【药剂学】16 固体分散体的制备技术

姜黄素固体分散体的制备及脂质体的制备

实验十八固体分散体的制备及体外溶出度考察 一、实验目的 1.掌握熔融法制备固体分散体的工艺流程和操作; 2.熟悉固体分散体的鉴别方法; 3.了解固体分散体常用的载体材料。 二、实验指导 固体分散体是药物与载体形成的以固体形式存在的分散系统,其具有以下优点:(1)提高水难溶性药物的生物利用度;(2)控制药物释放;(3)提高药物稳定性;(4)掩盖药物的不良气味和刺激性;(5)液体药物固体化。药物制备成固体分散体后可根据需要再制成适宜剂型,如胶囊剂、片剂、软膏剂、栓剂、滴丸剂等。 固体分散体的载体材料可分为水溶性、难溶性和肠溶性三大类。常用的水溶性载体材料有:聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、泊洛沙姆188(pluronic F68)等,多用于制备速释型固体分散体。难溶性载体是制备缓释型固体分散体的常用材料,包括乙基纤维素(EC)、含季铵基团的丙烯酸树脂(EudragitE、RL、RS等)棕榈酸甘油酯、巴西棕榈蜡等。肠溶性载体一般选用醋酸纤维素酞酸酯(CAP)、羟丙甲纤维素酞酸酯(HPMCP)、聚丙烯树脂(Eudragit L、Eudragit S)等。载体材料在使用时可根据制备目的选择单一载体或混合使用载体。 固体分散体的制备方法有熔融法、溶剂法、溶剂-熔融法、研磨法、溶剂喷雾干燥法或冷冻干燥法。其中,熔融法是指将载体加热至熔融后加入药物搅匀,迅速冷却成固体,再将该固体在一定温度下放置使成为易碎物,适用于熔点较低的载体材料,如聚乙二醇类。溶剂法又称共沉淀法,是将药物与载体共同溶解于有机溶剂中,再除去溶剂,使药物与载体材料同时析出,经干燥得到固体分散体,适合于易溶于有机溶剂、熔点较高的载体材料,如PVP、EC等。 药物与载体是否形成固体分散体及药物的分散状态可通过溶出速度、平衡溶解度、熔点的测定、X-射线衍射、差热分析及偏光显微镜等方法验证。 三、实验仪器与材料 1. 仪器与器皿:蒸发皿、培养皿、研钵、不锈钢微量药勺(刮)、玻璃棒、80目筛网、1 mL 移液管、10 mL容量瓶、干燥器、水浴锅、冰箱、电子天平、紫外分光光度计、溶出仪等。 2. 材料与试剂:姜黄素原料、姜黄素对照品、PGE6000、N, N-二甲基甲酰胺(DMF)、十二烷基硫酸钠(SDS)、一次性注射器(5 mL)、一次性针头滤器(水系,0.45 μm,13 mm)、5 mL离心管、无水氯化钙等。

固体分散体题目及答案

固体分散体、微囊 练习题: 一、名词解释 1.固体分散体:是指药物以分子、胶态、微晶或无定形状态,分散在一种载体物质中所形成的药物-载体的固体分散体系。 2.包合物:是一种分子被包藏在另一种分子的空穴结构形成的超微粒分散物。 3.微囊:是利用天然或合成的高分子材料(囊材)作为囊膜,将固体或液体药物(囊心物)包裹而成微型胶囊。 二、选择题 (一)单项选择题 1.以下应用固体分散技术的剂型是D A.散剂 B. 胶囊剂 C.微丸 D.滴丸 E.贴片 2.下列有关环糊精叙述中,错误的是A A.环糊精是由环糊精葡萄糖转位酶作用于淀粉后形成的产物 B是水溶性、还原性白色结晶性粉末 C.是由6-10个葡萄糖分子结合而成的环状低聚糖化合物 D.结构为中空圆筒型 E.其中以β-环糊精溶解度最小 3.以下利用亲水胶体的盐析作用制备微囊的方法是A A.单凝聚法 B.复凝聚法 C.溶剂-非溶剂法 D.界面缩聚法 E.喷雾干燥法 4.用β-环糊精包藏挥发油后制成的固体粉末为B A.固体分散体 B.包合物 C.脂质体 D.微球 E.物理混合物 5.包合物制备中,β-环糊精比α-环糊精或γ-环糊精更为常用的原因是B A.水中溶解度最大 B.水中溶解度最小 C.形成的空洞最大 D.分子量最小 E.包容性最大6.固体分散体中药物溶出速率快慢顺序正确的是D A.无定型>微晶态>分子状态 B.分子状态>微晶态>无定形 C.微晶态>分子状态>无定形 D.分子状态>无定形>微晶态 E.微晶态>无定形>分子状态 7.下列哪种材料制备的固体分散体具有缓释作用C A.PEG B.PVP C.EC D.胆酸 E.泊洛沙姆188 8.固体分散体存在的主要问题是A A.久贮不够稳定 B.药物高度分散 C.药物的难溶性得不到改善 D.不能提高药物的生物利用度 E.刺激性增大 9.β-环糊精结构中的葡萄糖分子数是C A.5个 B. 6个 C. 7个 D. 8个 E. 9个 10.制备固体分散体,若药物溶解于熔融的载体中呈分子状态分散者则为B A.低共熔混合物 B. 固态溶液 C. 玻璃溶液 D.共沉淀物 E.无定形物 11. 以下属于可生物降解的合成高分子材料为A A.聚乳酸 B.阿拉伯胶 C.聚乙烯醇 D.甲基纤维素 E.聚酰胺 12. 单凝聚法制备微囊时,加入硫酸钠水溶液的作用是A A.凝聚剂 B.稳定剂 C.阻滞剂 D.增塑剂 E.稀释剂 13.以下有关微囊的叙述中,错误的是E

