u ρ

μ

--???=

==

假设合理。求得的最小粒径有效。

由以上的计算可知。粒径为8m μ的颗粒沉降必定发生在滞流区。 用斯托克斯公式求沉降速度

26235

()(810)(40000.5)9.81 4.110/1818 3.410

s t d g u m s ρρμ----??-?===??? 层数3

1.54

50.91.8 4.1 4.110s t V n blu -=

==???取为51层。 板间距/(1) 4.2/(511)80.8h H n mm =+=+= 核算气体在多层降尘室中的流型。

/() 1.54/(1.8 4.1)0.208/s u V bl m s ==?=

当量直径(对降尘室)4 1.80.081

4/2()0.1542(1.80.081)

e d bh b h m ??=+=

=?+

5e R /0.1540.2080.5/(3.410)471.06e d u ρμ-==???=

气体在降尘室中的流动为层流流动。设计合理。

5. 已知含尘气体中尘粒的密度为2300 kg/m 3

,气体流量为1000 m 3

/h 、黏度为3.6×10-5 P a·s、密度为0.674 kg/m 3,采用如图3-7所示的标准型旋风分离器进行除尘。若分离器圆筒直径为0.4 m ,试估算其临界粒径、分割粒径及压强降。

解:对标准型旋风分离器,已知D =0.4m ,B =D /4=0.1m ,h =D /2=0.2m 。 气体流速为1000

/1000/(3600)13.89/36000.10.2

i s u V A B h m s ==??=

=??

临界粒径8.04c d m μ=

==

500.27 5.73d m μ===

压强降2

2

0.674(13.89)8.052022

i u p Pa ρξ??==?= 所以,临界粒径8.04c d m μ=,分割粒径50 5.73d m μ=,压强降520Pa

6. 某旋风分离器出口气体含尘量为0.7×10-3 kg/标准m 3,气体流量为5000标准m 3/h ,每小时捕集下来的灰尘量为21.5 kg 。出口气体中的灰尘粒度分布及捕集下来的灰尘粒度分布测定结果列于本题附表中。

习题6附表1

解:(1) 除尘总效率

出口气体中尘粒的质量流量为320.7105000 3.5/w kg h -=??= 进口气体中尘粒的质量流量为1221.521.5 3.525/w w kg h =+=+= 所以0121.521.5

0.8625

w η=

==,即86% (2) 粒级效率曲线

1121

ci ci pi ci w w w w w η=

=+ 根据附表的数据求得粒级效率值如本题附表所示

习题6附表1

根据~mi pi d η的数据绘制粒级效率曲线如附图所示

7. 在实验室用一片过滤面积为0.1 m 2的滤叶对某种颗粒在水中的悬浮液进行过滤实验,滤叶部真空度为500 mmHg 。过滤5 min 得滤液1 L,又过滤5 min 得滤液0.6 L 。若再过滤5min,可再得滤液多少?

解:由过滤基本方程:22e q qq K θ+=,代入数据有:

2

33

23

311()2()5600.1100.1101.6 1.6()2()10600.1100.110e e q K q K ?+=???????

?+=??????

解得:53272710/,810/e q m m K m s --=?=? 当15min θ=时,25727108101560q q --+??=??? 解得3220.02073/20.73/q m m L m ==,

20.730.1 2.073V qA L ==?=

2.073 1.60.473V L ?=-=

8. 以小型板框压滤机对碳酸钙颗粒在水中的悬浮液进行过滤实验,测得数据列于本题附表中。

习题6附图

01020304050607080

0.0

0.2

0.4

0.6

0.8

1.0

级效率

d m /微

已知过滤面积为0.093 m 2,试求:(1) 过滤压强差为103.0 kPa 时的过滤常数K 、q e 及e θ;(2) 滤饼的压缩性指数s ;(3) 若滤布阻力不变,试写出此滤浆在过滤压强差为196.2kPa 时的过滤方程式。

习题8附表

解:(1) 103.0kPa 下,

3321 2.2710/0.0930.0244/q m m -=?=,33229.1010/0.0930.0978/q m m -=?=

52

22332

1.57210/0.024420.0244500.097820.0978660 3.9110/e e e

K m s

q K q K q m m --?=??+?=?????+?=?=???? 2325

(3.9110)0.9731.57210e e q s K θ--?===?

同理可以求出343.4kPa 下的过滤常数

52332' 4.3610/,' 3.0910/,'0.219e e K m s q m m s θ--=?=?=

(2) 由12s K k p -=?得

5115'' 4.3610343.4()()0.15261.57210103

s s K p s K p ----??=?=?=?? (3) 's m e e R rL r p vq ==?=常数,所以1/s e q p ∝?, 以103kPa 下的数值为基准,得到

510.1526522.0'' 1.57210() 2.71410/1.05

K m s ---=??=?

310.1526

3322.0'' 3.9110() 3.54410/1.05

e q m m ---=??=?

232

5

''(3.54410)''0.463'' 2.71410e e q s K θ--?===?

于是得到1962.kPa 下的过滤方程式为

225( 3.54410) 2.7410(0.463)q θ--+?=?+

9. 在实验室中用一个每边长0.162 m 的小型滤框对CaCO 3颗粒在水中的悬浮液进行过滤实验。料浆温度为19℃,其中CaCO 3固体的质量分数为0.0723。测得每1 m 3滤饼烘干后的质量为l062 kg 。在过滤压强差为275800 Pa 时所得的数据列于本题附表中。

习题9附表

试求过滤介质的当量滤液体积V e ,滤饼的比阻r ,滤饼的空隙率ε及滤饼颗粒的比表面积a 。已知CaCO 3颗粒的密度为2930 kg/m 3,其形状可视为圆球。

解:由恒压过滤方程式22()()e e V V KA θθ+=+可得

222()()()e e V V d rv V V dV KA A p θμ+==+?,也可写作2()()

e rv

V V V A p θμ?=+?? 对题给的数~V θ数据进行处理,以

θ

?对V 作图,据图可求得有关参数

2.4 67.2 9.5 47.5 2.6 77.3 10.1 50.5 2.8

88.7 11.4 57

由图得知:直线斜率26618.25/18.2510/s L s m ==? 直线的截距335.9/ 5.910/s L s m ==? 即

66218.2510/()

rv

s m A p μ=??,

332 5.910/()

e rv

V s m A p μ=??

