第三章__期权价格的性质(金融衍生品定价理论讲义)

第三章__期权价格的性质(金融衍生品定价理论讲义)
第三章__期权价格的性质(金融衍生品定价理论讲义)

第三章 期权价格的性质

在第一章里,我们定性地讨论了期权价格的性质。我们不但描述了影响期权价格的各种因素,而且讨论了在各种情况下期权的支付。在这一节里,我们将应用无套利原理严格证明欧式期权价格的一些重要的性质。需要强调的是,我们并不对标的资产的未来价格的分布作任何假设。在上一章中,我们利用标的资产和债券合成构造远期合约和期货合约,投资银行可以利用这种方法来为远期合约和期货合约做市及对冲风险。同样地,在本章中,我们利用合成构造期权的方法来为期权做市及对冲风险。我们仅仅研究以同一种资产为标的物的看涨和看跌期权价格之间最基本的关系。本章主要内容:美、欧式期权价格的上下界;美式期权的提前执行;红利对期权价格的影响;看涨和看跌期权价格之间的平价关系。

我们不妨假设标的物为某种股票,其在时间t 的价格为S t ,期权的执行价格为K ,到期日为一期,即,T =1,无风险利率为f r (或者r ),按离散或者连续方式计算复利。我们以t t t t P p C c ,,,分别表示欧式看涨、美式看涨、欧式看跌、美式看跌期权在时间t 的价格。

1.期权价格的上、下界

由第一章内容,期权价格受标的股票的价格、执行价格、标的股票的价格的方差、到期日、无风险利率和到期日之前标的资产的预期红利六种因素的影响。

1.1 上界

美式或者欧式看涨期权的持有者拥有以一定价格购买一份股票的权利,所以在任何情形下,期权的价值不会超过标的股票的价格 t t S c ≤ t t S C ≤ 否则,买入股票,卖空看涨期权就能获得套利机会。

例子:标的股票价格为30元,执行价格为25元的看涨期权,其价格不超过30元(不管是美式还是欧式)。如果价格为40元,如何构造套利机会?

看涨期权的价格永远不会超过标的股票的价格。即使执行价格为零,期权永远不到

期,期权的价格也至多为S T 。甚至在这种极端情形下,期权的价格也可能比标的股票的价格低,因为股票有选举权,而期权没有。

美式或者欧式看跌期权的持有者拥有以执行K 价格卖一份股票的权利,所以在任

何情形下,期权的价值不会超过K

K p t ≤ K P t ≤ 对欧式看跌期权而言,我们知道它在到期日的价格不会超过K ,所以

r

K

p t +≤

1 否则,卖出期权,投资在无风险利率,获得套利

例子:r =5%,t S =30元, K =25元,125?-≤r t e p

1.2 以不支付红利股票为标的物的欧式期权价格的下界

我们在这里仅仅关注标的股票的价格和执行价格的影响,所以,我们可以把看涨期权在时间t 的价格写成,c S K t t (,)。下面,我们讨论第一条性质。 性质1:c S K S K r f

00010(,)max (),≥-+?

?

??

?

?

(1)

当期权被执行的概率严格位于0和1之间时,即,在到期日,股票价格S T 大于执行价格K 的概率严格位于0和1之间,上述不等式严格成立。

证明:我们证明严格不等式。考虑如下的策略:卖空一份标的股票,买一份欧式看涨期权,再以无风险利率r f 借出K r f 1+。该策略的初始成本为c S K S K r f 0001(,)()-++,到

期日的支付为:

S K S K S K T T T --+=-+>??

?

0 当

S K S K

T T ≥< 时。

因为策略的期末支付是非负的,且严格为正的概率大于0,所以,由无套利原理,初始成本也应该严格大于零。即有,

c S K S K r f 0001(,)()-++>0。 这个不等式等价于

c S K S K r f

0001(,)()>-+。

(2)

最后,因为期权的持有者只有买标的物的权利而没有必须买的义务,所以期权的价格是非负的。又因为假设期权被执行的概率严格位于0和1之间,所以期权的价格严格大于零,即,c S K 000(,)>。这个式子与(2)式结合起来,得到我们需要的结果。 #

注:(1)在性质1中,我们是针对时间0的价格讨论的,该性质对到期日以前的任何时间均成立,只需把(1)式中角标由0换成t ,并对执行价格的折现作相应的修改。

(2)通过类似的方法,我们可以得到以不支付红利股票为标的物的欧式看跌期权价格的下界为

max ,K r S f 100+-????????。

(3) 这个性质的直观意义在于,如果在期末必须以价格K 买一份股票,这种义务的现值为S K r f

01-+。当股票价格S T 小于执行价格K 的概率严格位于0和1之间时,不买股

票的权利的价值严格大于零。因此,欧式看涨期权的的价格严格大于S K r f 01-+。另一方

面,由于期权被执行的概率是严格正的,所以,c S K 000(,)>。

例子:欧式看涨期权

假设标的股票的价格为55元,执行价格为50元,期权三个月到期,三个月的简单利率为8.9%,在这3个月内,股票不支付红利,求欧式看涨期权价格的下界,如果期权的价格为4元,如何构造套利机会。

例子:欧式看跌期权

3个月到期的欧式看跌期权,执行价格为50元,股票价格为45元,三个月的简单利率为8.9%,在这3个月内,股票不支付红利,求欧式看跌期权价格的下界,如果期权的价格为3元,如何构造套利机会。

性质2:欧式看涨期权的价格是其执行价格的凸函数,即,

ααc S K c S K c S K t t t t t t (,)()(,~

)(,)+-≥1 (3) 这里,K K K =+-αα()~1,α∈(,)01。当S K K T ∈(,~

]的概率严格正时,上式中的严格不等式成立。

证明:考虑如下的策略:买入α份以K 为执行价格的欧式看涨期权,买入1-α份以~

K 为执行价格的欧式看涨期权,卖空一份以K 为执行价格的欧式看涨期权。这个策略在

t t ()<1时的成本为ααc S K c S K c S K t t t t t t (,)()(,~

)(,)+--1。不失一般性,假设~K K >。这个策略在到期日的支付为: 0 如果S K T ≤, α()S K T ->0

如果K S K T <≤,

()(~

)10-->αK S T

如果K S K T <≤~

0 如果S K T >~

在任何情况下,支付均为非负的。因此,由无套利原理有:

ααc S K c S K c S K t t t t t t (,)()(,~

)(,)+--≥10

这即为(3)式。当S K K T ∈(,~

]的概率严格正时,(3)式中的严格不等式成立。 #

注:我们可以证明欧式看涨期权的价格是其执行价格的减函数,从而,欧式看涨期权的价格是其执行价格的单调递减的凸函数。

例子:

在实际中,投资者投资的期权不但可以以单个证券为标的物,也可以以上市证券形成的证券组合为标的物。另外,投资者还可投资在期权形成的证券组合上。下面,我们比较两种投资方式所需要的成本。

性质3:假设有n 种证券,以这n 种证券为标的物构成n 种欧式期权,它们具有相同的执行价格K 。以这n 种证券的凸组合为标的物,以K 为执行价格的期权的价格比前面的n 种欧式期权以同样的权形成的证券组合的价格低,即,

c S K c S K t t j t t

j

j n

**(,)

(,)≤

=∑α

1

这里,

α

j

j n

=∑=1

1,αj ≥0,

S S t j t

j

j n

*

=∑α

1

,而c S K t t **(,)是以n 种证券的凸组合为标的物,

以K 为执行价格的期权的价格。

证明:以n 种证券的凸组合为标的物,以K 为执行价格的期权的终端支付为:

max ,αj T j

j n S K =∑

-?????

?

??10。

因为[]max ,z 0是z 的凸函数,由Jensen 不等式得到:

[]

max ,max ,ααj T j

j n j T j j n S K S K ==∑∑

-?????

?