固体分散体的制备

固体分散体的制备 沈阳药科大学 药物制剂实验教学中心

一、实验目的 1.掌握共沉淀法及溶剂-熔融法制备固 体分散体的制备工艺。 2.初步掌握固体分散体形成的验证方法。

二、实验指导 固体分散体(solid dispersion)系指药物以分子、胶态、微晶等状态均匀分散在某一固态载体物质中所形成的分散体系。固体分散体的主要特点是利用性质不同的载体使药物高度分散以达到不同要求的用药目的:增加难溶性药物的溶解度和溶出速率,从而提高药物的生物利用度;或控制药物释放及控制药物于小肠释放等。固体分散体为中间产物,可以根据需要进一步制成胶囊剂、片剂、软膏剂、栓剂以及注射剂等。

固体分散体所用载体材料可分为水溶性载体材料、难溶性载体材料、肠溶性载体材料三大类。载体材料在使用时可根据制备目的选择单一载体或混合使用载体。若达到增加难溶性药物的溶解度和溶出速率用药目的,一般可选择水溶性载体材料,如聚乙二醇类,聚维酮类等。

固体分散体的类型有,固体溶液,简单低共溶混合物、共沉淀物。 固体分散物制备方法有熔融法、共沉淀法、溶剂熔融法。固体分散体中药物分散状态可呈现分子状态、亚稳定态及无定形态、胶体状态、微晶状态。可选择下列方法溶解度及溶出速率法、热分析法、粉末X射线衍射法、红外光谱法等进行物相鉴别,必要时可同时采用几种方法进行鉴别。 固体分散体的速释原理是药物分散状态或药物所形成的高能态可增加药物溶出度,同时载体材料对药物溶出具有促进作用。

三、实验内容与操作 尼莫地平-PVP共沉淀物的制备 1.处方 尼莫地平0.2g PVPk30 1.0g

固体分散体制备技术

固体分散体制备技术进展 [摘要]固体分散体是指高度分散于惰性载体中形成的以团体形式存在的分散体系,固体分散体制备技术是将难溶性药物高度分散在固体载体材料中,形成固体分散体的新技术。 研究表明,用适当的载体材料制备固体分散体,可以改善药物的溶解性能,加快溶出速度,提高生物利用度,实现药物高效、速效、长效化,也可控制药物靶向释放。将药物加工成特定的剂型,用于增加药物稳定性,避免药物氧化、水解等。固体分散体出现以来的各种实际应用表明,固体分散体的研究对于制剂的生产和新药的开发具有重要的意义。 [关键词]固体分散技术;固体分散体;溶解度;溶出速率;生物利用度 固体分散技术是指制备制剂时将固体药物,特别是难溶性药物高度分数在另一种固体载体中的新技术。其主要特点是提高难溶药物的溶出速率和溶解度,以提高药物的吸收和生物利用度。1961年Sekiguchi等【1】提出了固体分散体(solid dispersion,SD)的概念,并以尿素为载体材料,用熔融法制备磺胺噻唑固体分散体,口服后吸收及排泄均比口服磺胺快,1963年Levy等制得分子分散的固体分散体,溶出速率增高,也更易吸收。固体分散体在中药制剂上的应用始于1970年芸香油滴丸的上市。Chiou等【2】于1971年对固体分散体的形成原理,制备工艺及老化等问题进行了研究,为固体分散技术的发展奠定了基础。1978年Francois等【3】

首次提出固体分散体在熔融时装入硬胶嚷中,在室温下固化。此后,人们对固体分散体进行了广泛的研究,其目的多用于改变难溶性药物的溶解性能,制备高效,速效制剂,所采用辅料的品种越来越多,工艺也趋于成熟。 固体分散体是指将药物高度分散于惰性载体中,形成的一种以团体形式存在的分散体系[4]。研究表明,将难溶性药物在水溶性载体中形成分子分散体系,可以改善药物的溶解性能,加快溶出速度,提高生物利用度。而固体分散制剂技术是将药物与载体混合制成高度分散的固体分散体的一项新型制剂技术。固体分散制剂技术的最早实际应用却是丹麦Ferrossam制药公司,于1933年首次应用脂油性的氢化植物油为基质,以稀乙醇为冷却剂制备维生素AD滴九。 近年来,固体分散己从增加药物的溶解性能,提高生物利用度进入到缓(控)释和靶位释药研究。人们采用水溶性聚合物、脂溶性材料、脂质材料等为载体制备固体分散体,成为缓释和控释制剂,大大扩展了固体分散技术的应用范围。固体分散体作为中间剂型,可以根据需要制成各种不同的制剂,为药物的剂型改造提供了新的途经。因此,该项技术日益受到研究者和新药开发者的重视。 1固体分散体增加药物溶出的机制 口服固体制剂进入体内后,均需经过溶出过程,才能透过生物膜被机体吸收。难溶性药物由于其溶出速度受溶解度的限制,影响了药物吸收,因此作用缓慢,生物利用度较低。根据Noyes-Whitney溶出速度方程,dc/dt=K?S?C(dc/dt为药物溶出速度,S为药物

