第一章 船舶操纵性能复习重点

第一章 船舶操纵性能复习重点
第一章 船舶操纵性能复习重点

第一章船舶操纵性能

说课笔记

知识与技能掌握要点:

通过学习,掌握船舶的旋回性能。重点对三副岗位值班与船舶操纵知识及能力要求相联系,做到技能在航运船舶工作中能实际运用;

对操纵运动方程与K、T指数能进行定性分析。对于船员职务晋升多项考试具有重要指导作用。并做到工学结合,使船舶操纵知识及能力要求与岗位紧密相联。

对航向稳定性与保向性、变速运动性能能准确理解。通过旋回试验等实训操作,对中、大型商船操纵有感性认识,为下一步深入学习打下基础。

掌握Z形试验与螺旋试验方法。使学生明确用途,以及在新船试航及修船试航中三副的操作要点。

工学结合:

三副值班时,船舶操纵知识及能力要求与本次课的关联;

岗位与船舶操纵知识及能力要求实际应用;

测试冲程选外高桥叠标场仿真场景,突出训练三副角色。

课程教学特色:

理论性较强,注意三校生与普高生的认知能力差别;

充分运用企业提供生产案例和影视资料,使内容贴近航运岗位;

KT指数讲解插入本校教师几十年前的理论贡献,增强学生荣誉感;

在重点训练外高桥测速场冲程实验后,运用仿真模拟设备让学生领略世界主要狭水道场景。对学生职业兴趣的培养有意义。

第一节船舶旋回性能

在船舶操纵中,就舵的使用而言,大致可分为小舵角的保向操纵、一般舵角的转向操纵及大舵角的旋回操纵三种,船舶旋回性是船舶操纵中极为重要的一种性能。

一、船舶旋回运动的过程

船舶以一定航速直线航行中,操某一舵角并保持之,船舶将作旋回运动。根据船舶在旋回运动过程中的受力特点及运动状态的不同,可将船舶的旋回运动分为三个阶段,如图1—1所示。

1.第一阶段——转舵阶段

船舶从开始转舵起至转至规定舵角止(一般约8~15s),称为转舵阶段或初始旋回阶段。

如图1—1所示,该阶段中,船速开始下降但幅度甚微;漂角也已出现但量较小;旋回角速度不大,但旋回角加速度最大。由于船舶运动惯性的原因,船舶重心G基本上沿原航向滑进,在舵力转船力矩Mδ的作用下,船首有向操舵一侧回转的趋势,重心则有向操舵相反方向的微量横移,与此同时,船舶因舵力位置比重心位置低而出现少量内倾。因此,该阶段也称为横移内倾阶段。

2.第二阶段——过渡阶段

操舵后,由于船舶出现向操舵相反一侧横移而使其运动方向发生改变,形成了漂角β。越来越明显的斜航运动将使船舶进入加速旋回阶段,同时伴有明显的降速。

如图1—2(a)所示,该阶段中,船舶的旋回角速度、横移速度和漂角均逐步增大,水动力F w的作用方向由第一阶段来自正前方,逐渐改变为来自船首外舷方向。由于水动力F W 作用点较重心更靠近船首,因而产生水动力转船力矩Mδ,方向与舵力转船力矩MJ一致,使船舶加速旋回;与此同时,随着旋回角速度的不断提高,又会产生不断增大的船舶旋回阻矩,从而使旋回角速度不断降低,角速度的增加受到限制。

该阶段中船舶的运动特点是:

1)船舶降速明显。其首要因素是船舶斜航时水动力F w的纵向分力F wx的增加,其次是舵力P n的纵向分力P nx,旋回运动产生的离心力Q的纵向分力Q x以及旋回中推进效率的

下降。

2)由反向横移变成向操舵一侧正向横移。原因是船舶在旋回中,随着漂角β的增大,水动力F w不断增大,而舵力却有所下降,以致F W的横向分力大于P n的横向分力。

3)船舶出现外倾并逐渐增大。其原因是舵力横向分力P ny、水动力横向分力F wy以及旋回中产生的离心力的横向分力Q y 作用于船舶垂直方向的不同位置,构成了力矩,从而使船舶由初始阶段的内倾变为外倾。如图1—2(b)所示。