则33

436

5.910/ 3.231018.2510

s m V m -?==??,22254(20.162) 2.75510A m -=?=? 31.0310Pa s μ-=??,1602

10.45322930

ε=-

= 设滤饼与滤液的体积比是v ,并以1m 3滤液为基准做固相的物料衡算,得

29300.4532(100029300.453210000.5468)0.0723v v v ?=+?+??

解0.0497v = 则滤饼的比阻为

255142318.2518.2510 2.75510275800 2.71101/1.03100.0497

A p r m v μ--?????===???

习题9附图

5.9s /L

V /L

6

8010

2030405060

斜率=18.25s /L 2

31430.5

0.562322

2.71100.4532()() 4.10810/5(1)5(10.4532)

r a m m εε??===?-?- 10. 用一台BMS5O/810-25型板框压滤机过滤某悬浮液,悬浮液中固相质量分数为0.139,固相密度为2200 kg/m 3,液相为水。每1 m 3滤饼中含500 kg 水,其余全为固相。已知操作条件下的过滤常数K =2.72×10-5 m 2/s ,q e =3.45×10-3 m 3/m2。滤框尺寸为810mm×810mm×25mm,共38个框。试求:(1) 过滤至滤框全部充满滤渣所需的时间及所得的滤液体积;(2) 过滤完毕用0.8 m 3清水洗涤滤饼,求洗涤时间。洗水温度及表压与滤浆的相同。

解: (1):过滤面积为:220.8123849.86A m =??= 滤框总容积:230.810.025380.623V m =??= 设13500

.. 1.1100.22001000

x m xkg x +==的滤饼中含固相那么 则1 3m 滤饼中对应的滤液量

:

滤饼中对应的滤液量为3

3

11006313.6750011006313.67. 6.314.0.13910

l kg V m --===滤液体积 3331.1.1m m m 悬浮液总量滤饼中的水滤液饼中的固相. 当滤框全部充满时,其滤液体积36.3140.623 3.935.V m =?=

过滤终了时.单位面积上的滤液量32/ 3.935/49.860.0789/.q V A m m ===

22325/(3.4510)/(2.7210)0.438.e e e q k q k s ρθθ--=?==??= 则该体系的恒压过滤方程为:

225( 3.4510) 2.7210(0.438):249.().q s q θθ--+?=?+=得前已知

(2):洗涤时间:

53332.7210()49.868.2310/.2()2(0.789 3.4510)

E e dv k A m s d q q θ---?==?=?+?+? 30.8w V m =

34(/).40.8/(8.2310)389.w v V d d E w s θθ-==??=所以

11. 用叶滤机处理某种悬浮液,先以等速过滤20 min ,得滤液2 m 3。随即保持当时的压强差再过滤40 min,问共得滤液多少(m 3)?若该叶滤机每次卸渣、重装等全部辅助操作共需20 min ,求滤液日产量。滤布阻力可以忽略。

解:在恒速阶段.

222236:22/22/(6020) 6.6710/.v R

R R

R R d V kA d V kA V m s θθθ-====??=?有

在恒压过程.

1

1

2

2

22222

23

3

()

()(2 6.67104060) 4.47.

R R R R V V kA V V kA m θθθθ--=-??=+-=+???=??

生产能力:3243600 4.47

80.5/.206040602060

d V m d ??==?+?+?

12. 在3×105 Pa 的压强差下对钛白粉在水中的悬浮液进行过滤实验,测得过滤常数K =5×10-5 m 2/s 、q e =0.0l m 3/m 2,又测得滤饼体积与滤液体积之比v =0.08。现拟用有38个框的BMY50/810-25型板框压滤机处理此料浆,过滤推动力及所用滤布也与实验用的相同。试求:(1) 过滤至框全部充满滤渣所需的时间;(2) 过滤完毕,以相当于滤液量1/10的清水进行洗涤,求洗涤时间;(3) 若每次卸渣、重装等全部辅助操作共需15 min ,求每台过滤机的生产能力(以每小时平均可得多少(m 3)滤饼计)。

解:板框过滤机的总容积为230.810.025380.623.V m =??=

其对应的滤液体积为:

30.623

7.79.0.108m = 过滤终了时的滤液量:32

2

7.790.156/.0.81238

V q m m A ===?? 恒压过滤方程:2()().e e q q k θθ+=+

其中:2

5

32230.156;0.01;510;2.

550.8.

7.790.10.779.0.0499.

e e e e e e q q q k Q s k

Q s m V kA Q V m -===?===?===代入上式解得。过滤时间洗涤时,清水体积为:

则由恒压过滤速率方程有:可知:

其过滤介质的当量滤液体积:

由()

()2

3310.00187/.8415.63.

0.6233600/415.63550.791560 1.202/.

v e w w

w v w

d kA m s d V V V s d d Q m h θθθ??=?

= ?+??==?? ???=?++?=那么。洗涤时间为生产能力

13. 某悬浮液中固相质量分数为9.3%,固相密度为3000 kg/m 3,液相为水。在一小型压滤机中测得此悬浮液的物料特性常数k =1.1×104 m 2(s·atm),滤饼的空隙率为40%。现采用一台GB-1.75型转筒真空过滤机进行生产(此过滤机的转鼓直径为1.75 m ,长度为0.98 m,过滤面积为5 m 2,浸没角度为120o),转速为0.5 r/min ,操作真空度为80.0 kPa 。已知滤饼不可压缩,过滤介质阻力可以忽略。试求此过滤机的生产能力及滤饼厚度。

解:滤饼不可压缩,s=0,不计过滤介质阻力,0e θ=。

过滤常数:4

14425

31.1102228.010 1.74310/.1.0110

465465512.51/.

12.510.122(0.058360

0.122

0.00486 4.86.

0.55

s

k k P

k P m s m h r

r m mm nA θθθθδ---?===???=??==?==

=====?’

’’生产能力:对应的滤饼的量为:为滤饼与滤液体积比。取为)滤饼厚度

14. 用板框过滤机在恒压差下过滤某种悬浮液,滤框边长为0.65 m ,己测得操作条件下的有关参数为:K =6×10-5 m 3/h 、q e =0.0l m 3/m 2、v =0.1 m 3/m 3滤液。滤饼不要求洗涤,其他辅助时间为20min ,要求过滤机的生产能力为9 m 3/h ,试计算:(1) 至少需要几个滤框?(2)框的厚度L 。

15. 已知苯酐生产的催化剂用量为37400 kg ,床径为3.34 m ,进入设备的气速为0.4 m/s ,气体密度为1.19 kg/m 3。采用侧缝锥帽型分布板,求分布板的开孔率。

16. 平均粒径为0.3 mm 的氯化钾球形颗粒在单层圆筒形流化床干燥器中进行流化干燥。固相密度s ρ=1980 kg/m 3。取流化速度为颗粒带出速度的78%,试求

适宜的流化速度和流化数。干燥介质可按60℃的常压空气查取物性参数。

解:假设沉降在沉流区。

()()()

()

()

2

3

2

5

0.3101980 1.69.816

1818 2.0110

35

e

e

4.8310/.