??≤-1100。

而上述不等式的右端正好是n 种欧式期权的证券组合的终端支付。由无套利原理,我们得

到:

c S K c S K t t j t t

j

j n

**(,)

(,)≤

=∑α

1

这里的不等式严格成立当且仅当存在证券j 和'j ,使得S K S T j T j <<'以一个严格正的概率成立。 #

假设所有n 个标的证券的支付使得,以单个证券为标的物,以K 为执行价格的n 个期权都能同时被最优执行,则这n 个期权的凸组合的价格,和下面这个期权的价格是相同的,这个期权以n 个标的证券的凸组合为标的物,以K 为执行价格。但是,一旦以单个证券为标的物的n 个期权中有某个不能被同时最优执行,则两者的价格不会相等。作为期权的证券组合,不同于以n 个证券的凸组合为标的物的期权,因为我们可以单独执行组合中的每个期权。所以,期权的证券组合的价格大于以n 个证券的凸组合为标的物的期权的价格。

例子:

1.3 美式期权的下界

性质:美式看涨期权价格的下界为

{}K S C t t -≥,0max

证明:(1)0≥t C

(2)不妨假设K S t ≥。如果K S C t t -<,构造套利机会: 以t C 买入美式看涨期权,马上执行,现金流为K S t -,净利润为

0>--t t C K S

例子:设美式看涨期权的价格为2元,设股价为50元,执行价格为45元,是否存在套利机会?

性质:如果两个美式看涨期权具有相同的执行价格,相同的标的物,则到期日越长的期权,价格越高。

图:美式看涨期权价格的界

性质:美式看跌期权价格的下界为

{}t t S K P -≥,0max 证明:

例子:设美式看跌期权到期日为78天,价格为3元,执行价格为55元,标的股票价格为55元,是否存在套利机会?

图:美式看跌期权价格的界

2.提前执行:以不支付红利股票为标的物的美式期权

本节的目的是证明:以不支付红利的股票为标的物的美式期权不会提前执行。对期权定价理论感兴趣的读者可以参考Merton 在1973年的开创性工作。

由于欧式期权只能在到期日执行,而美式期权在到期日前的任何时间都能执行,所以,欧式期权的定价比美式期权定价容易。但是,当标的股票不支付红利时,我们可以证明美式看涨期权不会提前执行,从而美式看涨期权的价格和欧式看涨期权的价格一致。下面,我们证明这一重要的定理。

定理1:以不支付红利的股票为标的物的美式看涨期权不会提前执行。

证明:设无风险利率为r f ,采用连续计算复利的方式;欧式和美式期权的到期日为T ,执行价格均为K ;不支付红利的标的股票在t 时的价格为S t 。 由前面知道:

()[

]

c S T K S e

K t t t r T t f ,,max ,()

≥---0

(9)

方程(9)对一个欧式看涨期权成立。但是,由前面的分析我们知道,和一个欧式看涨期权等价的美式看涨期权的价格总比欧式看涨期权的价格大。因此,

()()[

]

C S T K c S T K S e

K t t t t t r T t f ,,,,max ,()

≥≥---0 (10)

而且,如果执行,美式看涨期权的价值是[]max ,0S K t -,它比[]max ,0S B K t t -小。在这种情况下,美式期权的持有者在证券市场上卖掉期权总会优于提前执行该期权。

从(10)式,我们可以更合理的解释为什么当无风险利率上升时,看涨期权的价格会上升?假设股票的价格是50元,执行价格是30元,期权一年到期。如果无风险利率是5%,则期权价格的下限是21.46元。如果现在无风险利率变为10%,则下限增为22.85元。直观上来说,现在期权更值钱是因为无风险利率的上长,使得现在购买一年后支付一元的零息债券的价格降低。

例子:以不支付红利股票为标的物的美式看涨期权的执行价格为40元,股票的价格为50元,期权一个月到期。(deep in money)

(1)如果投资者计划持有股票的时间大于一个月,则马上提前执行不是最好的策略:支付40元的执行价格,损失1个月利息;持有股票没有获得红利的优势;股价有可能跌到40元以下,持有期权等于持有一份保险。

(2)如果投资者计划持有股票的时间小于一个月,认为股价过高,提前执行,再卖掉股票也不是最优的策略,因为卖掉期权比提前执行的收入更大。

图:美式看涨期权价格与标的物价格的关系

利率越大,到期日越长,或者股票波幅越大,美式看涨期权的价格越大。

不同于美式看涨期权,即使在标的股票不支付红利的条件下,提前执行美式看跌期权可能是最优的。原因在于,当股价充分下降以后,从股价进一步下降得到的利润可能比马上执行得到的现金的利息少。

例子:设执行价格为25元看跌期权,股价为1元,6个月到期,6个月的简单利率为9.5%。

美式看涨期权和美式看跌期权在提前执行问题上的不同源于看涨期权的收入是无上界的,而看跌期权的收入是有上界的。既然看涨期权无上界,等待总有可能获得利润,而看跌期权有上界,所以最好提前执行,获取利息。

例子:假设执行价格为10元,股价为0元。马上执行,获得的收入为10元,如果等待,执行时收入最多也只为10元,而且提前执行可以获得利息。

图:美式看跌期权的价格与标的物价格的关系

利率越小,波幅越大,或者到期日越大,美式看跌期权价格越大。

图:欧式看跌期权价格与标的物价格的关系

3. 美式看涨期权与看跌期权价格之间的关系

看涨期权与看跌期权价格之间的平价关系仅仅对于欧式期权成立。但是,我们也可以得到以不支付红利股票为标的物的美式期权价格之间的关系。我们设P t 为美式看跌期权的价格,p t 为欧式看跌期权的价格。其余的符号和这一章里一样。因为美式期权总能在到期日以前执行,所以,美式看跌期权价格总大于欧式看跌期权价格,即,P t ≥p t 。我们采用连续计算复利的方式。由欧式期权价格的平价关系有

p c Ke

S t t r T t t f =+---()

, 从而有

P c Ke

S t t r T t t f ≥+---()

因为标的股票不支付红利,所以

C c t t =。

我们得到

P C Ke

S t t r T t t f ≥+---()

或者

C P S Ke

t t t r T t f -≤---()

。 (12)

为了进一步说明C t 与P t 之间的关系,我们考虑:

证券组合1:一份欧式看涨期权和数量为K 的现金 证券组合2:一份美式看跌期权和一份标的股票

两种证券组合中的期权具有相同的执行价格和到期日。假设证券组合1中的现金可以以无风险利率投资。(1)如果看跌期权不提前执行,则证券组合2在到期日T 的支付为

()max ,S K T 。 这时,证券组合1的支付为

()max ,()

S K Ke

K T r T t f +--。

因此,证券组合1比证券组合2的价值大。(2)下面,我们假设证券组合2中的看跌期权提前执行,例如,在时间τ执行。这说明证券组合2在时间τ的价值为K 。但是,即使证券组合1中的看涨期权无价值,证券组合1在时间τ的的价值为Ke r t f ()

τ-。由这两种情况分析,我们得到,在任何情况下,证券组合1都比证券组合2的价值高。因此,我们有

c K P S t t t +>+。

因为c C t t =,所以

C K P S t t t +>+,

或者

C P S K t t t ->-。

由(12)与上式,我们得到

S Ke t r T t f -≥--()

C P S K t t t ->-。

(13)

例子:以不支付红利股票为标的物的美式看涨期权的执行价格为20元,5个月到期,期权的价格为1.5元。假设现在股票的价格为19元,无风险利率为每年8%。

由欧式期权价格之间的平价关系,对应的欧式看跌期权的价格为

68.119205.1125

1.0=-+?-e

由(13)

18.0201920191125

1.0-=-≤-≤-=-?-e P C

从而

5.268.1≤≤P

4.红利的影响

我们在前面讨论期权的价格性质时,标的股票均不支付红利。下面,我们讨论红利的影响。当标的股票有红利支付时,我们不能保证美式看涨期权不提前执行。有时,美式看涨期权在红利支付前的瞬间执行是最优的,因为,红利的支付将使得股票的价格下降,从而导致期权的价值下降。