4)船舶加速旋回。

3.第三阶段——定常旋回阶段

随着旋回运动的不断发展,一方面,舵力的下降使舵力转船力矩Mδ减小,水动力F w的作用点W随着漂角的增大不断后移,水动力转船力矩Mβ减小。另一方面,随着船舶旋回角速度的增加,由阻止船舶回转的阻力R f 、R a所构成的水阻力转船力矩M f 、M a也同时增大。如图1—3所示,当漂角β增加到一定值时,作用于船体的诸力及其力矩达到平衡,即船舶进入定常旋回。该阶段中,船体所受合力矩为零,船舶旋回角加速度为零,转头角速度达到最大并稳定于该值,船舶降速达到最大值,外倾角、横移速度也趋于稳定。船舶以稳定的线速度、角速度作旋回运动,故又称第三阶段为稳定旋回运动阶段。不同载况的船舶进入定常旋回状态的时间也各不相同。空载船大约在转首60o左右,满载船大约

在转首100 o ~120 o左右进入定常旋回阶段。

图1—1 图

1—3

图1—2

二、旋回圈及其要素

定速直航(一般为全速)的船舶操一定舵角(一般为满舵)后,船舶将作旋回运动,其重心所描绘的轨迹叫做旋回圈。在“船舶操纵性临时标准”中,将旋回圈定义中的试验速度规定为至少达到主机最大输出功率85%时所对应的速度的90%。旋回圈及其要素如图1—20所示。

1.进距A d(advance)

进距是指开始操舵到航向转过任一角度时重心所移动的纵向距离。进距又称纵距,通常所说的进距是指航向转过90o 时的进距。在此基础上,如再转过相当于漂角的度数,则船舶在原航向上将达到最大纵移距离,称为最大进距(Max advance)。

2.横距T r(transfer)

横距是指开始操舵到航向转过任一角度时船舶重心向操舵一侧移动的横向距离。通常所说的横距是指当航向转过90 o时的横距。

3.旋回初径D T(tactical diameter)

旋回初径是指开始操舵到航向转过180o时重心所移动的横向距离。在此基础上,如再转过相当于漂角的度数,则将出现船舶重心偏离原航向线达到最大的横移距离,称为最大横距(Max transfer)。

4.旋回直径D(final diameter)

旋回直径是指船舶作定常旋回运动时,重心轨迹圆的直径。

5.滞距R e(reach)

滞距是指从操舵开始时的重心位置至定常旋回曲率中心的纵向距离。又称心距。

图1—4 上述五个尺度从不同的角度规定了旋回圈的形状和大小,因而被称为船舶旋回圈要素。旋回圈的大小一般用旋回初径D T或旋回初径与其船长之比D T/L(即相对旋回初径)表示。

根据IMC提出的操纵性临时标准规定,D T必须满足不应大于5L。实船在深水中满舵旋回时,象油轮之类的肥大型船舶,D T/L ≈3;高速货船之类的瘦削型船,D T/L≈4。在上述比值为3~4的范围内,进距、横距与旋回初径之比,旋回直径与旋回初径的比值一般为:

A d / D T = 0.85 ~ 1.0; T r / D r = 0.55; D / D T=

0.9

为了更完整地表述旋回运动的特性,通常还应考虑以下几个参数。

1.反移量(kick)

指操舵后,船舶重心从原航向向操舵相反一侧横移的距离。又称偏距。

在满舵旋回时,当船舶回转达到一个罗经点时,反移量达到最大值,约为船长的1%左右,而船尾反移量的最大值可达船长的1/10~1/5。

2.漂角β(drift angle)

船舶旋回时,船舶首尾线与首尾线上某一点的旋回圈的切线速度方向之间的夹角,称为该点的漂角。一般所说的漂角是指重心处的漂角,如图1—5所示。

图1—5 船舶首尾线不同点处的漂角值各不相等,船尾处的漂角最大。随着回转的加剧,重心处的漂角由小到大,最后在定常旋回阶段趋于稳定。旋回中船舶所具有的漂角与舵角有关,一般船舶不同舵角时重心处的漂角在定常旋回阶段约在3o~15 o之间。