固体分散制剂技术的原理与发展历史

固体分散体制剂技术的原理与发展历史 药本九九尹超群 3031999024 [摘要]固体分散体是指高度分散于惰性载体中形成的以团体形式存在的分散体系。研究表明,用适当的载体材料制备固体分散体,可以改善药物的溶解性能,加快溶出速度,提高生物利用度,实现药物高效、速效、长效化;也可控制药物靶向释放。将药物加工成特定的剂型,用于增加药物稳定性,避免药物氧化、水解等。固体分散体出现以来的各种实际应用表明,固体分散体的研究对于制剂的生产和新药的开发具有重要的意义。本文将就固体分散体的原理、分类、特点、载体种类、制备方法和应用作一综述。 [关键词]固体分散技术;固体分散体;溶解度;溶出速率;生物利用度 固体分散体是指将药物高度分散于惰性载体中,形成的一种以团体形式存在的分散体系[1]。研究表明,将难溶性药物在水溶性载体中形成分子分散体系,可以改善药物的溶解性能, 加快溶出速度,提高生物利用度。而固体分散制剂技术是将药物与载体混合制成高度分散的固体分散体的一项新型制剂技术。固体分散制剂技术的最早出现于丹麦Ferrossam制药公司,于1933年首次应用脂油性的氢化植物油为基质,以稀乙醇为冷却剂制备维生素AD滴九。1956年Bjornssion等开始用水溶性的聚乙二醇(PEG)4000为基质,植物油为冷却剂制备苯巴比妥滴丸。但大多数学者仍认为固体分散技术是60年代由Sekiguchi(1961年)制备磺胺噻唑(ST)—尿素固体分散物开始逐渐发展起来的一种新方法。 近年来,固体分散己从增加药物的溶解性能,提高生物利用度进入到缓(控)释和靶位释药研究。人们采用水溶性聚合物、脂溶性材料、脂质材料等为载体制备固体分散体,成为缓释和控释制剂,大大扩展了固体分散技术的应用范围。固体分散体作为中间剂型,可以根据需要制成各种不同的制剂,为药物的剂型改造提供了新的途经。因此,该项技术日益受到研究者和新药开发者的重视。本文将就固体分散体的原理、分类、特点、载体种类、制备方法和应用作一简略介绍。 1固体分散体增加药物溶出的机制[2] 口服固体制剂进入体内后,均需经过溶出过程,才能透过生物膜被机体吸收。难溶性药物由于其溶出速度受溶解度的限制,影响了药物吸收,因此作用缓慢,生物利用度较低。根据Noyes-Whitney溶出速度方程,dc/dt=K·S·C(dc/dt为药物溶出速度,S为药物表面积,C为溶解度),溶出速度随表面积的增加而增加。因此,提高药物的分散度,减小药物粒度,使比表面积增加,则可以加快药物的溶出速度,提高生物利用度。固体分散技术正是通过适当的方法,将药物形成分子、胶体或超细状态的高分散体,而载体又为水溶性物质,从而改善了药物的溶解性能,加快溶出速度。 2 固体分散体分类 固体分散体按药剂学释药性能分为速释型固体分散体,缓(控)型固体分散体和靶向释药型固体分散体。 2.1 速释型固体分散体。 速释型固体分散体就是利用强亲水性载体制备的固体分散体系,这种类型的固体分散物在固体分散体研究中占绝大比重。 对于难溶性药物而言。利用水溶性或体制备的固体分散物,不仅可以保持药物的高度分散状态,而且对药物具有良好的润湿性。这在提高药物溶解度,加快药物溶出速度,从而提高药物的生物利用度方面具有重要的意义,例如西南制药三厂用溶融法,以PEG6000为载体,制成灰黄霉素滴九,结果表明,别成分散物口服2h内几乎完全吸收,而微粉片30-80h 内方吸收44.3%,药物-载体比1:10-1:5的灰黄霉素分散物在人体内的吸收量比微粉片高1倍多。

实验十+固体分散体的制备验证

实验十固体分散体的制备与验证 一、实验目的 1.掌握共沉淀法制备固体分散体的制备工艺。 2.初步掌握固体分散体形成的验证方法。 二、基本概念及实验原理 固体分散体(solid dispersion)系指药物以分子、无定型或微晶等状态均匀分散在固态载体物质中所形成的分散体系。固体分散体的主要特点是利用不同性质的载体使药物高度分散以达到不同要求的用药目的:提高难溶性药物的溶解度和溶出速率,从而提高药物的生物利用度;或控制药物在小肠释放等。固体分散体作为中间产物,可以根据需要进一步制成胶囊剂、片剂、软膏剂、栓剂以及注射剂等。 固体分散体所用载体材料可分为水溶性载体材料、难溶性载体材料、肠溶性载体材料三大类。载体材料在使用时可根据制备目的选择单一载体或混合载体。若以增加难溶性药物的溶解度和溶出速率为目的时,一般可选择水溶性载体材料,如聚乙二醇类,聚维酮类等。 固体分散体的类型有:固体溶液、简单低共溶混合物、共沉淀物。固体分散体制备方法主要有熔融法、溶剂法、溶剂熔融法等。固体分散体中药物分散状态可呈现分子状态、无定形态、胶体状态、微晶状态。物相的鉴别方法有溶解度及溶出速率法、热分析法、粉末X射线衍射法、红外光谱法、紫外光谱法等,必要时可同时采用几种方法进行鉴别。 固体分散体的速释原理是药物分散状态,即药物所形成的高能态可增加药物溶出度,同时载体材料对药物的溶出具有促进作用。 三、实验内容与操作 1.黄芩苷-PVP共沉淀物的制备 1.处方 黄芩苷 0.5g PVPk-30 4.0g 2.操作 (1)黄芩苷-PVP共沉淀物的制备称取黄芩苷0.5g,PVPk-30 4.0g,置蒸发皿内,加入无水乙醇10ml,在60-70℃水浴上加热溶解,在搅拌下快速蒸去溶剂,取下蒸发皿,置氯化钙干燥器内干燥、粉碎,即得。