下面这一定理更注重实际。我们分析当标的股票支付红利时,美式看涨期权的

价值会有什么变化?因为大多数上市公司都是支付红利的,所以期权合约的持有者应该注意,当标的股票因支付红利而价格下降时,并不能保证期权的价格不下降。

在1976年12月份的某一天,通用汽车公司的股票大约为每股75美元。以此为标的物的看涨期权的执行价格为60美元。在第二天,通用汽车公司按计划每股分配红利3美元。这意味着该公司的股票价格将降至约每股72美元。从(7.19)式我们知道,在分红之前,看涨期权的价格不会低于S K -,或者15美元。到了第二天,每人都知道公司的股票价格将下降,所以看涨期权的价格将下降(约降至12.63美元)。知道先一天期权约值15美元,第二天期权的价格将下降,作为投资者,唯一理性的行为就是在分红之前执行期权。

定理:当标的股票支付红利时,美式看涨期权是可能提前执行的。

证明:假设无风险利率为r f ,采用连续计算复利的方式;美式期权的到期日为T ,执行价格均为K ;标的股票在t 时的价格为S t ,在到期日支付红利D ;。在时间T 到期,面值为1的无息债券在t 时的价格为B e t r T t f =--()

。考虑甲、乙两种证券组合,甲证券组合:以价格c S T K 00(,,)买一份欧式看涨期权,以价格()K D B +0购买K +D 份债券。乙证券组合:以价格S 0买一份股票。下表说明了两种证券组合的终端支付的关系:

证券组合 证券组合 在时间t 的价值

证券组合

在到期日T 的支付 S K T < S K T ≥ 甲

c S T K K D B t t t (,,)()++

0+K D + S K

K D

T -++

S t S T +D S T +D 甲、乙在T 的

支付的关系

V 甲>V 乙 V 甲=V 乙

在到期日,当股票的价格小于执行价格时,期权不会被执行,从而期权没有价值,证券组合甲的支付为K +D 。但是,由于S K T <,所以证券组合甲的支付大于证券组合乙的支付。另一方面,当股票的价格大于执行价格时,证券组合甲、乙在到期日的支付相等。不管在哪种情况下,证券组合甲的支付大于或者等于证券组合乙的支付。由无套利原理,我们有:

c S T K K D B t t t (,,)()++≥S t

从这个式子可以得到;

()[]c S T K S K D B t t t t ,,max ,()≥-+0 (11)

从上式可以看出,当红利的规模和无风险利率取恰当的值时,有可能得到:

()K D B S t t +>

这时,(11)式中期权的价值为零。但是,如果有可能提前执行时,美式看涨期权的价值是[]max ,0S K t -。所以美式期权的持有者有可能提前执行该期权。 例子:

下面讨论红利对期权价格界的影响。 我们假设在期权的到期日以前,标的股票支

付的红利的现值为D 。为简单计,我们假设红利一次性支付。

欧式看涨期权与看跌期权价格的下界 我们定义证券组合A 、B 如下:

证券组合A :一份欧式看涨期权和数量为D Ke r T t f +--()

的现金 证券组合B :一份标的股票

在证券组合A 中,如果现金流以无风险利率投资,则在到期日T ,这个现金流变为

De

K r T t f ()

-+。如果S K T >,则看涨期权在T 执行,证券组合A 的支付为

S K T -+De K r T t f ()

-+。如果S K T <,则看涨期权在T 不执行,证券组合A 的支付为

De

K r T t f ()

-+。所以,证券组合A 在到期日T 的支付为

(

)max ,()

()

S De

K De

T r T t r T t f f ++--。

在证券组合B 中,如果红利现金流以无风险利率投资,则在到期日T ,这个现金流变为De

r T t f ()

-。所以,证券组合B 在到期日T 的支付为S De T r T t f +-()

。无论在哪种情况下,证券

组合A 的到期日支付都不会小于证券组合B 的到期日支付,有时,还严格大于B 的终端支付。因此,有无套利原理,证券组合A 现在的价值应该大于证券组合B 现在的价值,即,

c D Ke

S t r T t t f ++>--()

(14)

或者

c S D Ke

t t r T t f >----()

。 (15)

这是我们得到的,当标的股票具有红利支付时,欧式看涨期权的下界。 接着,我们定义证券组合C 和D 如下:

证券组合C :一份欧式看跌期权和一份标的股票

证券组合D :数量等于D Ke r T t f +--()

的现金流

在证券组合C 中,如果标的股票的红利现金流以无风险利率投资,则在到期日T ,这个现金流变为De r T t f ()

-。如果K S T ≤,证券组合C 中的看跌期权在T 执行,证券组合C 的支付

为K +De

r T t f ()

-。如果S K T >,则看跌期权在T 不执行,证券组合C 的支付为

S T +De

r T t f ()

-。所以,证券组合C 在到期日T 的支付为

(

)max ,()

()

S De

K De

T r T t r T t f f ++--。

在证券组合D 中,如果现金流以无风险利率投资,则在到期日T ,这个现金流变为

De

K r T t f ()

-+。无论在哪种情况下,证券组合C 的终端支付都不会小于证券组合D 的到期日

支付,有时,还严格大于D 的到期日支付。因此,有无套利原理,证券组合C 现在的价值应该大于证券组合D 现在的价值,即,

p S D Ke

t t r T t f +>+--()

, (15)

或者

p D Ke S t r T t t f >+---()

(16)

这是我们得到的,当标的股票具有红利支付时,欧式看跌期权的下界。

看涨期权与看跌期权的价格平价关系

比较证券组合A 与C 的到期日支付,我们发现,当标的股票具有红利支付时,欧式看涨期权与看跌期权之间的平价关系变为

c D Ke

p S t r T t t t f ++=+--()。

(17)

红利支付使得(13)为

S D K C P S Ke

t t t t r T t f --<-≤---()

(18)

为了证明上式,我们考虑

证券组合E :一份欧式看涨期权和数量为D K +的现金流 证券组合F :一份美式看跌期权和一份标的股票

假设证券组合E 中的现金可以以无风险利率投资。如果看跌期权不提前执行,则证券组合F 在到期日T 的支付为

De

r T t f ()

-+()max ,S K T 。

这时,证券组合E 的支付为

()max ,()()

S K D K e

K T r T t f ++--。

因此,证券组合E 比证券组合F 的价值大。下面,我们假设证券组合F 中的看跌期权提前执行,例如,在时间τ执行。这说明证券组合F 在时间τ的价值为K +-De

r t f ()

τ。但是,即使

证券组合E 中的看涨期权无价值,证券组合E 在时间τ的的价值为()()

K D e r t f +-τ。由这两种情况分析,我们得到,在任何情况下,证券组合E 都比证券组合F 的价值高。因此,我们有

c K D P S t t t ++>+。

因为当标的股票支付红利时,欧式看涨期权的价格小于美式看涨期权的价格,即,

c C t t <,

所以

C K

D P S t t t ++>+,

或者

S D K C P t t t --<-。

这证明了(B6)式的第一个不等式。

对于不支付红利的股票,我们证明了

C P S Ke

t t t r T t f -≤---()

。 (19)

因为红利的支付减少看涨期权的价值而增加看跌期权的价值,所以这个式子对于支付红利的股票也是正确的。这证明了(18)式的第二个不等式。

金融衍生品及套利定价

金融衍生品工具期中论文翻译 金融衍生品及套利定价 Andrea Pascucci 王凌霄 20081340043 金融衍生品是一种价值取决于一个或一个以上多证劵或者基础资产的合约。基础资产可以是股票,债券,货币兑换率也可以是货品的报价单,例如金,石油和小麦。 1.1 期权 期权是金融衍生工具种最简单的一个例子,它是一种拥有在未来某个特定时间以特定的价格买卖一些基础资产权利(但没有义务)的合约。所以在期权合约中,我们需要特别指出?一种基础资产; ?合约价格K,称为执行价格; ?日期T,称为合约到期日 看涨期权拥有购买的权利,看跌期权拥有卖出的权利,欧式期权则只能在合约到期日进行买卖,美式期权则可以在任意时刻进行买卖。 我们考虑一个以执行价格为K,合约到期入为T的欧式期权,我们在合约到期日以价格ST 卖出。在日期T我们有两种可能(1.1):如果ST>K,根据相应期权获得利润,最后的盈利等于ST-K,(例如以价格K买入,然后以ST卖出)如果ST

