某小型水电站工程施工设计方案

某小型水电站工程施工设计方案
某小型水电站工程施工设计方案

目录

9.1 施工条件...................................................................................... 9-1 9.1.1地理位置及对外交通.................................................................... 9-1 9.1.2水文气象条件............................................................................. 9-1 9.1.3工程规模 ................................................................................... 9-2 9.1.4施工布置条件............................................................................. 9-5 9.1.5外来物资供应、水、电和施工通讯条件........................................... 9-5 9.1.6天然建筑材料............................................................................. 9-5 9.2 施工导流...................................................................................... 9-7 9.2.1中梁一级电站施工导流................................................................. 9-7 9.2.2中梁二级电站施工导流............................................................... 9-19 9.3主体工程施工.............................................................................. 9-22 9.3.1中梁一级电站主体工程施工 ........................................................ 9-22 9.3.2中梁二级电站主体工程施工 ........................................................ 9-27 9.3.3中梁三级电站主体工程施工 ........................................................ 9-28 9.4料场选择与开采........................................................................... 9-31 9.4.1土、石料需求总量..................................................................... 9-31 9.4.2开挖料利用规划........................................................................ 9-31 9.4.3料场选择及料源总体规划 ........................................................... 9-33 9.4.4料场开采 ................................................................................. 9-38 9.5 施工工厂设施 ............................................................................. 9-40 9.5.1砂石加工系统........................................................................... 9-40 9.5.2混凝土拌和系统........................................................................ 9-43 9.5.3其它施工工厂........................................................................... 9-44 9.5.4风、水、电及施工通讯............................................................... 9-46 9.6 施工交通运输 ............................................................................. 9-49 9.6.1对外交通 ................................................................................. 9-50

9.6.2场交通 .................................................................................... 9-51 9.7 施工总布置 ................................................................................ 9-54 9.7.1一级电站施工总布置.................................................................. 9-54 9.7.2二级电站施工总布置.................................................................. 9-57 9.7.3三级电站施工总布置.................................................................. 9-59 9.8 施工总进度 ................................................................................ 9-61 9.8.1中梁一级电站施工总进度 ........................................................... 9-61 9.8.2中梁二级电站施工总进度 ........................................................... 9-64 9.8.3中梁三级电站施工总进度 ........................................................... 9-66 9.9 主要技术供应 ............................................................................. 9-68

9.1 施工条件

9.1.1 地理位置及对外交通

中梁水电站位于市巫溪县境大宁河干流西溪河上,工程开发的主要任务为以发电为主,兼有防洪等。中梁一级电站坝址位于中梁乡青岩洞桥上游约200.0m处,电站厂房为地下厂房,布置在半溪口上游西溪河右岸山体,距坝址公路里程10.0km,中梁二级电站厂房位于下堡镇大水溪左岸,距中梁一级电站厂房公路里程9.0km;中梁三级电站厂房布置在西溪河右岸已建电站的上游侧,距中梁二级电站厂房公路里程4.0km。

巫溪县城至中梁乡的公路贯穿整个工区,中梁一级电站坝址至县城公路里程49.0km。巫溪至万州、奉节均有公路相通,公路里程分别为259.0km、89.0km;经云阳、万州至的公路里程为590.0km;由奉节港经长江航道可直达万州、、,航运里程分别为119.0km、446.0km、202.0km,对外交通条件较好。

巫溪县城与巫山县城之间的大宁河航道,为著名的小三峡旅游航道,可通行小型旅游船只,巫溪县城至坝址不通航,当地交通以公路为主。

9.1.2 水文气象条件

9.1.2.1 水文条件

中梁一级电站坝址控制流域面积525.0km2,多年平均流量为17.2m3/s,多年平均径流量5.42亿m3。大宁河属山溪性河流,洪水由暴雨形成,陡涨陡落。流域每年4~10月为汛期,5~9月为洪水多发季节,其中7~8月为主汛期。洪水过程有单峰、复峰,单峰过程历时3d左右,复峰过程历时较长。11月至次年3月为枯水期。

中梁一级坝址以上流域无实测水文资料,设计洪水的推算依据巫溪站成果。中梁一级、二级电站坝址施工时段频率洪水成果见表9.1.2-1、表9.1.2-2。

9.1.2.2 气象条件

工程所在地区属亚热带暖湿季风气候区,流域降水量丰沛。根据巫溪县气象站资料统计,流域多年平均降雨量1333mm,年降雨主要集中在4~10月,约占全年降雨量的90%。当地地势高差悬殊,气候垂直变化明显,多年平均气温14.7℃,极端最高气温41.8℃,极端最低气温-3.3℃。

9.1.3 工程规模

中梁水电站由中梁一级电站、中梁二级电站和中梁三级电站三个梯级电站组成。

中梁一级电站主要建筑物包括混凝土面板堆石坝、左岸岸边溢洪道、左岸输水放空隧洞、右岸引水隧洞、厂房和开关站。混凝土面板堆石坝坝顶高程630.5m,最大坝高118.5m,坝顶长243.0m,坝顶宽8.0m,上下游坝坡均为1∶1.4;左岸设2孔12.5m×12.0m(宽×高)开敞式溢洪道,堰顶高程613.00m,泄槽长118.0m,分设左右两槽,单槽净宽13.5m,溢洪道最大下泄流量2610m3/s;输水放空隧洞布置在左岸山体,由导流隧洞改建而成,进口高程570.00m,有压段

为圆形,洞径2.5m,无压段为城门洞型,尺寸为7.0m×10.0m(宽×高),最大泄量111.4m3/s;引水隧洞洞线总长约8138m,隧洞断面为径4.5m的圆形。调压井高107.15m,径12.0m。埋藏式高压钢管长241.044m,主管径4.0m;地下厂房装机3台,单机容量2.4万kW,总装机容量为7.2万kW。主体工程土石方明挖143.11万m3,石方洞(井)挖33.70万m3,土石方回填231.23万m3,混凝土16.28万m3,浆砌石0.90万m3(含施工导流),坝基及库区防渗帷幕灌浆16.81万m。各建筑物主要工程量见表9.1.3-1。