固体分散体的载体材料及应用

在固体分散体中,药物的溶出速度很大程度取决于载体的性质与制备工艺。对载体的要求是:水溶性、生理隋性、无毒;不与药物发生化学反应,不影响主药的化学稳定性;容易使药物呈最佳分散状态;来源容易,成本低廉。目前,在固体分散技术中,最常用的载体有水溶性、难溶性、肠溶性及其它几部分。1.水溶性载体材料制备速释型固体分散体多选用水溶性载体,常用的有:聚乙二醇(PEG),聚乙烯聚吡咯烷酮(PVP),泊洛沙姆188(pluronic F68),有机酸类、糖类和醇类等。以PEG 为载体的固体分散体多采用熔融法制备,首先将PEG 加热融化,再将药物溶解于其中,搅拌均匀后将熔融物快速冷却即得。serajuddin等用熔融法,先将PEG在高于熔点2℃左右熔化,再熔解药物于其中,在室温下将含药载体溶液灌入硬明胶胶囊使其固化,在人工胃液中,该胶囊外壳首先溶解,内容物保持固体状态,并依溶蚀原理缓慢溶解。固体表面的药物溶解后形成油性层,延缓药物的进一步溶出,具有缓释作用,一般情况下,药物的溶出速度主要依PEG分子量变化而改变,随着PEG分子量的增大,药物的溶出速度呈逐渐下降的趋势。最近有文献报道用B-环糊精(B-CD)衍生物可作为固体分散体的载体,其中2-羟丙基B-CD (2HP-B-CD)极易溶于水(750g/L),且具有良好的生物安全性。Nagarsenker等分别用2HP-B-CD 和B-CD 为载体制备了酮咯酸固体分散体制剂,体外实验结果显示,2HP-B-CD提高酮咯酸释放度的作用明显大于B-CD。Kirnura等分别以2HP-B-CD 和PVP为载体制备了甲苯磺丁脲固体分散体,体外结果显示,以2HP-B-CD 为载体制备的固体分散体的释放明显快于以PVP为载体的固体分散体,其体内(beagle dogs)实验与体外实验相吻合,在吸收速度与降糖作用方面均有明显提高。Yan等人以熔融法制备了硝苯地平一PEG 600(1:6,w/w) 崮体分散体,然后用高粘度HPMC (Methocel kl5m)和低粘度HPMC (Methocel kl00)为缓释骨架材料制备多层片,外层高粘度HPMC与药物之比为1:2(w/w);内层低粘度HPMC与药物之比也为1:2 (w/w),内外层重量之比为7:3,混合后压制成片。该片体外释放机理为溶蚀与扩散共同作用,体外释放同体内累积吸收有较好的相关性(Y =0.8635) ,动物试验(beagle dogs)结果显示:该片与对照片(Adalat GITS 30)相比较其生物利用度提高2.76倍,维持治疗血药浓度达24h。Kohri等用HPMC及其酞酸酯(hydroxg propyl methyl cellulos phthalate,HPMCP)作载体,制备了驱虫药丙硫咪唑(albendazole)的固体分散体,溶出速度明显加快,用其制备的颗粒剂,给兔口服后,其生物利用度比其物理混合物大3倍多。2.难溶性载体难溶性载体是制备缓释型固体分散体的常用材料,包括乙基纤维素(EC)和EudragitE、RL、P.S 等及脂质类材料。EC 固体分散体常采用溶剂蒸发法制备,将药物与EC溶解或分散于乙醇等有机溶剂中,将溶剂蒸发除去后干燥即得。Najib等用此法制备了磺胺嘧啶的EC 固体分散体,体外溶出试验表明,这种固体分散体中药物按零级动力学释放。Khanfar等报道用EudrgitRs作阻滞剂,十二烷基硫酸钠(SLS)作释药调节剂制备了缓释吲哚美辛的固体分散体。Chen 等用Eudragit RL作载体,乙醇溶剂蒸发法制备米索前列醇缓释颗粒型固体分散体,然后用该颗粒压制成片,体外实验显示其具有明显的缓释作用,同时也较大地提高了米索前列醇的稳定性。3.肠溶性载体肠溶性载体一般选用醋酸纤维素酞酸酯(CAP)、羟丙甲纤维素酞酸酯(HPMCP)、聚丙烯树脂(Eudragit L、Eudragit S)等。Hasegawa等最早以HPMEP等肠溶材料为载体制备了硝苯啶固体分散体。高桥保志等又用喷雾干燥法制备了双异丙吡胺与几种肠溶材料的固体分散物,其中药物-EC-HPLCP (1:1:2)的固体分散体,具有较好缓释效果。刘善奎等用II号丙烯酸树脂作载体,加入聚乙二醇(PEG)作致孔剂,制备了盐酸尼卡地平的肠溶固体分散体,达到了肠溶缓释作用,在PH6.8缓冲液中,10h溶出度为48.36%。4.其它:Abd-Ei-Baryt蝴等在对酮基布洛芬固体分散体的研究中发现,B-cyclodex-trill, B-CD和乳糖也可作为固体分散体的载体材料,以提高药物的溶出度。近年来,合成交分子材料卡波姆(Carbomer),因其可在水中迅速溶张而并不溶解,被越来越多地用于生物粘附和缓控释骨架材料。Ozeki f201等用多种不同交联度的卡波姆分