1.3欧式看跌期权盈利 1.4跨式盈利 最后,我们可以得到欧式看张期权盈利的公式为 (K ?S T )+ = max{K ?S T , 0}. 看涨期权和看跌期权是基础金融衍生品工具,现在他们也经常被称为普通期权。将这些期权合并,可能建立起新的衍生品工具:例如对同一资产购买看涨和看跌期权,确定执行价格和合约到期日期,我们得到了一个衍生品,我们将它称为鞍式期权,他的盈利增长比执行价格大的多的多。这种类型的衍生品盈利是靠价格在一边大幅度变化,而我们并不需要对价格的走向进行预测。显然,期权的价格可以以普通期权的形式进行定价,另一方面,在现实的市场当中存在着许多金融衍生品,他们有复杂的结构,这些衍生品在市场当中 不断得扩展和发展。 1.1.1 主要用途 衍生品的应用主要有两个用途: ?规避风险 ?投机 例如,我们假设一个投资者拥有股票S:购买看跌期权S,他拥有将来一敲定价格卖出S的权利,因此他或她规避了S价格崩盘的风险。类似的,一家石油公司回购买看张期权让他有权利在未来以相对低的价格购买石油,这样做,公司规避了将来石油价格上涨带来的风险。最近几年,衍生品的应用也越来越广泛:不久以前购房贷款的汇率只能固定或者可变,然而现在报价将更广泛。例如,我们不难发现,贷款汇率有上限:这种构架的产品包含一种虎扑多种衍生品

第11章 期权定价模型

第11章 布莱克-舒尔茨-默顿期权定价模型 一、基本思路 1. 基本思路 我们为了给股票期权定价,必须先了解股票本身的走势。因为股票期权是其标的资产(即股票)的衍生工具,在已知执行价格、期权有效期、无风险利率和标的资产收益的情况下,期权价格变化的唯一来源就是股票价格的变化,股票价格是影响期权价格的最根本因素。 用几何布朗运动表示股票价格的变化过程,具体形式如下: dS dt dz S μσ=+ 或者表示为dS Sdt Sdz μσ=+ 伊藤引理表明,当股票价格服从上述随机过程时,作为衍生品的期权价格f 将服从 22221()2f f f f df S S dt Sdz S t S S μσσ????=+++???? 两式表明:股票价格及其衍生品——期权价格都只受到同一种不确定性的影响,只是两者对随机因素变化的反应程度不同而已。 从数学上看,将两式联立,解方程组可消掉随机项。其金融含义可看作:买入股票、卖空期权构造一个短期内没有不确定性的投资组合。在一个无套利市场中,该投资组合必然只能获得无风险利率收益。由此可得到一个期权价格满足的微分方程,此即为BSM 期权定价模型的微分形式,具体为 2222 12f f f rS S rf t S S σ???++=??? 由于该公式中不包含反映投资者风险偏好的参数——预期收益,因此可以在风险中性世界里求解该微分方程。求解该方程可得到期权定价公式。无股利欧式看涨期权的价格为 ()12()()r T t c SN d Xe N d --=- 其中, 21221d d d = ==- 根据无股利欧式看涨期权和看跌期权平价公式 ()21()()r T t p Xe N d SN d --=--- 可求出无股利欧式看跌期权定价公式 ()21()()r T t p Xe N d SN d --=--- 无收益美式看涨期权是不会提前执行的,因此无收益美式看涨期权定价公式和欧式看涨期权定价公式相同, ()12()()r T t C SN d Xe N d --=- 对于有收益欧式期权,需要在股票价格中抛去收益的现值,对有收益的美式看涨期权,需要考虑其提前执行的情况,由于不存在美式期权之间的平价公式,因此无法给出美式看跌期权

第十章 期权-期权价格的取值范围

2015年期货从业资格考试内部资料 期货市场教程 第十章 期权 知识点:期权价格的取值范围 ● 定义: 期权价格即权利金,是期权买方为取得期权合约所赋予的权利而支付给卖方的费用。 ● 详细描述: 期权的权利金不可能为负。 看涨期权的权利金不应该高于标的物的市场价格。如果权利金高于标的物的市场价格,投资者的损失将超过直接购买标的物的损失,这便失去了期权投资的意义,投资者不如直接从市场上购买标的物,损失更小且成本更低。 例题: 1.对期权权利金的表述正确的有()。 A.期权的权利金是期权买方为取得期权合约所赋予的权利而支付给卖方的费 用 B.期权的权利金也称为期权费、期权价格 C.看涨期权的权利金不应该高于标的物的市场价格 D.期权的权利金可以为0、为正、为负 正确答案:A,B,C 解析:期权的权利金不可能为负。由于买方付出权利金后便取得了未来买入或卖出标的物的权利,除权利金外不会有任何损失或潜在风险,所以期权的价值不会小于0. 2.以下关于期货权利金的说法,正确的是()。 A.权利金可能小于0 B.看涨期权的权利金应该高于标的物的市场价格 C.权利金即期权价格 D.看跌期权权利金不应高于标的物的市场价格

正确答案:C 解析:本题考查期货权利金的取值范围。期权的权利金不可能为负值;看涨期权的权利金不应该高于标的物的市场价格 3.以下关于期权权利金的说法,正确的是()。 A.权利金,也称为期权费、期权价格,是期权买方为取得期权合约所赋予的权利而支付给卖方的费用 B.期权的权利金可能小于0 C.看涨期权的权利金不应该高于标的物的市场价格 D.期权的权利金由内涵价值和时间价值组成 正确答案:A,C,D 解析:期权的权利金不可能为负。 4.关于期权价格的说法,正确的是() A.看涨期权的价格不应该高于标的资产的市场价格 B.看涨期权的价格不应该低于标的资产的市场价格 C.看跌期权的价格不应该高于期权的执行价格 D.看跌期权的价格不应该低于期权的执行价格 正确答案:A,C 解析: 期权价格即权利金。 期权的权利金不能为负;看涨期权的权利金不应高于标的物的市场价格;看跌期权的权利金不应高于执行价格。

期权价格的性质金融衍生品定价理论讲义

第三章 期权价格的性质 在第一章里,我们定性地讨论了期权价格的性质。我们不但描述了影响期权价格的各种因素,而且讨论了在各种情况下期权的支付。在这一节里,我们将应用无套利原理严格证明欧式期权价格的一些重要的性质。需要强调的是,我们并不对标的资产的未来价格的分布作任何假设。在上一章中,我们利用标的资产和债券合成构造远期合约和期货合约,投资银行可以利用这种方法来为远期合约和期货合约做市及对冲风险。同样地,在本章中,我们利用合成构造期权的方法来为期权做市及对冲风险。我们仅仅研究以同一种资产为标的物的看涨和看跌期权价格之间最基本的关系。本章主要内容:美、欧式期权价格的上下界;美式期权的提前执行;红利对期权价格的影响;看涨和看跌期权价格之间的平价关系。 我们不妨假设标的物为某种股票,其在时间t 的价格为S t ,期权的执行价格为K ,到期日为一期,即,T =1,无风险利率为f r (或者r ),按离散或者连续方式计算复利。我们以t t t t P p C c ,,,分别表示欧式看涨、美式看涨、欧式看跌、美式看跌期权在时间t 的价格。 1.期权价格的上、下界 由第一章内容,期权价格受标的股票的价格、执行价格、标的股票的价格的方差、到期日、无风险利率和到期日之前标的资产的预期红利六种因素的影响。 1.1 上界 美式或者欧式看涨期权的持有者拥有以一定价格购买一份股票的权利,所以在任何情形下,期权的价值不会超过标的股票的价格 t t S c ≤ t t S C ≤ 否则,买入股票,卖空看涨期权就能获得套利机会。 例子:标的股票价格为30元,执行价格为25元的看涨期权,其价格不超过30元(不管是美式还是欧式)。如果价格为40元,如何构造套利机会? 看涨期权的价格永远不会超过标的股票的价格。即使执行价格为零,期权永远不到 期,期权的价格也至多为S T 。甚至在这种极端情形下,期权的价格也可能比标的股票的价格低,因为股票有选举权,而期权没有。 美式或者欧式看跌期权的持有者拥有以执行K 价格卖一份股票的权利,所以在任 何情形下,期权的价值不会超过K K p t ≤ K P t ≤ 对欧式看跌期权而言,我们知道它在到期日的价格不会超过K ,所以 r K p t +≤ 1 否则,卖出期权,投资在无风险利率,获得套利 例子:r =5%,t S =30元, K =25元,1 25?-≤r t e p 1.2 以不支付红利股票为标的物的欧式期权价格的下界