表9.1.3-1 中梁一级电站主要工程量表

中梁二级电站主要建筑物包括混凝土滚水坝、拉沙闸、引水建筑物、厂房及开关站,滚水坝最低建基面高程418.40m,堰顶高程427.40m,坝高9.0m,拉沙

闸底板高程422.40m,孔口尺寸为6.0m×5.0m(宽×高),引水隧洞总长8193m,,断面尺寸为6.0m×7.102m(宽×高) 城门洞型,厂房装机3台,单机容量0.8万kW,总装机容量2.4万kW。主体工程土石方明挖23.11万m3,石方洞挖29.42万m3,混凝土4.44万m3,浆砌石1.72万m3,砂浆0.46万m3 (含施工导流)。各建筑物主要工程量见表9.1.3-2。

表9.1.3-2 中梁二级电站主要工程量表

中梁三级电站直接从二级电站尾水引水,并通过已建电站的引水坝纳入区间流量,枢纽由引水建筑物、发电厂房及开关站组成。引水线路全长约3228.218m,其中新建引水隧洞长1332.475m、扩建引水隧洞长1597.231m、扩建原下明渠段长222.512m,新建厂房装机2台,单机容量1.05万kW,连同已建的0.5万kW,总装机容量为2.6万kW。主体工程土石方明挖23.10万m3,石方洞挖9.49万m3,混凝土2.12万m3,浆砌石1.94万m3,砂浆0.30万m3。各建筑物主要工程量见表9.1.3-3。

9.1.4 施工布置条件

工程所在地区为山区峡谷地形,施工设施的布置主要受制于地形条件。坝址下游1.5km~2.6km的穿心店、尖岔溪附近地势较为平坦,可集中布置施工设施。中梁二级电站和中梁三级电站施工设施占地面积不大,可分散就近布置。

9.1.5 外来物资供应、水、电和施工通讯条件

工程所需水泥由开县开州水泥厂供应,由公路运输至工地,钢材由钢材市场供应,从奉节港上岸转汽车运到工地,木材、火工材料、油料等物资由巫溪县物资部门组织供应,房建材料、生活物资等由承包商从当地自行采购。

施工期生产、生活用水从西溪河取水,水质、水量均可满足施工用水要求。施工用电由地方电网供应,从电站接线,输电线路长度21km,其中35kV线路12km,10kV线路9km。

工程对外通讯,由下堡镇接入电信及宽带网络,场区部通讯结合永久通信要求设100门总机一座。

9.1.6 天然建筑材料

本阶段对一级坝址上游8.0km的扬池坝砂砾料场和下游17.0km的下堡砂砾料场进行了详查,两料场均有公路相通,开采运输便利,扬池坝料场储量约为24.48万m3,下堡料场储量约为35.30万m3,但两料场砾石级配均不甚理想,砂页岩等软弱针片状含量偏高,砂量不足,下堡料场砂偏细,储量不能满足要求。

石料场共勘查了5处。甲鱼溪石料场位于一级坝址下游右岸1.2km的甲鱼溪,分布高程760m以上,为三叠系下统大冶组灰岩,有用层储量在1078万m3,料场山高坡陡,场地狭窄,采运条件较差,上坝运距约4.1km。

穿心店石料场位于一级坝址下游右岸1.5km处,紧临公路,岸坡基岩裸露,坡顶有0.2~1.0m覆盖层。岩石为三叠系下统嘉陵江组中厚层白云质灰岩,岩石

3KW屋顶分布式光伏电站设计方案解析

Xxx市XX镇xx村3.12KWp分布式电站 设 计 方 案 设计单位: xxxx有限公司 编制时间: 2016年月

目录 1、项目概况................................................ - 2 - 2、设计原则................................................ - 3 - 3、系统设计................................................ - 4 - (一)光伏发电系统简介.................................... - 4 - (二)项目所处地理位置..................................... - 5 - (三)项目地气象数据....................................... - 6 - (四)光伏系统设计......................................... - 8 - 4.1、光伏组件选型....................................... - 8 - 4.2、光伏并网逆变器选型................................. - 9 - 4.3、站址的选择......................................... - 9 - 4.4、光伏最佳方阵倾斜角与方位.......................... - 11 - 4.5、光伏方阵前后最佳间距设计.......................... - 12 - 4.6、光伏方阵串并联设计................................ - 13 - 4.7、电气系统设计...................................... - 13 - 4.8、防雷接地设计...................................... - 14 - 4、财务分析............................................... - 18 - 5、节能减排............................................... - 19 - 6、结论................................................... - 20 -

某水电站施工组织设计报告

8 施工组织设计 8.1 施工条件 (1) 8.1.1 工程条件 (1) 8.1.2 自然条件 (3) 8.1.3 市场条件 (4) 8.2 天然建筑材料 (4) 8.2.1 混凝土骨料 (4) 8.2.2 块石料 (1) 8.3 施工导流 (1) 8.3.1 首部枢纽施工导流 (1) 8.3.2 压力管道过河段施工导流....................... 错误!未定义书签。 8.3.3 厂区施工导流................................. 错误!未定义书签。 8.4 主体工程施工 (4) 8.4.1 首部枢纽工程施工 (4) 8.4.2 引水隧洞施工 (5) 8.4.3 调压井施工 (8) 8.4.4 压力管道施工 (9) 8.4.5 厂房工程施工 (10) 8.5 施工交通运输 (10) 8.5.1 对外交通 (10) 8.5.2 场内交通运输 (11) 8.6 施工工厂设施 (12) 8.6.1 砂石加工系统 (12) 8.6.2 砼拌和系统 (12) 8.6.3 风、水、电及通讯 (12) 8.6.4 其它施工工厂 (15) 8.7 施工总布置 (16)