固体分散体制备技术研究进展

固体分散体制备技术研究进展 赵宝国1杨绍军2 (1.吉林工业职业技术学院学生处; 2.吉林工业职业技术学院质量与安全系,吉林吉林132000) 摘要:将药物制备成适当的固体分散体,能够提高药物的生物利用度,也可控制药物的 靶向释放,固体分散体的研究对药物制剂研发工作具有重要意义。综述了近些年来几种用于制备药物固体分散体的新技术及今后的研究方向。 关键词:固体分散体;制备方法;进展中图分类号:R944 文献标识码:A 作者简介:赵宝国(1987-),男,助教,研究方向:化学工程与技术 固体分散体(Solid Dispersion)通常是指将一种难溶固体药物以分子、微晶或无定形等状态高度分散到另一种固体载体中形成的分散体系[1]。将药物制成固体分散体的制剂技术称为固体分散技术,此技术利用不同性质的载体使药物处于高度分散状态,从而有针对性地达到不同的用药目的:通过提高难溶药物的溶出度,提高药物的吸收和生物利用度(水溶性载体);控制药物在小肠内释放(肠溶性载体);延缓药物释放(难溶性载体)[2]。 1常用载体材料 固体分散体系中,载体材料的性质与固体分散体的制备工艺决定着药物的溶出度,载体应具有生理惰性、无毒;来源广泛,成本低;不与药物发生化学反应,不影响药物药效与含量的测定等特点。载体材料主要分为水溶性、肠溶性和难溶性载体等三类 [3] 。其中水溶性载体有聚乙二醇 (PEG )、聚乙烯吡咯烷酮(PVP )、糖类、尿素、聚氧乙烯及β环糊精衍生物等;常用的肠溶性载体有纤维素类和聚丙烯酸树脂类两种[4];难溶性载体有乙基纤维素、胆固醇、聚丙烯树脂类、乙基纤维素、蜂蜡、脂质体类等。 2制备固体分散体新方法 固体分散技术从上世纪六十年代提出以来, 各国工作者对其技术的改进与探索进行了大量实验研究,也得到了长足的发展,制备固体分散体的传统方法有:熔融法、溶剂法、研磨法等,近些年来一些新技术和新方法被应用到制备固体分散体中,主要包括超临界流体技术、热熔挤出技术、电沉积技术、推拉式渗透泵技术、流化床包衣技术、微波照射技术等。 2.1超临界抗溶剂(supercritical anti-solvent ,SAS )技术 SAS 技术是超临界流体技术的主要分支之一,在近些年的研究中多用于制备固体分散体,其主要特点有:制备过程无光照且操作温度低,适合制备光敏、热敏的药物;操作工艺简单,制备参数易于控制,重现性好;制备过程无有机溶剂残留,对环境污染小[5]。SAS 技术原理是将被制备的药物溶解于某种溶剂中(乙醇,甲醇,二氯甲烷等)形成溶液,当作为抗溶剂的超临界流体(通常为CO 2)与该溶液充分接触时,超临界流体扩散到溶剂中使溶液迅速膨胀,原溶液迅速过饱和而形成晶核析出溶质微粒[6]。 Wang 等[7]应用SAS 技术以聚乳酸为负载材料成功制备了羟基喜树碱的固体分散体,由扫描电镜看到,粒径尺寸主要集中在800nm 左右,固体分散体主要呈球形,聚乳酸在固体分散体中的 第30卷第3期圆园员6年第3期 Vol.30No.3NO.3.2016 技术与教育TECHNIQUE &EDUCATION

固体分散体题目及答案

固体分散体、微囊 练习题: 一、名词解释 1.固体分散体:就是指药物以分子、胶态、微晶或无定形状态,分散在一种载体物质中所形成得药物-载体得固体分散体系、 2.包合物:就是一种分子被包藏在另一种分子得空穴结构内形成得超微粒分散物。 3.微囊:就是利用天然或合成得高分子材料(囊材)作为囊膜,将固体或液体药物(囊心物)包裹而成微型胶囊。 二、选择题 (一)单项选择题 1。以下应用固体分散技术得剂型就是D A.散剂B。胶囊剂 C.微丸 D、滴丸 E。贴片 2。下列有关环糊精叙述中,错误得就是A A。环糊精就是由环糊精葡萄糖转位酶作用于淀粉后形成得产物 B就是水溶性、还原性白色结晶性粉末 C。就是由6-10个葡萄糖分子结合而成得环状低聚糖化合物 D。结构为中空圆筒型 E.其中以β—环糊精溶解度最小 3.以下利用亲水胶体得盐析作用制备微囊得方法就是A A.单凝聚法 B.复凝聚法 C。溶剂-非溶剂法 D。界面缩聚法 E。喷雾干燥法 4.用β-环糊精包藏挥发油后制成得固体粉末为B A。固体分散体B。包合物C.脂质体 D、微球E。物理混合物 5.包合物制备中,β-环糊精比α-环糊精或γ-环糊精更为常用得原因就是B A。水中溶解度最大 B.水中溶解度最小 C.形成得空洞最大 D.分子量最小E。包容性最大6、固体分散体中药物溶出速率快慢顺序正确得就是D A。无定型>微晶态>分子状态 B。分子状态>微晶态>无定形 C、微晶态〉分子状态〉无定形 D、分子状态〉无定形>微晶态 E.微晶态〉无定形〉分子状态 7、下列哪种材料制备得固体分散体具有缓释作用C A、PEG B.PVP C.EC D.胆酸 E、泊洛沙姆188 8.固体分散体存在得主要问题就是A A。久贮不够稳定 B。药物高度分散 C.药物得难溶性得不到改善 D。不能提高药物得生物利用度E。刺激性增大 9.β-环糊精结构中得葡萄糖分子数就是C A.5个 B。6个C。 7个 D、 8个E、 9个 10、制备固体分散体,若药物溶解于熔融得载体中呈分子状态分散者则为B A.低共熔混合物B、固态溶液C、玻璃溶液 D.共沉淀物 E.无定形物11. 以下属于可生物降解得合成高分子材料为A A。聚乳酸 B.阿拉伯胶 C、聚乙烯醇 D。甲基纤维素 E。聚酰胺 12、单凝聚法制备微囊时,加入硫酸钠水溶液得作用就是A A。凝聚剂 B、稳定剂C。阻滞剂D、增塑剂 E。稀释剂 13.以下有关微囊得叙述中,错误得就是E