C13029 金融衍生品系列课程之一 80分

一、单项选择题 1. 一般情况下,期货合约()。 A. 较近月份交易价格低于较远月份交易价格 B. 不存在套期保值 C. 不存在投机 D. 较近月份交易价格高于较远月份交易价格 2. Cracked Corn公司(CCC)买入一份玉米期货合约,农民John 卖出一份玉米期货合约。如果玉米价格上涨,下列选项中表述正确的是()。 A. John的保证金账户金额增加 B. CCC的保证金账户金额增加 C. CCC直接向John付款 D. John直接向CCC付款 3. 远期合约买方的风险不包括()。 A. 现货价格下跌 B. 交割履约问题 C. 生产商的信用问题 D. 现货价格上涨

4. 下列各项中关于持有成本模型正确的是()。 A. 期货价格=远期价格-持有成本 B. 期货价格=现货价格-持有成本 C. 期货价格=现货价格+持有成本 D. 期货价格=远期价格+持有成本 5. 期货合约初始保证金账户金额由()来确定。 A. 期货交易所 B. 期货买方 C. 期货卖方 D. 期货经纪 6. 期货合约的盈利可在()实现。 A. 交割时 B. 每月 C. 每天 D. 合约购买时 7. 下列()情况下,采用期货合约交割商品时可能并无益处。 A. 卖方可能实现亏损 B. 合约价格等于现货价格

C. 期货合约不要求交割 D. 买方只是进行投机 8. 期货账户中每天调整保证金账户的做法被称为()。 A. 逐日盯市 B. 保证金要求 C. 清算所 D. 投机 二、多项选择题 9. 期货合约在交易所挂牌的好处包括()。 A. 价格有效性 B. 合约标准化 C. 消除了信用风险 D. 降低了基差风险 三、判断题 10. 一般情况下,在远期合约中,如果商品价格在交割时下跌,则卖方盈利。() 正确 错误

布莱克舒尔斯期权定价模型

第六章 布莱克-舒尔斯期权定价模型 一、 影响期权价值的主要因素 由前面的分析知道决定期权价值(价格)C V 的因素是到期的股票市场价格m S 和股票的执行价格X 。但是到期m S 是未知的,它的变化还要受价格趋势和时间价值等因素的影响。 1)标的股票价格与股票执行价格的影响。标的股票市场价格越高,则买入期权的价值越高,卖出期权的价值越低;期权的执行价越高,则买入的期权价值越低,卖出期权的价值越高。 2)标的股票价格变化范围的影响。在标的股票价格变动范围增大的,虽然正反两方面的影响都会增大,但由于期权持有者只享受正向影响增大的好处,因此,期权的价值随着标的股价变动范围的增大而升高。如下图: )(s f )(1s f )(2s f x s 股票的价格由密度函数)(1s f 变为)(2s f ,S>X 的可能性增大,买入期权的价值增大,对卖出期权的价值则相反。 3)到期时间距离的影响。距离愈长,股价变动的可能性愈大。由于期权持有者只会在标的股价变动中受益,因此,距离期

权到期的时间越长,期权的价值就越高。 4)利率的影响。利率越高,则到期m S 的现值就越低,使得买入期权价值提高,而卖出期权价值降低。 5)现金股利的影响。股票期权受到股票分割或发放股票股利的保护,期权数量也适应调整,而不受影响,但是期权不受现金股利的保护,因此当股票的价格因公司发放现金股利而下降时,买入期权的价值下降,卖出期权的价值便上升。 二、布莱克-舒尔斯期权定价模型的假设条件 B-S 模型是反映欧式不分红的买入期权定价模型,它的假定条件,除了市场无摩擦(例如无税、无交易成本、可以无限制自由借贷等)以外,还有: 1. 股票价格是连续的随机变量,所以股票可以无限分割。 2. T 时期内各时段的预期收益率 r i 和收益方差σi 保持 不变。 3. 在任何时段股票的复利收益率服从对数正态分布,即 在t 1-t 2时段内有: ()()()2221211()ln ,()S t N t t t t S t μσ?? -- ? ?? 因为股票的价格可以用随机过程{},...2,1)(=t t S 表示,其中S (t )表示第t 日股票的价格,它是一个随机变量. 则第t 日股票的收 益率(年收益率)为R t :3651)1() (t R t S t S +=- 股票的年收益率(单利)R 应该是:

第十章 期权价格概述

第十章 期权价格概述 【学习目标】 本章是期权部分的重点内容之一。本章首先从内在价值和时间价值两个方面对期权价格进行了深入解析,分析了影响期权价值的主要因素,确定期权价格的基本边界,探讨了美式期权是否需要提前执行的问题,从而画出了期权价格曲线的基本形状,最后,我们运用无套利分析的基本方法,推出了看涨期权和看跌期权之间的平价关系。学习完本章,读者应能够运用期权价格曲线,深入掌握期权价格中的内在价值和时间价值的有关内容,掌握期权价值的主要影响因素和期权价格的基本边界,掌握看涨期权和看跌期权之间的平价关系,同时理解美式期权的提前执行问题。 如第八章所述,期权交易实质上就是一种权利的交易。在这种交易中,期权购买者为了获得期权合约所赋予的权利,就必须向期权出售者支付一定的费用。这一费用就是期权费(期权价格),即期权合约本身的价格。在期权交易中,期权价格(价值1)的决定是一个重要而复杂的核心问题。自1973年以来,许多专家和学者纷纷提出各自的期权定价模型,以说明期权价格的决定和变动。在这些模型中,最著名的模型主要有如下两个:一个是布莱克-舒尔斯模型(The Black-Scholes Model ),另一个则是二项式模型(The Binominal Model )。在第十一章,我们将对这两个模型作一简要的介绍和评价。在此之前,为了更好地说明这两个模型的内涵,我们有必要先对各种期权定价模型的理论基础——期权价格的构成、影响期权价格的主要因素以及期权价格的边界等问题进行深入的分析。 第一节 期权价格解析 尽管在现实的期权交易中,期权价格会受到多种因素的复杂影响,但从理论上说,期权价格都是由两个部分组成的:一是内在价值,二是时间价值。即 期权价格=期权内在价值+期权时间价值。 一、期权的内在价值 期权的内在价值(Intrinsic Value )是指期权合约本身所具有的价值,也就是期权多方行使期权时可以获得的收益的现值。我们曾经在第八章中谈及这一概念2。例如,如果股票XYZ 的市场价格为每股60美元,而以该股票为标的资产的看涨期权协议价格为每股50美元,那么这一看涨期权的购买方只要执行此期权即可获得 1 000美元()60501001000??-?=??美元(股票期权通常为美式期权且一张期权合约的交易单位为100股股票)。这1 000美元的收益就是看涨期权的内在价值。 1 价格和价值本来是两个不同的概念,它们之间是市场价格和理论价值的区别。但是在对期权费的研究中,一般将这两者混用。所谓的期权价格(Options Price )实际上就是期权价值(Options Value ),即期权的合理公平价值。 2 详见第八章第一节。