R0.31040831980/ 2.0110 1.

0.270.27/.

R27.8.

s

d g

t

t

t

t

ut m s du

u m s ρρ

μ

ρ

μ

-

-

??-?

--

??

--

===?

==????>

==

=

核算

假设不合理。假设沉降在过滤区。

核算符合要求。

流化速度.u=0.7

()6

5

0.09101978.949.81

0.0527/.

16501650 2.0110

1.33/0.05273

2.

3.

mf

s

u

u

g

m s ρρ

μ

-

-

?

-???

==

??

==

t

2

p

mf

8u=0.78 1.7=1.33m/s.

d

u=

流化数

天津大学化工原理(第二版)上册课后习题答案[1]

第一章 流体流动 流体的重要性质 1.某气柜的容积为6 000 m 3,若气柜内的表压力为5.5 kPa ,温度为40 ℃。已知各组分气体的体积分数为:H 2 40%、 N 2 20%、CO 32%、CO 2 7%、CH 4 1%,大气压力为 101.3 kPa ,试计算气柜满载时各组分的质量。 解:气柜满载时各气体的总摩尔数 ()mol 4.246245mol 313 314.86000 0.10005.53.101t =???+== RT pV n 各组分的质量: kg 197kg 24.246245%40%4022H t H =??=?=M n m kg 97.1378kg 284.246245%20%2022N t N =??=?=M n m kg 36.2206kg 284.246245%32%32CO t CO =??=?=M n m kg 44.758kg 444.246245%7%722CO t CO =??=?=M n m kg 4.39kg 164.246245%1%144CH t CH =??=?=M n m 2.若将密度为830 kg/ m 3的油与密度为710 kg/ m 3的油各60 kg 混在一起,试求混合油的密度。设混合油为理想溶液。 解: ()kg 120kg 606021t =+=+=m m m 33 122 1 1 21t m 157.0m 7106083060=??? ? ??+=+= +=ρρm m V V V 3 3t t m m kg 33.764m kg 157 .0120=== V m ρ 流体静力学 3.已知甲地区的平均大气压力为85.3 kPa ,乙地区的平均大气压力为101.33 kPa ,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa 。若

化工原理(天大版)干燥过程的物料衡算与热量衡算

8.3干燥过程的物料衡算与热量衡算 干燥过程是热、质同时传递的过程。进行干燥计算,必须解决干燥中湿物料去除的水分量及所需的热空气量。湿物料中的水分量如何表征呢? 湿物料中的含水量有两种表示方法 1.湿基含水量w 湿物料总质量 湿物料中水分的质量= w kg 水/kg 湿料 2.干基含水量X 量 湿物料中绝干物料的质湿物料中水分的质量= X kg 水/kg 绝干物料 3.二者关系 X X w +=1w w X -=1 说明:干燥过程中,湿物料的质量是变化的,而绝干物料的质量是不变的。因此,用干基含 水量计算较为方便。 图8.7 物料衡算 符号说明: L :绝干空气流量,kg 干气/h ; G 1、G 2:进、出干燥器的湿物料量,kg 湿料/h ; G c :湿物料中绝干物料量,kg 干料/h 。 产品 G 2, w 2, (X 2), θ2 G 1, w 1, (X 1), θ1 L, t 2 , H 2

目的:通过干燥过程的物料衡算,可确定出将湿物料干燥到指定的含水量所需除去的水分量及所需的空气量。从而确定在给定干燥任务下所用的干燥器尺寸,并配备合适的风机。 1.湿物料的水分蒸发量W[kg 水/h] 通过干燥器的湿空气中绝干空气量是不变的,又因为湿物料中蒸发出的水分被空气带 走,故湿物料中水分的减少量等于湿物料中水分汽化量等于湿空气中水分增加量。即: [])]([][)(1221221121H H L W X X G w G w G G G c -==-=-=- 所以:1212221 1 2111w w w G w w w G G G W --=--=-= 2.干空气用量L[kg 干气/h] 1212) (H H W L H H L W -=∴-=Θ 令121H H W L l -== [kg 干气/kg 水] l 称为比空气用量,即每汽化1kg 的水所需干空气的量。 因为空气在预热器中为等湿加热,所以H 0=H 1,0 21211H H H H l -=-=,因此l 只与空气的初、终湿度有关,而与路径无关,是状态函数。 湿空气用量:)1(0'H L L += kg 湿气/h 或)1(0'H l l += kg 湿气/kg 水 湿空气体积:H s L V υ= m 3湿气/h 或H s l V υ=' m 3湿气/kg 水 通过干燥器的热量衡算,可以确定物料干燥所消耗的热量或干燥器排出空气的状态。作为计算空气预热器和加热器的传热面积、加热剂的用量、干燥器的尺寸或热效率的依据。 1.流程图

化工原理课件 天大版

第二章流体输送机械 流体输送机械:向流体作功以提高流体机械能的装置。?输送液体的机械通称为泵; 例如:离心泵、往复泵、旋转泵和漩涡泵。 ?输送气体的机械按不同的工况分别称为: 通风机、鼓风机、压缩机和真空泵。

本章的目的: 结合化工生产的特点,讨论各种流体输送机械的操作原理、基本构造与性能,合理地选择其类型、决定规格、计算功率消耗、正确安排在管路系统中的位置等 ∑+++=+++f 2222e 2 11122h g u g p Z h g u g p Z ρρ

学习指导: ?学习目的: ?(1)熟悉各种流体输送机械的工作原理和基本结构; ?(2)掌握离心泵性能参数、特性曲线、工作点的计算及 学会离心泵的选用、安装、维护等; ?(3)了解各种流体输送机械的结构、特点及使用场合。 ?学习内容: ?(1)离心泵的基本方程、性能参数的影响因素及相似泵 的相似比;(2)离心泵安装高度的计算;(3)离心泵在管路系统中的工作点与流量调节;(4)风机的风量与风压,以及离心泵与风机的特性曲线的测定、绘制与应用。