8.7.1 施工布置条件 (16) 8.7.2 施工总布置原则 (16) 8.7.3 施工分区规划 (16) 8.7.4 弃碴规划 (18) 8.7.5 施工占地 (18) 8.8 施工总进度 (19) 8.8.1 设计依据 (19) 8.8.2 施工分期 (19) 8.8.3 工程准备期 (19) 8.8.4 主体工程施工期 (20) 8.8.5 工程完建期 (21) 8.8.7 施工强度及高峰人数 (21) 8.9主要技术供应 (21) 8.9.1 主要施工建筑材料 (21) 8.9.2 主要施工机械设备 (22)

小型水电站施工技术规范

小型水电站施工技术规范 《小型水电站施工技术规范》 征求意见单位名单 各省、自治区、直辖市水利(水务)厅(局) 新疆生产建设兵团水利局 长江水利委员会 黄河水利委员会 淮河水利委员会 海河水利委员会 珠江水利委员会 松辽水利委员会 太湖流域管理局 河北省水利水电勘测设计研究院山西省水利水电勘测设计研究院内蒙古水利水电勘测设计院 辽宁省水利水电勘测设计研究院吉林省水利水电勘测设计研究院黑龙江省水利水电勘测设计研究院江苏省水利勘测设计研究院有限公司浙江省水利水电勘测设计院 安徽省水利水电勘测设计研究院福建省水利水电勘测设计研究院 江西省水利规划设计院 山东省水利勘测设计院 河南省水利勘测设计研究院湖北省水利水电勘测设计院湖南省水利水电勘测设计研究总院广东省水利电力规划勘测设计研究院广西水利水电勘测设计研究院海南省水利电力建筑勘测设计院重庆市水利电力建筑勘测设计院四川省水利水电

勘测设计研究院贵州省水利水电勘测设计研究院云南省水利水电勘测设计研究院陕西省水利电力勘测设计研究院甘肃省水利水电勘测设计研究院宁夏水利水电勘测设计研究院青海省水利水电勘测设计研究院新疆水利水电勘测设计研究院浙江省金华市水利水电勘测设计院有限公司 浙江省丽水市水利水电勘测设计院浙江省温州市水利电力勘测设计院 浙江省水利水电工程局 浙江省水电建筑安装有限公司 浙江省正邦水电建设有限公司浙江江能建设有限公司 浙江省第一水电建设有限公司福建省水利水电工程局有限公司福建省中水电发展有限公司广东省水电集团有限公司广东省水利水电第三工程局广西壮族自治区水电工程局广西硅谷水电建设有限公司 云南建工水利水电建设有限公司 云南省水利水电工程有限公司 贵州省江河水利电力建设工程有限公司 贵州省水利机械化实业总公司 江西省水电工程局 江西省水利水电建设总公司 江西省水利水电基础工程有限公司 四川水利电力工程局 四川水电建设工程(集团)有限责任公司 四川鼎好水电建筑工程有限公司 湖南兴禹水利水电建设有限公司 湖南省水利水电机械施工公司 山东水利工程总公司

水电站设计方案.doc

坝后式水电站毕业设计 5.1 设计内容 5.1.1 基本内容 5.1.1.1 枢纽布置 (1) 依据水能规划设计成果和规范确定工程等级及主要建筑物的级别; (2) 依据给定的地形、地质、水文及施工方面的资料,论证坝轴线位置,进行坝型选择; (3) 论证厂房型式及位置; (4) 进行水库枢纽建筑物的布置(各主要建筑物的相对位置及形式,划分坝段),并绘制枢纽布置图。 5.1.1.2 水轮发电机组选择 (1) 选择机组台数、单机容量及水轮机型号; (2) 确定水轮机的尺寸(包括水轮机标称直径D1、转速n、吸出高度Hs、安装高程Za); (3) 选择蜗壳型式、包角、进口尺寸,并绘制蜗売单线图; (4) 选择尾水管的型伏及尺寸; (5) 选择相应发电机型号、尺寸,调速器及油压装置。 5.1.1.3厂区枢纽及电站厂房的布置设计 (1) 根据地形、地质条件、水文等资料,进行分析比较确定厂房枢纽布置方案; (2) 核据水轮发甴机的资料,选择相应的辅助设备,进行主厂房的各层布置设计; (3) 确定主厂房尺寸; (4) 副厂房的布置设计; (5) 绘制主厂房横剖面图、发电机层平面图、水轮机层和蜗壳层平面图各?张。 5.1.0 选作内容 5.1.2.1 引水系统设计 (1) 进水口设计。确定进水口高程、型式及轮廓尺寸; (2) 压力管道的布置设计。确定压力管道的直径;确定压力管道的布置方式和各段尺寸;

5.2 基本资料 本水电站在MD江的下游,位于木兰集村下游2km处。坝址以上流域控制面积30200km2。 本工程是一个发电为主,兼顾防洪、灌溉、航运及养鱼等综合利用的水利枢纽。电站投入运行后将承担黑龙江东部电网的峰荷,以缓解系统内缺乏水电进行调峰能力差的局面。 本工程所在地点交通比较方便,建筑材料比较丰富,是建设本工程的有利条件。电站地理位置图见图5-1。

电力工程施工组织设计

电力工程施工组织设计 一、工程概况: 航站楼整体强电安装分为高压10配电安装、变电室低压配电安装、发电机安装、照明安装、动力电安装、接地系统安装。其分项工程划分为:电缆线路工程、配管及管内穿线工程、硬母线安装工程、电力变压器安装工程、成套配电柜(盘)及动力开关柜安装工程、配电箱安装工程、发电机安装工程、避雷针(网)及接地装置安装工程、电气照明器具安装工程。 供电示意图如下:

航站楼设有8个变电站,首层南北两端各两个,地下层中部四个,八个变电站划分为八个供电区域,如图示。 1.10高压配电 在首层南指廊设有一个10开闭所,10市电由室外电缆引入开闭所,开闭所设正常电源和备用电源。开闭所到变电站采用高压专用电缆桥架,开闭所至每个变电站供两路10电源作为正常供电,每个变电站都设有高压柜,将本站两路10分配给本站变压器。主要安装内容:高压开关柜、高压电缆、直流柜、电缆桥架。 2.变电室低压配电 低压配电分为正常供电和应急供电,采用五线制放射式供电,正常供电电源为市电,应急供电电源为发电机电源,低压配电室馈出采用电缆桥架明敷供电,每个配电室低压母线设有正常电源母线段和事故电源母线段,两段正常母线之间和正常与事故母线之间设有联络开关,变压器到低压柜采用成套封闭母线供电,大型机房和配电小间用电也采用封闭母线供电。主要内容:高压开关柜、干式变压器、低压开关柜、低压封闭母线、高压电缆、低压电缆、电缆桥架。 3.发电机

航站楼首层南北端各设一个发电机房,各装2×800柴油发电机组,每个发电机房设有低压配电柜,共有33台低压柜,馈出采用封闭母线和低压电缆,由发电机房配电柜送到每个变电站的低压配电柜事故母线段。 4.照明 照明分为正常照明、事故照明、疏散照明和广告照明电源等类型。航站楼按供电区域每层设有20个配电小间(地下24个),配电小间上下贯通为电气竖井,由相应变电站供电,小间电源分别从干线上取电源,小间内按用途分为各类电源总柜。照明系统设有正常照明总柜、事故照明总柜。负荷电源从配电小间照明总柜提供,照明分盘的安装根据灯具的分布,一般在较集中的房间和走廊部位。主要安装内容:照明分配电箱盘、管线、线槽、单相、三相插座、开关、筒灯、吊灯、柱灯、荧光灯、吸顶灯、壁灯、工厂灯、射灯、升降灯、调光灯、彩灯、应急信号标志灯等。 5.动力系统 动力系统供电分为正常供电和事故供电。由变电站向配电小间供电,配电小间设有动力电源总柜,总柜馈出电缆至各低压配电柜。设备机房和主要负荷由相应变电站引专用回路放射式供电。主要负荷:各种水泵、空调机房、各种类型电梯电源、部分机房用电(变频电源、登机坪电源、维修电源等)、行李分检和行李转盘系统用电、厨房用电、楼宇等系统用电,部分一类及重要负荷(双回路供电至末端、消防设备用电)。主要安装内容:风机、空调机房、水泵机房用电源箱、卷帘门电源箱、专用机房电源箱、低压配电柜控制箱、小间开关柜、低压电缆、封闭母线、管线、线槽、桥架。 6.接地系统 航站楼接地系统采用综合接地方式。所有电力系统、配电系统、防

屋顶分布式光伏电站设计及施工方案范本

屋顶分布式光伏电站设计及施工方案

设 计 方 案 恒阳 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充分,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充分,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。

结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害 本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009- 中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心

【水电站施组】水电站施工组织设计方案(DOC 230页)

第1章概述 1.1 编制依据 施工组织设计编制依据如下: (1)本工程招标文件中规定的合同范围、工作内容和工程量、工期要求、施工条件、技术条款及招标图纸; (2)招标文件补充通知; (3)现场踏勘及标前会所掌握的情况; (4)在招标文件中明确要求执行的施工技术规程、规范及技术要求; (5)本承包商在同类工程施工中的成功经验及资源。 1.2 工程概况 XX左江山秀水电站位于左江下游河段、扶绥县城上游14km处,是左江综合利用规划中的第三梯级,以发电为主,兼有航运、电灌、养殖、旅游等综合效益的项目,坝址以上集雨面积29562km2,坝址多年平均流量600m3/s,多年平均径流量为189.3亿m3,正常水位86.5m,死水位85m,水库总库容 6.063亿m3,电站装机容量3×26MW=78MW,年利用小时数4522h,多年平均发电量3.527亿kW.h。船闸通航标准为Ⅴ级船闸—顶2 300t分节驳船队,水库蓄水后可渠化河道130km。 本工程枢纽建筑物由河床式厂房、溢流闸坝、船闸、两岸接头重力坝、右岸接头土坝等主要建筑物组成,与河流流向垂直。从右至左依次布置各个挡水建筑物:0+000~0+76.26为右岸接头土坝、0+76.26~0+110.26为右岸连接重力坝、0+110.28~0+184.32为厂房、0+184.34~0+342.94为闸坝、0+342.96~0+370.96为船闸、0+370.98~0+435.98为左岸接头重力坝。坝顶总长435.98m,坝顶高程99m。 1.3 工程施工条件 (1)水文气象条件 左江是珠江流域西江水系的主要支流之一,流域位于XX西南部,集雨面积32068km2,坝址以上集雨面积为29562 km2。左江干流从龙州自西向东蜿蜒而下,至龙州县上金镇有明江自右岸汇入,至崇左县驮怀村附近有黑水河自左岸汇入,经崇左、扶绥、邕宁等县,在邕宁县宋村附近与右江汇合后称郁江,再流经约30km就到XX的