金融衍生工具定价

已知: 22 () 22 (,)() Z Z r T rT f S T e F Se e dZ σ +∞-- - -∞ =?, (,) (,) f S T S T S ? ?= ? , 2 2 (,)(,) f S T S T S ? Γ= ? , (,) (,) f S T S T T ? Θ=- ? . 求证:22 1 (,)(,)(,)(,) 2 S T S S T rS S T rf S T σ Θ=-Γ-?+. 证明:只需证明22 1 (,) 2 ((,) ) ) , , ( S S f S r T f S rS T S T T T σ+- ? ? Γ = ? . 设 2 () 2 (,,)Z r T G S T Z Se σ - =,(,,)((,,)) H S T Z F G S T Z =,则 2 2 (,)(,,) Z rT f S T e H S T Z e dZ +∞- - -∞ =. 于是 22 2 22 2 (,) (,) (,,)(,,) (,,) Z Z rT rT Z rT f S T e H S T Z e dZ e H S T Z e dZ T T e H rf S T Z S e T dZ T +∞+∞ -- -- -∞-∞ +∞- - -∞ ?? ?? ' ?? =+? ?? ???? ?? ? =+? ??? - 红色部分证毕. 对第二项,由先求积分后求偏导,变为先求偏导后求积分,则 22 22 (,,) (,,) Z Z rT rT H S T Z e H S T Z e dZ e dZ T T - +∞+∞ -- - -∞-∞ ?? ?? = ? ?? ?? . 接下来只需证明 2 2 22 1 (,) (,,) () 2 , Z rT S S T H S T Z e rS S T dZ T σ - +∞- -∞ ? ? Γ =+ ? . 回忆一下复合函数求导法则: 若(,,)((,,)) H S T Z F G S T Z =,则 (,,)(,,) ((,,)) H S T Z G S T Z F G S T Z T T ?? ' = ?? . 于是有 22 () 2 (,,) ((,,)) 2 Z r T H S T Z F G S T Z Se r T σσ -? ? ' =-? ?? . 2 () 2 (,,) ((,,))Z r T H S T Z F G S T Z e S σ - ? ' = ? (这个式子很重要!),(1)

第10章二叉树法期权定价及其Python应用

第10章二叉树法期权定价 及其Python应用 本章精粹 蒙特卡罗模拟法便于处理报酬函数复杂、标的变量多等问题,但是在处理提前行权问题时却表现出明显的不足。本章将要介绍的二叉树法可以弥补蒙特卡罗模拟法的这种不足。 二叉树的基本原理是:假设变量运动只有向上和向下两个方向,且假设在整个考察期内,标的变量每次向上或向下的概率和幅度不变。将考察期分为若干阶段,根据标的变量的历史波动率模拟标的变量在整个考察期内所有可能的发展路径,并由后向前以倒推的形式走过所有结点,同时用贴现法得到在0时刻的价格。如果存在提前行权的问题,必须在二叉树的每个结点处检查在这一点行权是否比下一个结点上更有利,然后重复上述过程。

10.1 二叉树法的单期欧式看涨期权定价 假设: (1) 市场为无摩擦的完美市场,即市场投资没有交易成本。这意味着不支付税负,没有买卖价差(Bid-Ask Spread)、没有经纪商佣金(Brokerage Commission)、信息对称等。 (2) 投资者是价格的接受者,投资者的交易行为不能显著地影响价格。 (3) 允许以无风险利率借入和贷出资金。 (4) 允许完全使用卖空所得款项。 (5) 未来股票的价格将是两种可能值中的一种。 为了建立好二叉树期权定价模型,我们先假定存在一个时期,在此期间股票价格能够从现行价格上升或下降。 下面用实例来说明二叉树期权定价模型的定价方法。 1. 单一时期内的买权定价 假设股票今天(t =0)的价格是100美元,一年后(t =1)将分别以120美元或90美元出售,就是1年后股价上升20%或下降10%。期权的执行价格为110美元。年无风险利率为8%,投资者可以这个利率放款(购买这些利率8%的债券)或借款(卖空这些债券)。如图10-1所示。 今天 1年后 t =0 t =1 u S 0=120 上升20% 1000=S d S 0=90 下降10% u 0max(u ,0)max(120110,0)10C S X =-=-= ?0=C d 0max(d ,0)max(90110,0)0C S X =-=-= 图10-1 买权价格 图10-1表示股票买权的二叉树期权定价模型。现在股价为100美元,1年后股价有两种状态:上升20%后,股价记作u S ,为120美元,下降10%后,股价记作d S ,为90美元,执行价格为110美元,根据前面的介绍,股票买权的到期价格分别为10美元和0,那么在t =0时买权的真实值(内在价值)0?C = 为了给这个买权定价,我们可以用这个股票和无风险债券的投资组合来模拟买权的价值。这个投资组合在没有套利机会时等于这个买权的价格;相反,如果存在套利机会,投资者可以购买两种资产中较便宜的一种,出售较贵的另一种,而得到获利的机会。然而,这只能在很短的时间出现。这个投资组合不仅给出了买权的定价方法,而且还提供了一种对冲(套期保值)的方法。 假设投资者购买N 股股票且投资0B 在无风险债券上,那么投资组合今天的值为

(定价策略)期权定价理论

期权定价理论 期权定价是所有金融应用领域数学上最复杂的问题之一。第一个完整的期权定价模型由Fisher Black和Myron Scholes创立并于1973年公之于世(有关期权定价的发展历史大家可以参考书上第358页,有兴趣的同学也可以自己查找一下书上所列出的经典文章,不过这要求你有非常深厚的数学功底才能够看懂)。B—S期权定价模型发表的时间和芝加哥期权交易所正式挂牌交易标准化期权合约几乎是同时。不久,德克萨斯仪器公司就推出了装有根据这一模型计算期权价值程序的计算器。现在,几乎所有从事期权交易的经纪人都持有各家公司出品的此类计算机,利用按照这一模型开发的程序对交易估价。这项工作对金融创新和各种新兴金融产品的面世起到了重大的推动作用。为此,对期权定价理论的完善和推广作出了巨大贡献的默顿和Scholes在1997年一起荣获了诺贝尔经济学奖(Black在1995年去世,否则他也会一起获得这份殊荣)。 原始的B—S模型仅限于这类期权:资产可用于卖出期权;能够评估价值,资产价格行为随时间连续运动。随后建立在原始的B—S模型上的研究以及许多其他期权定价模型的变体相继出现,用于处理其他类型的标的资产以及其他类型的价格行为。在大多数情况下,期权定价模型的推倒基于随机微积分(Stochastic Calculus)的数学知识。没有严密的数学推演,演示这种模型只是摸棱两可的。可是,这并非要紧的问题,因为确定期权公平价格的必要计算已自动化,且达到上述目的的软件在大型计算机及微机中均可获得。因此,在这里,我只简单介绍一下B—S模型的关键几个要素,至于具体的数学推导(非常复杂),感兴趣的同学可以在课后阅读一下相关资料(一般都是在期权定价理论章节的附录中)。 首先,我们来回顾一下套利的含义 套利 套利(arbitrage)通常是指在金融市场上利用金融产品在不同的时间和空间上所存在的定价差异、或不同金融产品之间在风险程度和定价上的差异,同时进行一系列组合交易,获取无风险利润的行为。注意,这种利润是无风险的。 现代金融交易的目的主要可以分为套利、投机和保值,这也是我们在以前的课程中接触过的。那么,我们怎样来理解套利理论的含义呢? 我们说,市场一般是均衡的,商品的价格与它的价值是相一致的。如果有时候因为某种原因使得价格与价值不相符,出现了无风险套利的机会,我们说这种套利的机会就会马上被聪明的人所发现和利用,低买高卖,赚取利润,那么通过投机者不断的买卖交易,原来价值被低估的商品,它的价格会上涨(投机者低价买入);原来价值被高估的商品,它的价格会下跌(投机者高价卖出),交易的结果最终会使得市场价格重新回到均衡状态。(就像书中列举的两家书店卖书的例子一样…) 同样的道理我们不难理解,现代期权定价技术就是以无风险套利原理为基础而建立起来的。我们可以设计一个证券资产组合,使得它的价值(收益)与另外一个证券资产组合的价值相等。那么,根据无风险套利理论,这两种证券资产组合应该以同样的价格出售。从而,可以帮助我们确定,在价格均衡状态下,期权的公平定价方式。 具体来说,对期权跌——涨平价原理的推导就采用了无风险套利的原理。 跌——涨平价原理(put——call parity) 看涨期权的价格与看跌期权的价格(也就是期权费)之间存在着非常密切的联系,因此,只要知道看涨期权的价格,我们就可以推出看跌期权的价格(通过平价原理)。这样,就省去我们再费心研究看跌期权的定价公式了。只要我们通过B——S模型计算出看涨欧式期权的定价之后,我们就可以相应地推出欧式看跌期权的定价(注意,B——S模型只适用于欧式看涨期权)。