?学习难点: ?(1)离心泵的结构特征和工作原理; ?(2)离心泵的气缚与气蚀性能,离心泵的安装高度; ?(3)离心泵在管路系统中的工作点与流量调节; ?(4)离心泵的组合操作。 ?学习方法: ?在教学过程中做到课堂授课和观看模型相结合,例题讲解 与练习相结合,质疑与习作讨论相结合。

2.1概述 ?2.1.1流体输送机械的作用 ?一、管路系统对流体输送机械的能量要求?——管路特性方程 在截面1-1′与2-2′间列柏 努利方程式,并以1-1′截面为 基准水平面,则液体流过管路 所需的压头为:

天津大学化工原理上册课后习题答案

大学课后习题解答 绪 论 1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。 (1)水的黏度μ= g/(cm ·s) (2)密度ρ= kgf ?s 2/m 4 (3)某物质的比热容C P = BTU/(lb ·℉) (4)传质系数K G = kmol/(m 2 ?h ?atm) (5)表面张力σ=74 dyn/cm (6)导热系数λ=1 kcal/(m ?h ?℃) 解:本题为物理量的单位换算。 (1)水的黏度 基本物理量的换算关系为 1 kg=1000 g ,1 m=100 cm 则 )s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044??=??=? ? ? ????????????? ???=--μ (2)密度 基本物理量的换算关系为 1 kgf= N ,1 N=1 kg ?m/s 2 则 3 242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=?? ??????????????????=ρ (3)从附录二查出有关基本物理量的换算关系为 1 BTU= kJ ,l b= kg o o 51F C 9 = 则 ()C kg kJ 005.1C 5F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0??=?? ? ????????????????????????=p c (4)传质系数 基本物理量的换算关系为 1 h=3600 s ,1 atm= kPa 则 ()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.342 52G ???=? ? ??????????????????=-K (5)表面张力 基本物理量的换算关系为 1 dyn=1×10–5 N 1 m=100 cm 则 m N 104.71m 100cm 1dyn N 101cm dyn 742 5 --?=????? ??????????????=σ (6)导热系数 基本物理量的换算关系为 1 kcal=×103 J ,1 h=3600 s 则

化工原理下(天津大学版)_习题答案

第五章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃)80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B*,P A*,由于总压 P = 99kPa,则由x = (P-P B*)/(P A*-P B*)可得出液相组成,这样就可以得到一组绘平衡t-x图数据。 以t = 80.1℃为例x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃

2.正戊烷(C5H12)和正己烷(C6H14)的饱和蒸汽压数据列于本题附表,试求P = 1 3.3kPa下该溶液的平衡数据。 温度C5H12223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C6H14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C5H12(A)和C6H14(B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时P B* = 1.3kPa 查得P A*= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A*(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B*(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时x = (P-P B*)/(P A*-P B*)

化工原理版天津大学上下册课后答案

化工原理版天津大学上 下册课后答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

上册 第一章 流体流动习题解答 1. 某设备上真空表的读数为×103 Pa ,试计算设备内的绝对压强与表压强。已知该地区大气压强为×103 Pa 。 解:真空度=大气压-绝压 表压=-真空度=310Pa ? 2. 在本题附图所示的贮油罐中盛有密度为960 kg/m 3的油品,油面高于罐底 m ,油面上方为常压。在罐侧壁的下部有一直径为760 mm 的圆孔,其中心距罐底800 mm ,孔盖用14 mm 的钢制螺钉紧固。若螺钉材料的工作应力取为×106 Pa ,问至少需要几个螺钉 解:设通过圆孔中心的水平液面生的静压强为p ,则p 罐内液体作用于孔盖上的平均压强 9609.81(9.60.8)82874p g z Pa ρ=?=??-=( 作用在孔盖外侧的是大气压a p ,故孔盖内外所受的压强差为82874p Pa ?= 作用在孔盖上的净压力为 每个螺钉能承受的最大力为: 螺钉的个数为433.7610/4.96107.58??=个 所需的螺钉数量最少为8个 3. 某流化床反应器上装有两个U 管压差计,如本题附图所示。测得R 1=400 mm ,R 2=50 mm ,指示液为水银。为防止水银蒸气向空间扩散,于右侧的U 管与大气连通的玻璃管内灌入一段水,其高度R 3=50mm 。试 求A 、B 两处的表压强。 解:U 管压差计连接管中是气体。若以2,,g H O Hg ρρρ分别表示气体、水与水银的密度,因为g Hg ρρ,故由 C p

第三章化工原理-修订版-天津大学-

第三章 机械分离和固体流态化 1. 取颗粒试样500 g ,作筛分分析,所用筛号及筛孔尺寸见本题附表中第1、2列,筛析后称取各号筛面上的颗粒截留量列于本题附表中第3列,试求颗粒群的平均直径。 习题1附表 解:颗粒平均直径的计算 由 11i a i G d d G =∑ 2204080130110 (500 1.651 1.168 1.1680.8330.8330.5890.5890.4170.4170.295 603015105 0.2950.2080.2080.1470.1470.1040.1040.0740.0740.053 = ?++++ +++++++++++++++ ) 2.905=(1/mm) 由此可知,颗粒群的平均直径为d a =0.345mm. 2. 密度为2650 kg/m 3的球形石英颗粒在20℃空气中自由沉降,计算服从斯托克斯公式的最大颗粒直径及服从牛顿公式的最小颗粒直径。 解:20C 时,351.205/, 1.8110kg m Pa s ρμ-==??空气 对应牛顿公式,K 的下限为69.1,斯脱克斯区K 的上限为2.62 那么,斯脱克斯区: max 57.4d m μ= ==

min 1513d m μ= = 3. 在底面积为40 m 2的除尘室回收气体中的球形固体颗粒。气体的处理量为3600 m 3/h ,固体的密度3/3000m kg =ρ,操作条件下气体的密度3/06.1m kg =ρ,黏度为2×10-5 P a·s。试求理论上能完全除去的最小颗粒直径。 解:同P 151.例3-3 在降尘室中能被完全分离除去的最小颗粒的沉降速度u t , 则 36000.025/4003600 s t V u m s bl = ==? 假设沉降在滞流区,用斯托克斯公式求算最小颗粒直径。 min 17.5d um === 核算沉降流型:6min 5 17.5100.025 1.06 R 0.0231210t et d u ρ μ --???= ==