小型水电站技术改造要点及施工管理

小型水电站技术改造要点及施工管理 当前国家经济处于稳步上升的情况下,经济发展的同时对电力也有了更多的需求,同时也提出了更高的要求,供电企业应该如何实现可持续供电,是当前在发展中应该关注的重点问题。本文主要以小型水电站为例,对小型水电站的技术改造提出针对性建议,并致力于小型水电站的施工管理以及可持续发展,希望可以为小型水电站提供参考。 标签:小型水电站;技术要点;施工管理 我国小型水电站在建设过程中取得了良好的发展效果,同时对国民经济的发展具有重要的促进作用,还提高了人民的生活水平,发挥着重要的供电作用。但是在小型水电站的发展过程中也存在着一些问题,阻碍小型水电站的发展和进步,所以小型水电站需要进行技术改进,从而促进小型水电站的可持续发展,技术改进就是对水电站的相关设施设备进行改造或者更新,使设施设备能够更好的为水电站服务,提高设施设备的技术水平,减少小型水电站的经济投入,提升水电站的经济效益,在这个过程中也会产生一定的社会效益,满足社会的需求,促进社会的可持续发展。所以本文主要针对小型水电站,对小型水电站的技术改进进行探究,并提出相关建议。 1.当前小型水电站存在的问题 1.1水电站现存的发电机组需要更新 由于我国对电能的需求,而小型水力发电站建设周期短,投入生产的时间快,所以小型水力发电站的建设比较早,也比较多。所以很多的发电站在60年代就已经投入使用,这也就造成这些发电站很难满足现阶段的需求,不管是从发电站的发电设备或者是管理上,都还存在着很大的缺失。这种情况在发电机组上体现的更加明显,由于发电机是发电站的核心,但是尤其发电站在建设的时候对于发电机的制造工艺有着技术上的限制,所以发电机组在现阶段的发电过程中表现的力不从心。 1.2小型水电站运行管理和采用的技术与方法亟待提升 由于对于水资源的利用要受到水流量的影响,所以很容易造成发电机组动力上的不足,不仅影响发电机的运行效率,也会对发电机组的性能造成损害。对于发电机组的管理管理上,由于小型发电站的资金影响,所以机电自动化在发电站的运行并不多,所以对于发电站的运行和维护一般都靠人工完成,这也就会造成很多操作上的失误和管理上的失误,从而对发电站的运行造成影响。同时这样的管理模式也浪费了大量的人力物力。 小型水电站的运行和发展并不能符合这一要求,人工监督有时会因为一些疏忽造成其他问题,比如安全事故,所以当前小型水电站应该采取自动化的管理方

电厂施工组织设计.

山西国际能源集团宏光发电有限公司联盛2×300MW煤矸石发电新建项目 特殊消防工程 施 工 组 织 设 计 编制单位:山西宏鑫消防工程有限公司 审核: 编制人:

编制依据: 《建筑设计防火规范》(GB50016-2006) 《火力发电厂与变电站设计防火规范》(GB50229-2006) 《火灾自动报警系统设计规范》(GB50116-98) 《自动喷水灭火系统设计规范》(GB50084-2005) 《水喷雾灭火系统设计规范》(GB50219-95) 《二氧化碳灭火系统设计规范》(GB50193-2010) 《气体灭火系统设计规范》(GB 50370-2005) 《低倍数泡沫灭火系统设计规范》(GB50151-92)(2000年版) 《石油库设计规范》(GB50074-2002) 《自动喷水灭火系统施工及验收规范》(GB50261-2005) 《泡沫灭火系统施工及验收规范》(GB 50281-2006) 《气体灭火系统施工及验收规范》(GB50263-2007) 《火探管式自动探火灭火装置设计、施工及验收规程》(DB22/T465-2009)《火灾自动报警系统施工及验收规范》(GB50166-2007) 《输送流体用无缝钢管》(GB/T8163-2008)

一、工程概况 本工程为山西国际能源集团宏光发电有限公司联盛2X300MW煤矸石发电新建项目特殊消 防工程。 工程主要内容包括:低倍数泡沫灭火系统,主要布置在油灌区;固定式水消防系统系统,主要布置在变压器以及汽机房和锅炉房的油系统设备上,汽机房的汽机润滑油管道,锅炉房的空气预热器,煤仓层及输煤系统;IG541气体灭火系统,主要布置在集中控制楼的设备间及电缆夹层;低压CO2灭火系统,主要布置在集中控制楼、主厂房的电缆夹层;全厂火灾报 警及联动系统。 二、主要工程指标 1、施工工期:按招标文件的要求进行施工的各个关键日期。 2、本工程质量目标为合格工程。所有分项工程合格率为100%。 3、工程保修:本工程竣工后保修期为一年。 三、质量保证体系及项目管理 1、质量管理体系结构图 2、施工管理 现场踏勘,编制施工组织设计 图纸会审进行施工前期准备 申请开工 技术交底

光伏电站设计方案实例

光伏电站设计方案实例公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

甘肃某建筑屋顶光伏发电系统初步 设计方案 一、项目背景 1、项目意义 (略) 2、项目建设地基本信息: 、建设地:甘肃某地 、当地地理纬度: 36°左右, 、年平均太阳能辐射资源:㎡·day 、当地气温:最高气温:38°C,最低气温:-20°C 、光伏电站建设布局及占地面积 屋顶面积:58x35=2030平方米, 朝向:正南 设计阵列朝向:正南 三、项目规模 预计最大装机容量:2030m2x130W/m2=264kW 四、方案设计 1、逆变器初选:根据初步预算容量选 用5台50千瓦串接式逆变器。 MPPT范围:350-800V

最大输入电压:1000V 2、组件选择:选用300Wp光伏组件。 3、支架倾角设计:鉴于该建筑朝向东南45度,为了综合考虑朝向非正南对发电的影响,设计光伏支架倾角为30°。 支架结构设计(略) 支架基础设计(略) 4、平面设计及阵列排布 (1)采用光伏组件横向排布,上下2层支架设计,18块一串,阵列总长18米。每个阵列有18x2=36块组件封2串组成,合计10800Wp。

(2)计算阵列占地投影宽度米,遮阴间距米,取值米。错误:上面说,横向排布,上下2层支架设计,18块一串,阵列总长18米。L阵列斜长应为4米。投影宽度米,遮阴间距米.