第八章_Black-Scholes_模型(金融衍生品定价理论讲义)

第八章 Black-Scholes 模型 金融学是一门具有高度分析性的学科,并且没有什么能够超过连续时间情形。概率论和最优化理论的一些最优美的应用在连续时间金融模型中得到了很好地体现。Robert C. Merton ,1997年诺贝尔经济学奖得主,在他的著名教科书《连续时间金融》的前言中写到: 过去的二十年证明,连续时间模型是一种最具有创造力的多功能的工具。虽然在数学上更复杂,但相对离散时间模型而言,它能够提供充分的特性来得到更精确的理论解和更精练的经验假设。 因此,在动态跨世模型中引入的真实性越多,就能够得到比离散时间模型越合理的最优规则。在这种意义上来说,连续时间模型是静态和动态之间的分水岭。 直到目前为止,我们已经利用二项树模型来讨论了衍生证券的定价问题。二项树模 型是一种离散时间模型,它是对实际市场中交易离散进行的一种真实刻画。离散时间模型的极限情况是连续时间模型。事实上,大多数衍生定价理论是在连续时间背景下得到的。与离散时间模型比较而言,尽管对数学的要求更高,但连续时间模型具有离散时间模型所没有的优势:(1)可以得到闭形式的解。闭形式解对于节省计算量、深入了解定价和套期保值问题至关重要。(2)可以方便的利用随机分析工具。 任何一个变量,如果它的值随着时间的变化以一种不确定的方式发生变化,我们称它为随机过程。如果按照随机过程的值发生变化的时间来分,随机过程可以分为离散时间随机过程和连续时间随机过程。如果按照随机过程的值所取的范围来分,随机过程可以分为连续变量随机过程和离散变量随机过程。在这一章中,我们先介绍股票价格服从的连续时间、连续变量的随机过程:布朗运动和几何布朗运动。理解这个过程是理解期权和其他更复杂的衍生证券定价的第一步。与这个随机过程紧密相关的一个结果是Ito 引理,这个引理是充分理解衍生证券定价的关键。 In this chapter we study the best-known continuous time model, the Black-SCHOLES MODEL. This model, developed by Fischer Black and Myron Scholes in 1973, describes the value of a European option on an asset with no cash flows. The model has had a huge influence on the way that traders price and hedge options. It has also been pivotal to the growth and success of financial engineering in the 1980s and 1990s. The model requires only five inputs: the asset price, the strike price, the time to maturity, the risk-free rate of interest, and the volatility. The Black-Scholes model has becomes the basic benchmark model for pricing equity options and foreign currency options. It is also sometimes used, in a modified form, to price Eurodollar futures options, Treasury bond options, caps, and floors. We cannot say that we have mastered option pricing theory unless we understand the Black-Scholes formula. 本章的第二部分内容在连续时间下推导Black-Scholes 欧式期权定价公式,我们分别利用套期保值方法和等价鞅测度方法。并对所需的参数进行估计。最后讨论标的股票支付红利的欧式期权定价问题。 1.连续时间随机过程 我们先介绍Markov 过程。 定义:一个随机过程{}03t t X 称为Markov 过程,如果预测该过程将来的值只与它的目 前值相关,过程过去的历史以及从过去运行到现在的方式都是无关的,即 [][]t s t s X X E X E =Y (1) 这里,t s 3,t Y 表示直到时间t 的信息。 我们通常假设股票的价格过程服从Markov 过程。假设IBM 公司股票的现在的价格是100元。如果股票价格服从Markov 过程,则股票一周以前、一个月以前的价格对于预测股票将来价格是无用的。唯一相关的信息是股票当前的价格100元。由于我们对将来价格

金融衍生产品的定价综述

金融衍生产品定价模型综述 蒲实 (重庆大学数学与统计学院2008级统计2班) 一.摘要 衍生证券已经有很长的历史。期权和期货是所有衍生证券里在交易所交易最活跃的衍生证券。十七世纪晚期,在荷兰的Amsterdam 股票交易所,就已经有了期权这种形式的证券交易。1973年建立的Chicago Board Options Exchange (CBOE) 大大带动了期权的交易。19世纪出现有组织的期货市场。 期权定价理论是最成熟也是最重要的衍生证券定价理论。最早的期权定价理论可以追溯到1900年Bachelier (1900) 的博士论文,Bachelier 的主要贡献在于:发展了连续时间游走过程。受Louis Bachelier 工作的启发,Kiyoshi It?在二十世纪四、五十年代作出了随机分析方面奠基性的工作,这套理论随即成为金融学最本质的数学工具,也带来了衍生证券定价理论革命性的飞跃。但是,风险中性定价的概念直到Black-Scholes (1973)和Merton (1973)才得以突破。他们的工作使随机分析和经济学达到了最优美的结合,也给金融实际操作带来了最具有影响力的冲击。由于许多权益都可以被视为偶发性权益(例如债务,股权,保险等),所以在他们以后,期权定价的技巧被广泛的应用到许多金融领域和非金融领域,包括各种衍生证券定价、公司投资决策等。 我们可以把这些研究大致分为:复杂衍生证券的定价(例如MBS ,奇异期权等);数值计算(例如美式期权定价,亚式期权);拓展模型来解释Black-Scholes 模型不能解释的现象(例如Volatility smile );交易约束和交易成本对衍生证券套期保值和定价的影响。 二.关键词 金融衍生产品,维纳过程(wiener Processes) ,Ito(伊藤)引理,随机过程,布朗运功,套期保值,鞅过程。 三.正文 1. 二项树模型 该模型由Sharpe (1978)提出, Cox, Ross and Rubinstein (1979)对它进行了拓展,将二项分布用于描述股价运动,从此二叉树模型被广泛运用于衍生品的定价,成为构造离散时 间价格运动的基本模型。定义如下:0S =标的资产现在的价格;q =标的资产上涨的概率; r f =无风险利率;u =标的资产上涨的幅度;d =标的资产下跌的幅度;f =衍生证券现在的价格;u c =当标的资产价格为uS 时衍生物的价格;d c =当标的资产价格为dS 时衍生物的价格 对r f 的限制为u r d f >+>1 我们构造无风险套期保值证券组合:以价格S 0买一份股票,买m 份以股票为标的物的衍生证券(m 称为套期保值比率)。如果这个套期保值证券组合在每种状态下的到期支付都相等,则这个证券组合是无风险的。得到:uS mc dS mc u d 00-=-解

第七章_美式期权定价(金融衍生品定价理论讲义)

第七章 美式期权定价 由于美式期权提前执行的可能,使得解决最优执行决策成为美式期权定价和套期保值的关键。由第三章的内容我们知道,如果标的股票在期权的到期日之前不分红,则美式看涨期权不会提前执行,因为在到期日之前执行将损失执行价格的利息。但是,如果标的股票在期权到期日以前支付红利,则提前执行美式看涨期权可能是最优的。提前执行可以获得股票支付的红利,而红利的收入超过利息损失。事实上,我们将证明,投资者总是在股票分红前执行美式看涨期权。 对于美式看跌期权而言,问题变的更复杂。看跌期权的支付以执行价格为上界,这限制了等待的价值,所以对于美式看跌期权而言,即使标的股票不支付红利,也可能提前执行。提前执行可以获得执行价格的利息收入。 许多金融证券都暗含着美式期权的特性,例如可回购债券(called bond ),可转换债券(convertible bond ), 假设: 1.市场无摩擦 2.无违约风险 3.竞争的市场 4.无套利机会 1.带息价格和除息价格 每股股票在时间t 支付红利t d 元。当股票支付红利后,我们假设股价将下降,下降的规模为红利的大小。可以证明,当市场无套利且在资本收益和红利收入之间没有税收差别时,这个假设是成立的。 ()()t e c d t S t S += 这里()t S c 表示股票在时间t 的带息价格,()t S e 表示股票在时间t 的除息价格。 这个假设的证明是非常直接的。如果上述关系不成立,即()()t e c d t S t S +1,则存在套利机会。 首先,如果()()t e c d t S t S +>,则以带息价格卖出股票,在股票分红后马上以除息价格买回股票。因为我们卖空股票,所以红利由卖空者支付,从而这个策略的利润为()()()t e c d t S t S +-。因为红利是确定知道的,所以只要()()()t S t S e c -var =0,则利润是没有风险的。 其次,如果()()t e c d t S t S +<,则以带息价格买入股票,获得红利后以除息价格卖出,获得利润为()()t S d t S c t e -+。