天大_化工原理(上册)答案

化工原理课后习题解答 (夏清、陈常贵主编.化工原理.天津大学出版社,2005.) 第一章流体流动 1.某设备上真空表的读数为 13.3×103 Pa,试计算设备内的绝对压强与表压强。已知该地 区大气压强为 98.7×103 Pa。 解:由绝对压强 = 大气压强–真空度得到: 设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa =8.54×103 Pa 设备内的表压强 P表 = -真空度 = - 13.3×103 Pa 2.在本题附图所示的储油罐中盛有密度为 960 ㎏/?的油品,油面高于罐底 6.9 m,油面 上方为常压。在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用 14mm的钢制螺钉紧固。若螺钉材料的工作应力取为39.23×106 Pa , 问至少需要几个螺钉? 分析:罐底产生的压力不能超过螺钉的工作应 力即 P油≤?螺

解:P螺 = ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762 150.307×103 N ?螺 = 39.03×103×3.14×0.0142×n P油≤?螺得 n ≥ 6.23 取 n min= 7 至少需要7个螺钉 3.某流化床反应器上装有两个U 型管压差计,如本题附 图所示。测得R1 = 400 mm , R2 = 50 mm,指示液为水 银。为防止水银蒸汽向空气中扩散,于右侧的U 型管与大气 连通的玻璃管内灌入一段水,其高度R3= 50 mm。试求A﹑B 两处的表压强。 分析:根据静力学基本原则,对于右边的U管压差计,a– a′为等压面,对于左边的压差计,b–b′为另一等压面,分 别列出两个等压面处的静力学基本方程求解。 解:设空气的密度为ρg,其他数据如图所示 a–a′处 P A + ρg gh1 = ρ水gR3 + ρ水银ɡR2 由于空气的密度相对于水和水银来说很小可以忽略不记 即:P A = 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05 = 7.16×103 Pa b-b′处 P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1 P B = 13.6×103×9.81×0.4 + 7.16×103 =6.05×103Pa 4. 本题附图为远距离测量控制装置,用以测 定分相槽内煤油和水的两相界面位置。已知两 吹气管出口的距离H = 1m,U管压差计的指示

天大化工原理真题--2001-2003

天津大学研究生院2003年招收硕士生入学试题 题号: 考试科目:化工原理(含实验)页数: 一、选择与填空(共30分) 1、如图所示的流动系统,当阀门C的开度增大时,流动系统的总摩擦阻力损失Σhf将,AB管段的摩擦阻力损失Σhf,AB将。(2分) 2、三只长度相等的并联管路,管径的比为1:2:3,若三只管路的流动摩擦系数均相等,则三只管路的体积流量之比为。(2分) : 3 C、1: 24:39 D、1:4:9 A、1:2:3 B、1: 1题附图 3题附图 3、如图所示的清水输送系统,两液面均为敞口容器。现用该系统输送密度为1200kg/m3的某溶液(溶液的其他性质与水相同),与输送清水相比,离心泵所提供的压头,轴功率。(2分) A、增大 B、减小 C、不变 D、不确定 4、如图所示为某流动系统的竖直圆管段部分,当清水的平均流速为50mm/s时(此时管内为层流),管轴心处的某刚性球形固体颗粒由A 截面到达B截面的时间为20s;当平均流速为30mm/s时,该固体颗粒在管轴心处由A截面到达B截面的时间为。(2分) 5、板框过滤机采用横穿洗涤法洗涤滤饼,其洗涤操作的特征是:洗液流经滤饼的厚度大约是过滤终点滤饼厚度的倍;洗液流通面积是过滤面积的倍。(2分) A、1 B、0.5 C、2 D、4 6、一维稳态温度场傅立叶定律的表达式为。(2分) 7、在传热计算中,平均温度差法往往用于计算,传热单元数法往往用于计算。(2分) A、设计型 B、核算型 C、设计型和核算型 8、操作中的精馏塔,若保持F、xF、q、R不变,减小W,则L/V ,L’

。(2分) A、减小 B、不变 C、增大 D、不确定 9、在吸收操作中,以液相组成差表示的吸收塔某一截面上的总推动力为。(2分) A、X*-X B、X-X* C、Xi-X D、X-Xi 第一页共三页 10、板式塔是接触式气液传质设备,操作时为连续相;填料塔是接触式气液传质设备,操作时为连续相。(4分) 11、若萃取相和萃余相在脱除溶剂后的组成均与原料液的组成相同,则所用萃取剂的选择性系数。(2分) A、小于1 B、大于1 C、不确定 D、等于1 12、多级错流萃取的特点是:、和。(3分) 13、常压湿空气由t1加热到t2,则空气的性质参数H2 H1、I2 I1、tW2 tW1。(3分) A、大于 B、不确定 C、小于 D、等于 二、采用如图所示的输送系统,将水池中的清水(密度为 1000kg/m3)输送到密闭高位槽中。离心泵的特性方程为H=40-7.0×104Q2(式中H的单位为m,Q的单位为m3/s),当压力表的读数为100kPa时,输水量为10L/s,此时管内流动已进入阻力平方区。若管路及阀门开度不变,当压力表读数为80kPa时,试求: (1)管路的特性方程;(10分) (2)输水体积流量;(5分) (3)离心泵的有效功率。(5分) 三、过滤基本方程式为:)('dd12esVVvrpAV Δ=?μθ 式中 V——过滤体积,m3; θ——过滤时间,s; A——过滤面积,m2; Δp——过滤的压差,Pa;

化工原理天津大学版化上下册习题答案

化工原理课后习题 1.某设备上真空表的读数为13.3×103 Pa,试计算设备内的绝对 压强与表压强。已知该地区大气压强为98.7×103 Pa。 解:由绝对压强= 大气压强–真空度得到: 设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa =8.54×103 Pa 设备内的表压强P表= -真空度= - 13.3×103 Pa 2.在本题附图所示的储油罐中盛有密度为960 ㎏/?的油品, 油面高于罐底 6.9 m,油面上方为常压。在罐侧壁的下部有一直 径为760 mm 的圆孔,其中心距罐底800 mm,孔盖用14mm 的钢制螺钉紧固。若螺钉材料的工作应力取为39.23×106 Pa , 问至少需要几个螺钉? 分析:罐底产生的压力不能超过螺钉的工作应力 即 P油≤ σ螺 解:P螺= ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762 150.307×103 N σ螺= 39.03×103×3.14×0.0142×n P油≤ σ螺得n ≥ 6.23 取n min= 7 至少需要7个螺钉 3.某流化床反应器上装有两个U 型管