(3)设计布局8排,共计24个阵列,总设计安装容量 (如果设计布局7排,共计21个阵列,总设计安装容量,前后空间比较大) 5、总平面布置图: 6、电路设计(略) 五、投资预算: 1、静态投资: 序号项目单价(元)合计(万元)1电站单晶硅光伏组件Wp 25台50kVA逆变器等并网配件Wp25 3C型钢支架Wp13屋面混凝土基础Wp 4电缆Wp 接入系统Wp 5其他配件Wp 6安装劳务费等W 7其他Wp 8盈利、税、25%

某水电站施工组织设计完整版

(此文档为word格式,下载后您可任意编辑修改!) 某水电站施工组织设计 第一章工程概况 1.1 工程概况 1.1.1概况 (1)枢纽布置 某水电站坝址位于修河某峡谷出口下游约500m,坝址距修水县城14.5km。枢纽建筑物主要由混凝土坝、土坝、引水发电系统等组成,本标为引水发电系统。 引水发电系统布置于右岸,由引水明渠、发电厂房和尾水渠组成。引水渠前清库段长718.39m,引水渠长218.95m,渠底宽度35m;厂房布置在冲沟出口,其长度为65.4m、宽度为14m、高度为39.41m,厂房内安装2台单机容量为20MW的贯流式发电机组尾水渠长度590.06m,渠底宽15~56m。 1.1.2 自然条件 (1)水文气象 修河流域位于亚热带季风气候区,暧湿多雨,气候温和,多年平均气温16.50C,多年平均降雨量1618mm(修水县气象站资料),约一半降雨量集中在4 ~6月。坝址以上集雨面积为5343km2,多年平均流量为151m3s,洪水多由暴雨形成。3月份开始涨水,4~7月份为汛期,4个月的水量占全年总水量的65.7%,全年最大洪水多出现在

6月份,5月份和7月份次之,洪峰历时一般3~5d。8月~次年2月份为枯水期,尢以10月~次年1月为最枯时段,。4个月的水量占全年水量的10.2%。 (2)工程地质 线路全长约1625m,由引水明渠,厂房和尾水明渠组成。引水线路在清库段后,由北280西转向北,经Ⅱ级阶地开挖明渠进入发电厂房,再于Ⅰ、Ⅱ级阶地形成尾水明渠,渠向由北折转为北600东入修河。 1)引水明渠。位于渡槽以北Ⅱ级阶地,地面高程一般92.00~96.00m,地形平坦。明渠冲积物厚一般为5~10m,上部主要为粘土、粉质粘土,含少量砾粒、卵粒;下部为砂卵砾石加粘土,厚1.8~3.9m,局部仅0.5m。明渠右侧丘岗地带为残坡积物覆盖,厚一般为2~4m。下伏基岩为泥质粉砂岩或粉砂质泥岩,基岩面高程83.00~86.00m,强风化下限深度一般为10~15m。 2)厂房。位于六都Ⅱ级阶地,主厂房紧邻右侧的红层丘岗。阶面高程93.00~96.00m,地形较平坦。厂址覆盖层厚度一般为10~13m,近轴线附近与其东侧覆盖层较薄,为4~10m,厂房西北角部位最厚,达19.8m。冲积物上部一般为粉质粘土、粘土,含少量卵砾石;下部为砂卵砾石夹粘土,厚度1.5~3.9m,西北角处最厚达7.95m。 下伏基岩为白垩系含砾中粗砂岩、砂砾岩,两种岩性质相间或相夹产生,岩性较不均一,强度变化较大。厂址基岩面高程一般为83.00~84.00m,西北角和东南角一低一高,高程分别为73.52、90.72m。由于岩性软弱,又不均匀,岩体风化较深且变化较大。轴线附近强风化

巴基斯坦贾姆肖罗电厂工程施工组织设计

巴基斯坦贾姆肖罗电厂工程施工组织设计 一、工程概况 (2) 二、施工部署和主要工程的施工方案 (6) 三、措施 (12) 四、生产安全措施 (13) 五、工程总进度计划 (13) 六、各种计划 (14) 七、施工准备 (17) 八、施工新技术应用和推广 (18) 九、施工总平面布置 (19)

简介】中建三局一公司承担了巴基斯坦大型电厂—贾姆肖罗电厂2#、3#、4#三台21KW油、气双燃料火力发电机组的全部土建工程。该工程每个机组均自成体系,按系统独立分布。建(构)筑物数量多,质量要求高,工期紧,施工难度大,施工条件艰苦。三局一公司对该工程实行项目法施工,精心组织,科学管理,取得了良好的经济和社会效益。 本施工组织设计所选的施工方案适用、经济、合理。施工部署合理,施工工艺先进,施工方法可行,施工机具选用效益高。尤为成功的是,采用了立体交叉流水作业和按控制点倒排施工进度计划的办法,确保了工期。 本工程施工中应用和推广的主要施工新技术有: (1)烟囱混凝土筒体油压千斤顶滑模施工工艺,激光垂直对中,保证了烟囱的垂直度、密实度和光洁度。 (2)烟囱钢烟道分段悬吊施工法,用16t卷扬机分段拼装、搁置,设备简单,施工方便,减轻劳动强度,提高工效,缩短工期; (3)采用45m3/h自动控制混凝土搅拌站和40m3/h混凝土输送泵进行混凝土施工,级配控制严格,计量准确,混凝土质量好,劳动强度小,施工速度快; (4)取水栈桥采用浮船三角架打桩法,经纬仪角度前方交会法测定桩位; (5)流水中浇灌混凝土技术; (6)燥热气候下的混凝土施工技术; (7)浮船运输和吊装栈桥钢桁架施工法; (8)桩头进入岩层时采用钢管护壁重锤冲击成孔法。 本工程获中建总公司1993年度国外优秀工程奖。 本工程获中建总公司1993年度国外优秀工程奖。 一、工程概况 1.建设地点 贾姆肖罗电厂位于巴基斯坦南部国际商业名城卡拉奇(KARACHI)市以北18Okm,于工业城市海德拉巴(HYDERABAD)市西北郊18km 的贾姆肖罗镇(JAMSHORO),距印度河5km,是目前巴基斯坦最大电厂之一。 2.工程规模 贾姆肖罗电厂规划为七台发电机组,第一期工程为四台21万kw的油、气双燃料火力发电机组——1#、2#、3#、4#机组,其中1#机组,由