固体分散制备技术

超临界C02法制备尼莫地平固体分散体 采用高效液相法(HPLC)测定尼莫地平在不同介质中的溶解度,紫外分光光度法测定尼莫地平固体分散体中药物的含量和体外溶出度。方法学考察结果表明这些分析方法线性关系良好,回收率较高,日内、日间精密度的相对标准偏差(RsD)均低于2%,方法准确可靠。以尼莫地平的体外溶出度为指标,在单因素实验考察的基础上,采用正交实验优化临界C02法制备尼莫地平固体分散体的工艺条件。根据实验结果确定了超临界C02法制备尼莫地平固体分散体的优化工艺条件为:聚乙烯吡咯烷酮为载体材料,尼莫地平与PVPK30的比例1:8,超临界C02制备温度55℃,压力25MPa,时间7h。将制备所得的固体分散体进行体外溶出度实验,药物在60rain的累积溶出率为97.66%,显著高于溶剂法制备所得固体分散体在60min的累积溶出率74.67%。差示扫描量热实验(DsC)表明药物以无定型或分子状态存在于固体分散体中;而溶剂法制备所得的固体分散体中,部分ND与PVPK30形成玻璃态固熔体,部分ND依旧以晶体形态存在。 尼莫地平(Nimodipine)为第二代1,4-双氢吡啶类钙通道阻滞药,通过抑制钙离子进入细胞而抑制血管平滑肌细胞的收缩,又具有较高的亲脂性而易通过血脑屏障,从而对脑动脉有较强的作用。尼莫地平通过对与钙通道有关的神经元受体和脑血管受体的作用,保护神经元的功能,扩张脑血管并改善脑供血,增加脑的缺血耐受力,明显地降低蛛网膜下腔出血患者的缺血性神经损伤及死亡率。用于治疗蛛网膜下腔出血、缺血性脑血管病、偏头痛、突发性耳聋均有较好的效果。且副作用小,安全度大,不会引起盗血现象,少见有肝、肾功能改变。另有抗抑郁,改善学习、记忆功能,降低红血球脆性、血浆粘稠性和抑制血小板聚集的作用。 固体分散技术 本研究的目的与意义:由于尼莫地平在水中的溶解度极低,进入体内后很大一部分药物始终以聚集体的形式分散在胃肠液中,达不到分子态,不能实现跨膜吸收;且在吸收过程中存在肝首过作用,口服绝对生物利用度很低(仅为5%~15%),严重影响了药物疗效的发挥。因此溶出度是其生物利用度的限速步骤。本研究的目的:应用超临界C02流体技术制备尼莫地平固体分散体,以期提高尼莫地平的体外溶出速率。本研究的意义:探索超临界C02流体技术制备固体分散体的工艺条件,开辟了超临界C02流体技术制备固体分散体的新方法。心脑血管疾病是目前全世界范围内危害人类健康生命的第一杀手,其发病率和死亡率已超过肿瘤而跃居世界第一。二氢吡啶类钙通道拮抗剂尼莫地平在脑血管疾病的治疗中因疗效显著、副作用小而备受重视,但是目前临床的尼莫地平普通剂型因溶解度低、溶出速率缓慢而严重影响了药物疗效的发挥。本研究将尼莫地平制备为速释胶囊剂,显著地提高了药物的体外溶出速率,有利于药效的发挥。 采用熔融法、溶剂法和超临界C02法制备了ND固体分散体。 1.采用HPLC法测定ND在各种介质中的溶解度;紫外分光光度法测定ND固体分散体中 药物的含量和体外溶出度。 2.采用超临界C02法制备了ND固体分散体。通过单因素影响实验考察及正交实验优化超 临界C02法制备ND固体分散体的工艺条件,根据直观和方差分析结果得到超临界C02制 备ND固体分散体的优化工艺条件为:制备压力25MPa,温度55℃,ND/PVPK30配比为 1:8。将优化工艺条件制备所得的ND固体分散体进行体外溶出度实验,分散体在60min的 累积溶出率为97.66%,与熔融法、溶剂法相比显著高于溶剂法制备所得ND固体分散体在 60min的累积溶出率74.67%。DSC实验表明ND以无定形状态或分子状态存在于固体分散 体中。 3.进行了ND固体分散体稳定性实验考察,高温、高湿和光照实验结果表明ND固体分散