压差计,如本题附图所示。测得R1 = 400 mm ,R2 = 50 mm, 指示液为水银。为防止水银蒸汽向空气中扩散,于右侧的U 型 管与大气连通的玻璃管内灌入一段水,其高度R3 = 50 mm。试求 A﹑B两处的表压强。 分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。 解:设空气的密度为ρg,其他数据如图所示 a–a′处P A+ ρg gh1= ρ水gR3+ ρ水银ɡR2 由于空气的密度相对于水和水银来说很小可以忽略不记 即:P A = 1.0 ×103×9.81×0.05 + 13.6×103×9.81×0.05 = 7.16×103 Pa b-b′处P B + ρg gh3 = P A + ρg gh2 + ρ水银gR1 P B = 13.6×103×9.81×0.4 + 7.16×103 =6.05×103Pa 4. 本题附图为远距离测量控制 装置,用以测定分相槽内煤油和 水的两相界面位置。已知两吹气 管出口的距离H = 1m,U管压差 计的指示液为水银,煤油的密度 为820Kg/?。试求当压差计读数R=68mm时,相界面与油层 的吹气管出口距离h。

化工原理(天津大学) 第二版复习题

一、名词解释 1.单元操作:在各种化工生产过程中,除化学反应外的其余物理操作。 2.牛顿流体:服从牛顿粘性定律的流体, 3.理想流体: 粘度为零的流体。实际自然中并不存在,引入理想流体的概念,对研究实际流体起重要作用。 4.真空度:当被测流体的绝对压强小于外界大气压强时,真空表的数值。 5.流体边界层:当流体流经固体壁面时,由于流体具有黏度,在垂直于流体流动的方向上流速逐渐减弱,受壁面影响而存在速度梯度的流体层。 6.边界层分离:当流体沿曲面流动或流动中遇障碍物时,不论是层流或湍流,会发生边界层脱离壁面的现象。 7.局部阻力:主要是由于流体流经管路中的管件、阀门及管截面的突然扩大或缩小等局部地方所引起的阻力。 8.直管阻力:是流体流经一定管径的直管时,由于流体内摩擦而产生的阻力,这种阻力的大 小与路程长度成正比,或称为沿程阻力。 9.层流流动:是流体两种基本流动形态之一,当管内流动的Re<2000时,流体质点在管内呈平行直线流动,无不规则运动和相互碰撞及混杂。 10.完全湍流区:λ-Re 曲线趋于水平线,即摩擦系数λ只与ε/d 有关,而与Re 准数无关的 一个区域,又hf 与u 2成正比,所以又称阻力平方区。 11.当量直径:非圆形管的直径用4倍的水力半径来代替,称当量直径,以de 表示,即de=4rH=4x 流通截面积/润湿周边长。 12.泵的特性曲线:泵在一定的转速下,压头、功率、效率与流量之间的关系曲线。 13.汽蚀现象:当吸上真空度达最大值(泵的入口压强等于或小于输送温度下的饱和蒸汽压)时,液体就要沸腾汽化,产生大量汽泡,汽泡随液流进入叶轮的高压区而被压缩,迅速凝成液体,体积急剧变小,周围液体就以极高速度冲向原汽泡所占空间,产生极大的冲击频率和压强,引起震动和噪音,材料表面由点蚀形成裂纹,致使叶片受到严重损伤。 14.泵的安装高度:泵的吸入口轴线与贮液槽液面间的垂直距离。1022110----=f g H g u g p p H ρ 15.泵的工作点:泵的特性曲线和管路特性曲线的交点。 dy du μτ=()Kg J u d L h f /22λ=

天津大学化工原理实验知识点

化工原理实验 1. 真值:① 定义:某物理量客观存在的确定值;② 替代真值的值:理论真值、相对真值、平均值。 2. 误差:① 定义:实验测量值与真值之差,即 误差=测量值-真值;② 含义:表示每一次测量值相对于真值的不符合程度;③ 分类:系统误差【可消除】、随机误差【不可消除、但可减小】、粗大误差。 3. 绝对误差()D x :测量值x 与真值A 4. 相对误差()r E x :绝对误差()D x 与真值A 5. 绝对误差是一个有量纲的值,相对误差是无量纲的真分数。 6. 实验数据的有效数字的位数:反映仪表的准确度和存在疑问的数字位置。 7. 准确度的表示方法:① 最大引用误差;② 准确度等级。 8. 准确度等级:准确度等级为P 级,则其最大引用误差为%P 。 9. 仪表的测量范围n x :仪表量程的上限-下限。 10. 仪表示值x 的误差:① 绝对误差:()%n D x x P ≤?,② 11. 实验数据的处理方法:① 列表法,② 图示法,③ 12. 坐标系的分类:① 普通直角坐标系,② 半对数坐标系,③ 双对数坐标系。 13. 的选择:① Re C -曲线选用半对数坐标系;② 泵的特性曲线和过滤关系选用直角坐标系;③ 除①、②以外,其余一切的关系曲线都选用双对数坐标系。 14. 双对数坐标系的特征:① 坐标轴是分度不均匀的对数坐标,其分度不能随便改动,一般乘以10n ±来变化;② 在双对数坐标系上,根据点的坐标()11,x y 、()22,x y 可求直线的斜率,即2121 lg lg lg lg y y k x x -=-。 15. 压力计和压差计:① 液柱式压差计:U 形管压差计、斜管压差计、U 管双指示液压差计;② 压力计:薄膜式、波纹管式、弹簧管式。 16. 压力差传感器:① 应变片式,② 电容式,③ 压阻式。 17. 节流式流量计的工作原理:利用流体流经节流装置时产生的压力差而实现流量测量的,故节流式流量计又称差压式流量计(定截面,变压差)。 18. 节流式流量计的组成:① 节流元件:能将被测流量转换为压力差信号,【如:孔板、喷嘴、文丘里管】;② 差压计:测量压力差。 19. 节流式流量计的取压方式:① 理论取压法,② 径距取压法,③ 角接取压法,④ 法兰取压法。 20. 转子流量计的工作原理:① 定压差,变截面;② 属于面积式流量计。 21. 涡轮流量计的工作原理:① 动量矩守恒原理;② 属于速度式流量计。