水面光伏电站的设计方案与成本

一、某地区大型水库项目概况(参考) 本项目选址,水域开阔,面积约为3000亩,项目现场照片情况如下: 水库的深度约3~4米,采用漂浮式光伏水面电站形式。组件和汇流箱漂浮在水面上,逆变器及后端设备设置在岸基上。 二、水面漂浮式光伏电站解决方案 第一方案:传统浮筒 + 光伏支架方案 1)结构方案 传统浮筒尺寸为500*500*400mm,方阵主要采用单排浮筒,即可提供足够支撑。 另外一方面,考虑到系统维护通道的情况,需要每个浮筒阵列间隔使用双排浮筒。 组件子阵为2*11,采用255W组件,大方阵为6*16个子阵。大方阵单排浮筒和双排浮筒间隔使用。目的是综合考虑成本及电站维护通道的要求。 阵列面积—6327.75㎡ 光伏组件----2112块,538.56KW 浮筒----4191个 锚----预估60组 支架-----96组

2)方阵抛锚固定方案 锚固系统采用水下抛锚方式。先将组装好的浮码头拖移到合适的位置,与岸边通道对齐后,进行初步定位,待整个码头位置基本就位后开始进行锚固作业。 3)系统容量 本方案组件阵列面积6327.75㎡,功率容量为538.56KW。本项目3000亩水域,水域利用率通常60%-80%。保守情况下按照60%水域利用率计算,可以放置190个模块化组件阵列,约合102.3MW。 4)电气方案 电气系统与结构方案配套,22块组件全部串联形成子阵。每16个子阵并联入一个汇流箱。阵列为6*16个子阵组成,即每个阵列有6个汇流箱。 每2个阵列,即4224块组件(1077.12KW)接入到一台1MW的集中逆变站升压到35KV,送往站区再升压并网。汇流箱放置在光伏支架背面,漂浮于水面上,逆变器及后端设备安置于岸基上。 本项目共401280块255W多晶硅组件, 95组1MW的集中光伏逆变站,1140个16路入口的汇流箱,合计容量102.3MW。 5)方案概算表 水面电站电气设备及并网部分成本与地面电站基本无异,在此不再阐述。

水电站施工组织设计毕业设计

某水电站(毕业设计) 施 工 组 织 设 计 分院 班级 专业 姓名 学号 指导教师 目录 1 施工条件 (8) 1.1 工程条件 (8) 1.1.1 工程地理位置 (8)

1.2.1 施工场地 (12) 1.2.2 水文气象条件 (12) 1.2.3 工程地质条件 (14) 1.2.4 市场条件 (16) 1.3.1 混凝土骨料 (16) 1.3.2 料场概况 (17) 1.3.3 料场选择 (18) 1.3.4 块石料 (18) 2 施工导流 (19) 2.1 导流标准 (19) 2.2 导流明渠的布置 (22) 2.2.1 明渠的线路选择和布置要求 (22) 2.2.2 明渠进、出口的布置 (23) 2.2.3 导流时段及导流设计流量 (23) 2.3 导流方式 (24) 2.4 导流方案 (25) 2.5 导流建筑物设计 (25) 2.5.1 导流明渠 (25) 2.5.2 围堰 (26) 2.5.3 围堰施工设计图 (26) 2.5.4 首部枢纽导流建筑物工程量详见表8 (27)

2.6.1 导流明渠 (28) 2.7 围堰施工 (28) 2.8 计算施工导流机械人员配置 (30) 2.8.1 导流明渠的配置计算 (30) 2.8.2 导流明渠编织袋土石填筑 (34) 2.8.3 围堰的施工配置计算 (36) 2.9 截流 (39) 2.10 基坑排水 (39) 3 主体工程施工 (41) 3.1 首部枢纽工程施工 (41) 3.1.1 工程特性 (41) 3.1.2 主要工程量 (42) 3.1.3 施工程序 (43) 3.1.4 施工方法 (43) 3.1.5 施工机械及人员配置计算 (45) 3.2 引水隧洞工程施工 (64) 3.2.1 工程概况 (64) 3.2.2 主洞洞门施工 (64) 3.2.3 主体工程施工方案 (67) 3.2.4 爆破耗药量设计 (72) 3.2.5 施工支洞布置 (73)

最新水电站生态改造方案设计培训讲学

6 生态改造方案设计 6.1现状分析与评价 我国政府十分重视生态环境保护,十八大提出要加强生态文明建设,十八届三中全会将水资源管理、水环境保护、水生态修复等纳入生态文明制度建设重要内容,并作出重要部署,提出明确要求。水利部2012年全国农村水电工作会议提出“积极推动绿色水电评价”,今年又特别提到“要在农村水电规划、设计、建设和运行的全过程加强生态环境保护,积极推进绿色小水电建设”。为了回应社会关切,塑造小水电清洁可再生能源形象,绿色小水电将成为今后我国小水电建设的发展方向。因此,开展绿色小水电建设和进行绿色小水电评价,是树立小水电行业优秀典型,引领小水电行业沿着绿色、低影响、可持续方向发展的重要举措,是目前小水电行业的重要工作内容。 本次评价秉承了可持续发展的理念。标准借鉴了国际水电协会《水电可持续性评估规范》的设计思路,综合考虑了环境、社会、管理和经济4个方面的评价内容。 6.1.1环境评价 根据《绿色小水电评价标准》(征求意见稿),环境评价应包括水文情势、河流形态、水质、水生生态、陆生生态、景观和节能减排