药剂学-第16-18、20章制剂新技术

第16-18、20章制剂新技术 一、概念与名词解释 1.固体分散体: 2.包合物: 3.纳米乳: 4.微囊: 5.微球: 6.脂质体: 7.β-环糊精: 二、判断题(正确的填A,错误的填B) 1.药物在固态溶液中是以分子状态分散的。( ) 2.固体分散体的共沉淀物中的药物是以稳定晶型存在的。( ) 3.在固体分散体的简单低共熔混合物中药物仅以较细微的晶体形式分散于载体 材料中。( ) 4.固体分散体都可以促进药物溶出。( ) 5.固体分散体是药物以分子、胶态、微晶等均匀分散于另一种固态载体材料中所形成的分散体系。( ) 6.固体分散体采用肠溶性载体,目的是增加难溶性药物的溶解度和溶出速率。( ) 7.固体分散体利用载体材料的包蔽作用,可延缓药物的水解和氧化。( ) 8.固体分散体能使液态药物粉末化。( ) 9.固体分散体可掩盖药物的不良嗅味和刺激性。( ) 10.难溶性药物与PEG 6000形成固体分散体后,药物的溶出加快。( ) 11.某些载体材料有抑晶性,使药物以无定型状态分散于其中,可得共沉淀物。( ) 12.药物为水溶性时,采用乙基纤维素为载体材料制备固体分散体,可使药物的溶 出加快。( ) 13.固体分散体的水溶性载体材料有PEG、PVP、表面活性剂类、聚丙烯酸树脂类等。( ) 14.药物采用疏水性载体材料时,制成的固体分散体具缓释作用。( ) 15.因为乙基纤维素不溶于水,所以不能用其制备固体分散体。( ) 16.共沉淀物也称共蒸发物,是由药物与载体材料两者以一定比例所形成的非结晶性无定形物。( ) 17.β—CD的水溶性较低,但引入羟丙基等基团可以破坏其分子内氢键的形成,提高水溶性。( ) 18.包合过程是化学反应。( ) 19.在β-CD的空穴内,非极性客分子更容易与疏水性空穴相互作用,因此疏水性药物、非解离型药物易被包合。( ) 20.包合物系指一种分子被全部和部分包合于另一种分子的空穴结构内,形成的特殊的络合物。( ) 21.包合物具有缓释作用,故不能提高生物利用度。( ) 22.环糊精是由6—12个D-葡萄糖分子以l,4-糖苷键连接的环状低聚糖化合物。( ) 23.聚合物胶束是由合成的两亲性嵌段共聚物在水中自组装形成的一种热力学稳定的胶体溶液。( ) 24.纳米乳不可能自发(经轻度振摇)形成。( ) 25.纳米乳及亚微乳经过长时间热压灭菌或两次灭菌均不会分层。( )

固体分散体题目及答案

练习题: 一、名词解释 1.固体分散体 :是指药物以分子、胶态、微晶或无定形状态,分散在一种载体物质中所形成的药物 - 载体的固体分散体系。 2.包合物 :是一种分子被包藏在另一种分子的空穴结构内形成的超微粒分散物。 3.微囊:是利用天然或合成的高分子材料(囊材)作为囊膜,将固体或液体药物(囊心物)包裹而 成微型胶囊。 二、选择题 (一)单项选择题 1.以下应用固体分散技术的剂型是 D A. 散剂 B. 胶囊剂 C. 微丸 D. 滴丸 E. 贴片 2.下列有关环糊精叙述中,错误的是 A A. 环糊精是由环糊精葡萄糖转位酶作用于淀粉后形成的产物 B 是水溶性、还原性白色结晶性粉末 C. 是由 6-10 个葡萄糖分子结合而成的环状低聚糖化合物 D. 结构为中空圆筒型 E. 其中以 β- 环糊精溶解度最小 3.以下利用亲水胶体的盐析作用制备微囊的方法是 A A. 单凝聚法 B. 复凝聚法 C. 溶剂 - 非溶剂法 D. 界面缩聚法 E. 喷雾干燥法 4 ?用β-环糊精包藏挥发油后制成的固体粉末为 B A. 固体分散体 B. 包合物 C. 脂质体 D. 微球 E. 物理混合物 5?包合物制备中,β-环糊精比α-环糊精或Y -环糊精更为常用的原因是 B A. 水中溶解度最大 B. 水中溶解度最小 C. 形成的空洞最大 D. 分子量最小 E. 包容性最大 6 ?固体分散体中药物溶出速率快慢顺序正确的是 D A. 无定型>微晶态>分子状态 B. 分子状态 >微晶态 >无定形 C. 微晶态>分子状态>无定形 D. 分子状态>无定形>微晶态 E. 微晶态>无定形 >分子状态 7 ?下列哪种材料制备的固体分散体具有缓释作用 C A . PEG B ? PVP C ? EC D .胆酸 E .泊洛沙姆 188 8.固体分散体存在的主要问题是 A A. 久贮不够稳定 B. 药物高度分散 C. 药物的难溶性得不到改善 D.不能提高药物的生物利用度 E.刺激性增大 9. β - 环糊精结构中的葡萄糖分子数是 C A .5个 B. 6 个 C. 7 个 D. 8 个 E. 9 个 10.制备固体分散体,若药物溶解于熔融的载体中呈分子状态分散者则为 B A. 低共熔混合物 B. 固态溶液 C. 玻璃溶液 D. 共沉淀物 11. 以下属于可生物降解的合成高分子材料为 A A. 聚乳酸 B. 阿拉伯胶 C. 聚乙烯醇 D. 甲基纤维素 E. 聚酰胺 12. 单凝聚法制备微囊时,加入硫酸钠水溶液的作用是 A A. 凝聚剂 B. 稳定剂 C. 阻滞剂 D. 增塑剂 E. 稀释剂 13. 以下有关微囊的叙述中,错误的是 E 固体分散体、微囊 E. 无定形物