期权定价理论文献综述

期权定价理论文献综述 [摘要]本文在首先介绍了期权基本概念的基础上着重介绍了期权定价理论的产生和发展的历史进程;然后对期权定价方法及其实证研究进行了较详细的分类综述,突出综述了在整个期权定价理论中有着重要贡献的Black-Scholes定价模型以及在此基础上出现的树图模型、蒙特卡罗模拟方法、有限差分方法等在期权定价理论体系中比较重要的思想。最后分析比较了各种定价方法之间的差别以及适用范围和各自的缺陷等,并对期权定价理论的未来研究做出展望。 [关键字]综述;期权定价;Black-Scholes模型;二叉树模型;蒙特卡罗法 1 期权的分类及意义 1.1 期权的定义 期权(option)是一份合约,持有合约的一方(seller)有权(但没有义务)向另一方在合约中事先指定的时刻(或此时刻前)以合约中指定的价格购买或者出售某种指定数量的特殊物品。为了获得这种权利,期权的购买者(holder or buyer)必须支付一定数量的权利金(也称保证金或保险金),因此权利金就成为期权这个金融衍生品的价格。 1.2 期权的分类 期权交易的类型很多,大致有如下几种: (1)按交易方式可分为看涨期权、看跌期权和双重期权; (2)按期权的执行时间不同可分为美式期权和欧式期权; (3)按期权交割的内容标准可分为股票期权、货币期权、利率期权与指数期权; 此外近年来还发展了许多特殊的期权交易形式,如回溯期权、循环期权、价差期权、最大/最小期权、平均价期权、“权中权”期权等。

1.3 期权的功能 作为套期保值的工具。当投资者持有某种金融资产,为了防范资产价格波动可能带来的风险,可以预先买卖该资产的期权来对冲风险。当投资者预期基础资产的市场价格将下跌时,为防止持有这种资产可能发生的损失,可以买入看跌期权予以对冲,其所付成本仅为购买期权的权利金。通过购买看涨期权和看跌期权,一方面可以达到基础资产保值的目的;另一方面也可以获得基础资产价格升降而带来的盈利机会。 作为投机的工具。在投资者并不需要为持有资产作对冲风险的交易时,也可根据对基础资产价格必定性大小的预期,买卖期权本身来获得盈利,投资者买卖期权的目的已从对冲风险,变成赚取期权的价差利益,即投机,通过购买期权和转卖期权的权利金差价中获利,或通过履约从中获利。 2 期权定价理论的历史发展 2.1 早期期权定价理论研究 期权的思想萌芽可追溯到公元前1800年的《汉漠拉比法典》,而早在公元前1200年的古希腊和古胖尼基国的贸易中就已经出现了期权交易的雏形,只不过在当时条件下不可能对其有深刻认识。公认的期权定价理论创始人是法国数学家Louis Bachelicr。1900年,他在博士论文“投机理论”中第一次对股票价格的走势给予了严格的数学描述。他假设股票价格变化过程是一个无漂移和每单位时间具有方差2 的纯标准布朗运动,并得出到期日看涨期权的预期价格是:其中 参数π是市场“价格杠杆”调节量,α是股票预期收益率。这一模型同样也没有考虑资金的时间价值。 Boness在1964年也提出了类似的模型,他对股票收益假定了一个固定的对数分布,并且认识到风险保险的重要性。为简明,他假定“投资者不在乎风险”。他利用这一假设证明了用股票的预期收益率α来贴现最终期权的预期值。他的最终模型是:

《金融衍生品定价的数学模型和案例分析》简介

《金融衍生品定价的数学模型和案例分析》简介 同济大学数学系 姜礼尚 期权(option)是一类金融衍生工具,但从更广义上讲,期权是一种未定权益(Contingent Claim),它是一种选择权;应用Black-Scholes-Morton 期权定价原理,可以为多种不同形式的未定权益和选择权给出一个“公平”的估价。基于这个理念,我们认为期权定价原理的应用绝不仅限于期权本身的定价,而应更广泛地应用于金融、保险、财务、投资等各个不同领域。本书正是从这个思路出发,试图利用期权定价原理对当前市场上流行的一些金融和保险的创新产品进行定价。在这里我们把这些创新产品看成是相关标的资产(underlying assets):外汇、黄金、股指、公司资产和利率等的衍生物,基于无套利原理,得到一个风险中性的“公平”价格,它的定价强烈地依赖于相关标的资产的数学模型,虽然它只是一种近似,但对金融机构的实际定价具有重要的参考价值。 本书可以看作是拙作“期权定价的数学模型和方法”(高等教育出版社,2003年)的应用篇,着重研究在已有定价模型和方法的基础上,针对各种金融和保险创新产品的具体实施条款,建立数学模型(即建立偏微分方程定解问题),求出它的闭合解或数值解,并进行定量分析,讨论一些金融参数和创新产品定价之间的依从关系。为了帮助更多读者掌握用偏微分方程方法研究Black-Scholes-Merton期权定价原理,我们专门写了“期权定价的偏微分方程模型和方法”一章放在附录中,供大家学习和参考。 本书作为金融数学专业的教学用书和金融、保险、管理等领域的参考教材,它适用于两大类读者:第一类读者是应用数学专业的教师和研究人员,特别是广大攻读金融数学各类学位的研究生和本科生,第二类读者是金融、保险、管理等的从业人员,特别是正在从事金融和保险创新产品设计的金融(保险)分析师,金融(保险)机构的决策人员以及相关的研究工作者。我们深信本书将对他们的学习和研究有所裨益。 本书中绝大部分内容都是我们同济大学数学系风险管理研究所的老师们和研究生们在最近三年内的研究成果,它从一个侧面反映了我们在应用数学理论解决实际问题的漫长道路上所做出的努力和尝试以及我们正在追求的目标。 我们衷心希望本书能起到抛砖引玉的作用,能对Black-Scholes-Morton期权定价原理在这一领域的应用起到一点推动作用。我们真诚地希望,能得到数学届的同仁特别是金融和保险业界从业人员的批评和指正。 2007年1月22日 目录(部分) 序言 第一章 跳扩散模型下的期权定价 §1.1 跳扩散模型 §1.2 期权定价的PDE模型 §1.3 期权定价公式 第二章 个人理财产品案例之一-一类与得利宝有关的理财产品的定价研究 §2.1问题的提出 得利宝之亚洲货币挂钩投资产品是中国交通银行上海分行于2005年11月28日推出一种投资保本型金融产品。它的条款内容是:客户将美元存入银行,银行拿这笔美元去投资另一货币或国债,另一货币是一篮子亚洲货币,篮子货币由日元(JPY)、韩元(KRW)、新加坡元(SGD)、泰株(THB)各占25%构成。投资者通过汇率的变动获取收益,其投资收益由固定收益和参与投资收益两部分构成,参与投资收益=参与率×[(最终篮子货币值-最初篮子货币值)或零中较大者],其中,参与率(参与篮子货币投资的比率)为50%,最初篮子货币值指的是交易本金,最终篮子货币值=交易本金×(25%×JPY最初汇价/JPY最终汇价+25% ×KRW最初汇价/KRW最终汇价+25%×SGD最初汇价/SGD最终汇价+25%×THB最初汇价/THB最终汇价)。客户在到期日除了可获得保本的固定收益外,还可获得与亚洲一篮子货币相对美元升幅相挂钩的额外收益。这些一篮子货币升幅越高,客户所获得的收益就越高,即使出现最差情况,一篮子货币相对于美元全部走弱,投资者也可获得保本的收益。因此得利宝具有收益高、风险小、本金安全等特点。 我们将得利宝条款中的投资收益稍作改变:假设到期日T,保本收益为K,参与投资收益为0(T)XXλ+?,总收益为0()T KXXλ++?,其中T X为T时刻的投资帐户资产值,0X为初始

相关文档
最新文档