天津大学版化工原理上下册习题答案

化工原理课后习题解答 第一章流体流动 1.某设备上真空表的读数为×103 Pa,试计算设备内的绝对压强与表压强。已知该地区大 气压强为×103 Pa。 解:由绝对压强 = 大气压强–真空度得到: 设备内的绝对压强P绝= ×103 Pa ×103 Pa=×103 Pa 设备内的表压强 P表 = -真空度 = - ×103 Pa 2.在本题附图所示的储油罐中盛有密度为 960 ㎏/?的油品,油面高于罐底 m,油面上 方为常压。在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm,孔盖用14mm 的钢制螺钉紧固。若螺钉材料的工作应力取为×106 Pa , 问至少需要几个螺钉 分析:罐底产生的压力不能超过螺钉的工作应力即 P油≤ σ螺 解:P螺 = ρgh×A = 960×× ×× ×103 N σ螺= ×103×××n P油≤ σ螺得n ≥ 取 n min= 7 至少需要7个螺钉 3.某流化床反应器上装有两个U 型管压差计,如本题附图所示。测得R1 = 400 mm , R2 = 50 mm,指示液为水银。为防止水银蒸汽向空气中扩散,于右侧的U 型管与大气连通的 玻璃管内灌入一段水,其高度R3 = 50 mm。试求A﹑B两处的表压强。 分析:根据静力学基本原则,对于右边的U管压差计,a–a′为等压面,对于左边的压差计,b–b′为另一等压面,分别列出两个等压面处的静力学基本方程求解。 解:设空气的密度为ρg,其他数据如图所示 a–a′处 P A+ ρg gh1= ρ水gR3+ ρ水银ɡR2 由于空气的密度相对于水和水银来说很小可以忽略不记 即:P A= ×103×× + ×103×× = ×103 Pa

天津大学2018年《826化工原理》考研大纲

天津大学2018年《826化工原理》考研大纲 一、考试的总体要求 对于学术型考生,本考试涉及三大部分内容:(1)化工原理课程,(2)化工原理实验,(3)化工传递。其中第一部分化工原理课程为必考内容(约占85%),第二部分化工原理实验和第三部分化工传递为选考内容(约占15%),即化工原理实验和化工传递为并列关系,考生可根据自己情况选择其中之一进行考试。 对于专业型考生,本考试涉及二大部分内容:(1)化工原理课程,(2)化工原理实验。均为必考内容,其中第一部分化工原理课程约占85%,第二部分化工原理实验约占15%。要求考生全面掌握、理解、灵活运用教学大纲规定的基本内容。要求考生具有熟练的运算能力、分析问题和解决问题的能力。答题务必书写清晰,过程必须详细,应注明物理量的符号和单位,注意计算结果的有效数字。不在试卷上答题,解答一律写在专用答题纸上,并注意不要书写在答题范围之外。 二、考试的内容及比例 (一)【化工原理课程考试内容及比例】(125分) 1.流体流动(20分) 流体静力学基本方程式;流体的流动现象(流体的黏性及黏度的概念、边界层的概念);流体在管内的流动(连续性方程、柏努利方程及应用);流体在管内的流动阻力(量纲分析、管内流动阻力的计算);管路计算(简单管路、并联管路、分支管路);流量测量(皮托管、孔板流量计、文丘里流量计、转子流量计)。 2.流体输送设备(10分) 离心泵(结构及工作原理、性能描述、选择、安装、操作及流量调节);其它化工用泵;气体输送和压缩设备(以离心通风机为主)。 3.非均相物系的分离(12分) 重力沉降(基本概念及重力沉降设备-降尘室)、;离心沉降(基本概念及离心沉降设备-旋风分离器);过滤(基本概念、恒压过滤的计算、过滤设备)。 4.传热(20分) 传热概述;热传导;对流传热分析及对流传热系数关联式(包括蒸汽冷凝及沸腾传热);传热过程分析及传热计算(热量衡算、传热速率计算、总传热系数计算);辐射传热的基本概念;换热器(分类,列管式换热器的类型、计算及设计问题)。 5.蒸馏(16分) 两组分溶液的汽液平衡;精馏原理和流程;两组分连续精馏的计算。 6.吸收(15分) 气-液相平衡;传质机理与吸收速率;吸收塔的计算。

化工原理-修订版-天津大学-上下册课后标准答案

化工原理-修订版-天津大学-上下册课后答案

————————————————————————————————作者:————————————————————————————————日期:

上册 第一章 流体流动习题解答 1. 某设备上真空表的读数为13.3×103 Pa ,试计算设备内的绝对压强与表压强。已知该地区大气压强为98.7×103 Pa 。 解:真空度=大气压-绝压 3(98.713.3)10atm p p p Pa =-=-?绝压真空度 表压=-真空度=-13.3310Pa ? 2. 在本题附图所示的贮油罐中盛有密度为960 kg/m 3的油品,油面高于罐底 9.6 m ,油面上方为常压。在罐侧壁的下部有一直径为760 mm 的圆孔,其中心距罐底800 mm ,孔盖用14 mm 的钢制螺钉紧固。若螺钉材料的工作应力取为32.23×106 Pa ,问至少需要几个螺钉? 解:设通过圆孔中心的水平液面生的静压强为p ,则p 罐内液体作用于孔盖上的平均压强 9609.81(9.60.8)82874p g z Pa ρ=?=??-=(表压) 作用在孔盖外侧的是大气压a p ,故孔盖内外所受的压强差为82874p Pa ?= 作用在孔盖上的净压力为 2282575(0.76) 3.7644p p d N ππ =?=??=?410 每个螺钉能承受的最大力为: p

62332.23100.014 4.96104F N π=???=?钉 螺钉的个数为433.7610/4.96107.58??=个 所需的螺钉数量最少为8个 3. 某流化床反应器上装有两个U 管压差计,如本题附图所示。测得R 1=400 mm ,R 2=50 mm ,指示液为水银。为防止水银蒸气向空间扩散,于右侧的U 管与大气连通的玻璃管内灌入一段水,其高度R 3=50mm 。试求 A 、 B 两处的表压强。 解:U 管压差计连接管中是气体。若以2,,g H O Hg ρρρ分 别表示气体、水与水银的密度,因为g Hg ρρ=,故由气柱 高度所产生的压强差可以忽略。由此可以认为A C p p ≈, B D p p ≈。 由静力学基本方程式知 232A C H O Hg p p gR gR ρρ≈=+ 10009.810.05136009.810.05=??+?? 7161Pa =(表压) 417161136009.810.4 6.0510B D A Hg p p p gR Pa ρ≈=+=+??=? 4. 本题附图为远距离制量控制装置,用以测定分相槽内煤油和水的两相界面位置。已知两吹气管出口的距离H =1 m ,U 管压差计的指示液为水银,煤油的密度为820 kg/m 3。试求当压差计读数R=68 m 时,相界面与油层的吹气管出口距离h 。 解:如图,设水层吹气管出口处为a , 煤油层吹气管出口处为b ,且煤油层吹气 管到液气界面的高度为H 1。则 1a p p = 2b p p = 1()()a p g H h g H h ρρ=++-油水(表压) C D H 压缩空气 p