等评价要素。各评价要素包括如下评价指标: a) 水文情势包括最小下泄流量满足度; b) 河流形态包括库沙比; c) 水质包括水质变化程度; d) 水生生态包括水生保护物种影响情况; e) 陆生生态包括陆生生物生境影响情况; f) 景观包括景观协调性和景观恢复度; g) 节能减排包括替代效应和减排效率。 水文情势:参考龙岩市水电站下泄流量在线监控装置安装工作方案(二○○九年十月三十日)附表2、“黄潭河流域规划水电站(暂不含最小下泄流量小于1.0mm3/s电站和拟建电站)最小下泄流量监控装置安装要求一览表”,罗佛宫电站最小下泄流量为0.53m3/s控制。由于罗佛宫电站调节方式为无调节,未安装流量监控装置,无法获知坝下实际日均下泄流量,最小下泄流量满足度无法计算,因此水文情势满足度应根据水电站为保障最小下泄流量所采取的措施以及减水河段的生态治理措施、减水河段长度等因素,结合现场调查综合评定。罗佛宫电站对应的减水河段长度30m,未采取最小下泄流量保证措施,水文情势得8分。

光伏电站设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长 的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个 2.88kWp的小型系统,平均每天发电 5.5kWh,可供一个1kW的负载工作 5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度 2.5℃;最热月7月份,平均温度27.6℃。

(建筑电气工程)尼日利亚某变电站电气施工组织设计

(建筑电气工程)尼日利亚某变电站电气施工组织设计

第一章工程概况及特点 1、工程概况及特点: 1.1工程概况: 1.1.1工程简述: 某330/132/33kV变电站位于M-J变电线路首端,为新建330kV变电站,三级电压,包括330kV、132kV,并连接原有33kV配电装置。 某330/132/33kV 变电站位于M-J变电线路末端,本工程是在原有某330kV变电站的基础上的扩建工程。正在运行中的某变电站,始建于二十世纪八十年代,运行至今已有20余年。本期工程的扩建端,位于原站址围墙内的西侧。 某变电站属扩建站,工作区域大部分与现运行变电站基本分开。但在电气安装与原变电站接口部分应严格注意,保证在施工中不影响运行变电站的工作。 1.1.2工程规模: 1.1. 2.1 某变电站:为一新建变电站: 最终规模为:4×150MVA主变,电压等级330/132/33kV;每组330kV母线接有1台容量为75Mvar的330kV高压并联电抗器,共2台;2×60MVA主变,电压等级132/33kV。 本期规模为:1×150MVA主变,电压等级330/132/33kV;330kV母线接有1台容量为75Mvar的330kV高压并联电抗器;1×60MVA主变,电压等级132/33kV。4回330kV 出线,即(ALIADE)UGwuaJi [NEW HAVEN 3.]出线2回,某出线2回。1回132kV出线,即Direction ALIADE出线1回。 1.1. 2.2某变电站:为一扩建变电站: 本期扩建1×150MVA主变,电压等级330/132/33kV;扩建1台330kV容量为75Mvar 的高压并联电抗器接于330kV母线。330kV某出线2回。132kV扩建1回主变进线间隔,母线扩建一组分段隔离开关。 1.2主要技术设计原则: 1.2.1 某变电站: 电气主接线:330kV采用一个半断路器接线,断路器三列式布置;132kV采用双母线断路器接线(终期一个半断路器接线),断路器三列式布置。 330kV配电装置、132kV配电装置:均采用户外敞开式布置,采用柱式断路器,断路器两侧配电流互感器,母线通流按2500A考虑。 本工程330kV、132kV线路均安装A、C两相阻波器。

某小型水电站工程施工设计方案

目录 9.1 施工条件...................................................................................... 9-1 9.1.1地理位置及对外交通.................................................................... 9-1 9.1.2水文气象条件............................................................................. 9-1 9.1.3工程规模 ................................................................................... 9-2 9.1.4施工布置条件............................................................................. 9-5 9.1.5外来物资供应、水、电和施工通讯条件........................................... 9-5 9.1.6天然建筑材料............................................................................. 9-5 9.2 施工导流...................................................................................... 9-7 9.2.1中梁一级电站施工导流................................................................. 9-7 9.2.2中梁二级电站施工导流............................................................... 9-19 9.3主体工程施工.............................................................................. 9-22 9.3.1中梁一级电站主体工程施工 ........................................................ 9-22 9.3.2中梁二级电站主体工程施工 ........................................................ 9-27 9.3.3中梁三级电站主体工程施工 ........................................................ 9-28 9.4料场选择与开采........................................................................... 9-31 9.4.1土、石料需求总量..................................................................... 9-31 9.4.2开挖料利用规划........................................................................ 9-31 9.4.3料场选择及料源总体规划 ........................................................... 9-33 9.4.4料场开采 ................................................................................. 9-38 9.5 施工工厂设施 ............................................................................. 9-40 9.5.1砂石加工系统........................................................................... 9-40 9.5.2混凝土拌和系统........................................................................ 9-43 9.5.3其它施工工厂........................................................................... 9-44 9.5.4风、水、电及施工通讯............................................................... 9-46 9.6 施工交通运输 ............................................................................. 9-49 9.6.1对外交通 ................................................................................. 9-50

相关文档
最新文档