固体分散体

第三章固体分散技术 第一节固体分散技术概述及分类 一、概述 固体分散技术是指制备制剂时固体药物,特别是难溶性药物的分散技术。制剂中难溶性药物的释放一吸收与药物的分散状态关系极为密切,对其释放碑吸收影响很大,以一般的粉碎方法制得的粗分散状态的粉末,往往生物利用度很低。这就需要通过改变剂型、处方组成和工艺过程等方法来改变药物的分散状态,或通过改变用药途径来达到提高药物生物利用度的目的。然而对于难溶性药物口服固体制剂来说,药物在制剂中的分散状态是主要影响溶出与吸收的因素·可改变这样的规律。如防冠心病的苏合香滴丸起效时间为2~3分钟.而原粉胶囊剂起效时间却长达10-20分钟。这是由于改变了组成(加人载体)和工艺之故。当然,若以滴丸的同样组成。制成粉末后装人胶囊会比滴丸有更好的效果。另外,单从改变粉碎技术(工艺)使原粉达到微粉化(几个微米)也能成倍提高溶出-吸收的速率和程度,但较加有载体者又大为逊色[1]。 二、固体分散体的常用载体 固体分散体主要作用为增加难溶性药物溶出速率。此外,也有用作缓释和肠溶产品。在上节介绍的固体分散体的药物释放类型,实际上是取决于载体的性质类型。 固体分散体载体可分为水溶性、水不溶性和肠溶性三大类。这三类载体还可分为单一载体和联合载体。实践证明,联合载体对难溶性

药物的分散作用和控释作用,常优于单一载体。 (一)水溶性载体多为水溶性高分子化合物、有机酸类,其它尚有糖类等。 (1)PEG 4 000和PEG 6000 是最常用的水溶性载体。熔点低(55-60C)毒性小。在胃肠道内易于吸收。不干扰药物的含量分析。能够显著地增加药物的溶出速率,提高药物的生物利用度。溶出速率一般与药物对载体的比例量有关,载体PEG用量越多。溶解速率越快.注意,药物为油类时,宜用Mr 更高的PEG类作载体,如PEG 12000或PEG 6000与PEG20000的混合物作载体。单用PEG 6000作载体则固体分散体变软,特别当温度较高时能使载体发粘。 不同相对分子量的PEG得到的固体分散体性质不同。如发现以PEG4000、PEG6000 PEG10000为载体材料,[2]采用熔融法制备了槲皮素固体分散体,发现各相对分子量的PEG均能显著提高槲皮素的溶解度,见表,槲皮素在固体分散体中的分散程度随着PEG相对分子量的增加而增大。各固体分散体中,PEG400流动性最差,难以达到理想的粉碎状态,PEG6000和PEG10000均为松脆、片状易于粉碎的固体,所以PEG6000为较好的槲皮素固体分散体材料。 槲皮素及其固体分散体和物理混合物的溶解度(25℃)/mg.L-1 (2).PVP PVP对热的化学稳定性好。但加热到150℃变色,能浴于多种有

第十六章 配 合 物

第十六章配合物 1. 写出下列各配合物或配离子的化学式: (1)硫酸四氨合铜(II)(2)氯化二氯·—水·三氨合钴(III) (3)六氯合铂(IV)酸钾(4)四硫氰·二氨合铬(III)酸铵 (5)二氰合银(I)酸根离子(6)二羟基·四水合铝(III)离子 (7)二氯·二(甲胺)合铜(II)(8)四氰合锰(II)酸六氨合铬(III) (9)三氯·(乙烯)合铂(II)酸钾 (10)氯化μ-羟基·μ-氨基四氨合钴(III)·二(乙二胺)合钴(III) 2. 命名下列各分子或离子: (1)[Ag(NH3)2]+(2)[Fe(H2O)6]3+ (3)[CuC14]2-(4)[Pt(en)3]2+ (5)[Co(NH3)4NO2Cl] (6)[Co(NH3)5Br]SO4 (7)Na3[Co(NO2)6] (8)[Cr(NH3)6][Co(CN)6] (9)[Fe(CO)5] (10)[Co(ONO)(NH3)5]C12 H O (11)[Cl(NH3)3Co CoCl(NH3)3]2+ O H Cl Cl ∣∣ (12)[······-Cl—Cu—Cl—Cu-······]n- ∣∣ Cl Cl 3. 在下列各配离子中,哪些符合EAN规则,哪些不符合EAN规则? (1)[Co(NH3)5Cl]+(2)[HgCl4]2-(3)[Fe(CN)6]4-(4)[Cu(CN)2]- (5)Mn(CO)6(6)Fe(CO)4Cl2(7)(Ph3P)Fe(CO)4(8)Cr(CO)5 4. 用EAN规则预言下列各分子或离子所形成的分子式、离子式或者化学反应方程式: (1)Cd2+的氨配合物;(2)Cr o与苯; (3)Co3+与CN-;(4)Mn与CO、NO形成配合物; (5)Re2O7与CO反应生成铼的羰基配合物; (6)1,3一丁二烯+ Fe(CO)5→ 5. 写出下列各物种的几何异构体: (1)[Pt(NH3)2NO2Cl](平面四方)(2)[Pt(py)(NH3)BrCl](平面四方) (3)[Cr(H2O)2(C2O4)2]-(4)[Pt(NH3)2(OH)2Cl2] 6. 试将下列配合物和配离子的结构式画出来: (1)顺式-[Pt(NH3)2Cl2] (2)顺式-[Co(en)2Cl2]+ (3)顺式-[Cr(NH3)4Cl2]+(4)反式-[Cr(NH3)4(OH)Cl]+ 7. 利用直接图示法推出下列各配合物类型的所有几何异构体与旋光异构体。(a、d、e、f为单齿配体中的配位原子,AB、CD为双齿配体中的配位原子) (1)[Ma3def](正八面体构型)(2)[M(AB)(CD)ef](正八面体构型) 8. 指出下列配合物中,哪些互为异构体,并写出各类异构体的名称及其特点。 (1)[Co(NH3)6][Co(NO2)6] (2)[Co(NH3)3Co(NO2)3] (3)[Pt(NH3)3(ONO2)]Cl (4)[PtCl4(en)]?2py

相关文档
最新文档