化工原理试题(所有试题均来自天津大学题库)下册

化工原理试题(所有试题均来自天津大学题库) [五] j05b10045考过的题目 通过连续操作的单效蒸发器,将进料量为1200Kg/h的溶液从20%浓缩至40%,进料液的温度为40℃,比热为3.86KJ/(Kg. ℃),蒸发室的压强为0.03MPa(绝压),该压强下水的蒸发潜热r’=2335KJ/Kg,蒸发器的传热面积A=12m2,总传热系数K=800 W/m2·℃。试求: (1)溶液的沸点为73.9℃,计算温度差损失 (2)加热蒸汽冷凝液在饱和温度下排出,并忽略损失和浓缩热时,所需要的加热蒸汽温度。 已知数据如下: 压强 MPa 0.101 0.05 0.03 溶液沸点℃ 108 87.2 纯水沸点℃ 100 80.9 68.7 [五] j05b10045 (1)根据所给数据,杜林曲线的斜率为 K=(108-87.2)/(100-80.9)=1.089 溶液的沸点 (87.2-t1)/(80.9-68.7)=1.089 t1=73.9℃ 沸点升高?′=73.9-68.7=5.2℃ (2)蒸发水量W=F(1-X0/X1) =1200(1-0.2/0.4)=600Kg/h 蒸发器的热负荷 Q=FCo(t1-t0)+Wr′ =(1200/3600)×3.86(73.9-40)+600/3600×2335 =432.8Kw 所需加热蒸汽温度T Q=KA(T-t1) T=Q/(KA)+t1 =432.8×103/(800×12)+73.9 =119℃ [五] j05b10048 用一双效并流蒸发器,浓缩浓度为5%(质量百分率,下同)的水溶液,沸点进料,进料量为2000Kg/h。第一、二效的溶液沸点分别为95℃和75℃,耗用生蒸汽量为800Kg/h。各个温度下水蒸汽的汽化潜热均可取为2280KJ/Kg。试求不计热损失时的蒸发水量。 [五] j05b10048 解:第一效蒸发量: 已知:D1=800kg/h, r1=r1′=2280KJ/kg, W1=D1=800kg/h 第二效蒸发水量: 已知:D2=W1=800kg/h, F2=F1-W1=2000-800=1200kg/h X02=X1=FX0/(F-W1)=2000×0.05/(2000-800)=0.0833 t02=95℃ t2=70℃ r2=r2′=2280KJ/kg Cp02=Cpw(1-X 02)=4.187×(1-0.0833) =3.84KJ/(kg·℃) D2r2=(F2Cp02(t2-t02))/r2′+W2 r2′ W2=(800×2280-1200×3.84×(75-95))/2280 =840kg/h 蒸发水量W=W1+W2 =800+840=1640kg/h[五] j05a10014 在真空度为91.3KPa下,将12000Kg的饱和水急送至真空度为93.3KPa的蒸发罐内。忽略热损失。试定量说明将发生什么变化。水的平均比热为4.18 KJ/Kg·℃。当地大气压为101.3KPa饱和水的性质为真空度, KPa 温度,℃汽化热,KJ/Kg 蒸汽密度,Kg/m3 91.3 45.3 2390 0.06798 93.3 41.3 2398 0.05514 [五] j05a10014 与真空度为91.3KPa相对应得绝压为101.3-91.3=10KPa 与真空度为93.3KPa相对应得绝压为101.3-93.3=8KPa

化工原理_修订版_天津大学

第二章 流体输送机械习题 1. 在用水测定离心泵性能的实验中,当流量为26 m 3/h 时,泵出口处压强表和入口处真空表的读数分别为152 kPa 和24.7 kPa ,轴功率为 2.45 kW ,转速为2900 r/min 。若真空表和压强表两测压口间的垂直距离为0.4m ,泵的进、出口管径相同,两测压口间管路流动阻力可忽略不计。试计算该泵的效率,并列出该效率下泵的性能。 解:在真空表和压强表测压口处所在的截面11'-和22'-间列柏努利方程,得 22 1122 12,1222e f p u p u z H z H g g g g ρρ-+++=+++∑ 其中:210.4z z m -= 41 2.4710()p Pa =-?表压 52 1.5210p Pa =?(表压) 12u u = ,12 0f H -=∑ 则泵的有效压头为: 5 21213 (1.520.247)10()0.418.41109.81 e p p H z z m g ρ-+?=-+=+=? 泵的效率 3 2618.4110100%53.2%1023600102 2.45e e Q H N ρη??= =?=?? 该效率下泵的性能为: 326/Q m h = 18.14H m = 53.2%η= 2.45N kW = 2. 用某离心泵以40 m 3/h 的流量将贮水池中65℃的热水输送到凉水塔顶,并经喷头喷出而落入凉水池中,以达到冷却的目的。已知水在进入喷头之前需要维持49 kPa 的表压强,喷头入口较贮水池水面高8 m 。吸入管路和排出管路中压头损失分别为l m 和5 m ,管路中的动压头可以忽略不计。试选用合适的离心泵,并确定泵的安装高度。当地大气压按101.33kPa 计。 解:在贮槽液面11'-与喷头进口截面22'-之间列柏努利方程,得 22 1122 12,1222e f p u p u z H z H g g g g ρρ-+ ++=+++∑

最新化工原理下天津大学版习题答案

化工原理下天津大学版习题答案

第五章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B*, P A*,由于总压 P = 99kPa,则由x = (P-P B*)/(P A*-P B*)可得出液相组成,这样就可以得到一组绘平衡t-x图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C5H12)和正己烷(C6H14)的饱和蒸汽压数据列于本题附表,试求P = 1 3.3kPa下该溶液的平衡数据。 温度 C5H12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C6H14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3

解:根据附表数据得出相同温度下C5H12(A)和C6H14(B)的饱和蒸汽压以t = 248.2℃时为例,当t = 248.2℃时 P B* = 1.3kPa 查得P A*= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A*(kPa) 6.843 8.000 12.472 13.300 26.600 29.484 33.425 48.873 53.200 89.000 101.300 P B*(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B*)/(P A*-P B*) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A*x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0 y 1 0.767 0.733 0.524 0 根据平衡数据绘出t-x-y曲线

相关文档
最新文档