如果把船体视为一个大面积的舵的话,则漂角越大,流向

船体的水对船体产生的升力就越大,即水动力F w越大,水动力转船力矩越大,使船舶加速旋回。因此,漂角越大,其旋回性越好,旋回直径也越小。大型油轮较一般货船的回转性好,因此它在定常旋回中的漂角也较大。浅水中船舶的回转性较深水中差,故漂角也较深水中小。

3.转心(pivoting point)

由船舶旋回曲率中心O点作船舶首尾线的垂线,垂足点P 即为转心。如图1—21所示,P点处的线速度方向与首尾线一致,故该点的漂角为零;同时由于船舶绕该点的竖轴作自转,故该点的横移速度为零。

一般商船在定常旋回时,转心P约在船首柱后1/3~1/5船长处,漂角越大的船,转心距首柱越近。而后退中旋回的船舶,其转心位于重心之后,约与前进旋回时的转心位置几乎对称。

4.旋回中的降速

船舶旋回中,由于斜航而使阻力增加,此外,舵力的纵向分力,惯性离心力的纵向分力引起的阻力增加以及推进器效率降低等原因都将引起船速下降。进入定常旋回后,船速稳定在一个定值上。

定常旋回时的船速V t与操舵前的船速V0的比值V t/V0(速降系数)与D T/L(相对旋回初径)的关系如图1—6所示。

D T/L越小,V t/V0越小,即速降剧烈。也就是说,旋回性越

好,速降越明显。肥大型船的D T/L较瘦削型小得多,故旋回中的速度下降便要明显得多。同样,由于船舶在浅水中得旋回性变差,所以浅水中的旋回速降就小一些。

图1—6

5.旋回中的横倾

旋回中船舶出现的横倾是一个应予注意的不安全因素。一般货船满舵旋回时的外倾在静水中可达3o~5o左右。超大型油轮因恢复力矩很大,所以满载满舵旋回时几乎不发生横倾。然而恢复力矩较小的船舶高速航进中操大舵角时,将会产生较大横倾,若再加上船内自由液面影响或出现货物移动以及强横风或横浪的影响,则船舶将有倾覆的危险。

为防止这种危险,可采取如下措施:

1)在适当增大初稳性高度的同时,采取措施减小自由液面影响,防止货物移动;

2)降低船速,缓慢操舵,用较小舵角进行旋回,以增大旋回半径;

3)选择使风浪作用力矩与回转产生的最大外倾力矩错开的时机操舵;

4)旋回中若已出现较大外倾角而危及船舶安全时,切忌

急速回舵或急操反舵,而应逐渐降速,同时逐渐减小所用舵

角。

船舶以一定航速旋回中的外倾角大小可用下式估算:

Vt2 BM

V t·r·GB

tgθc≈ ———·(——-1)或tgθc≈ ——————g·R GM

g·GM

式中:V t——定常旋回切线速度(m/s);

R——定常旋回半径(m);

g——重力加速度(m/s2);

BM——浮心至稳心的高度(m);

GM——初稳性高度(m);

GB——重心浮心间距(m)。

三、影响旋回圈大小的因素

船舶旋回圈的大小主要受水下船型、船舶吃水状态、操船、

外界环境(水深、风流)等方面因素的影响。

1.水线下的船型因素

1)方型系数C b

方型系数较小的瘦形高速船(C b≈0.6)较方型系数较大的

肥大型船(C b≈0.8)旋回性差得多。即C b越大,旋回性越

好,旋回圈也越小。

2)水线下侧面积

船首水线下侧面积分布较多者有利于减小旋回圈,船尾水线下侧面积分布较多者有利于提高航向稳定性,而不利于减小旋回圈。例如船首有球鼻首或船尾比较削尖得船,旋回时阻矩较小,旋回圈较小,但航向稳定性变差。

3)舵面积比(A R/L pp×d)

增加舵面积将会使舵的转船力矩增大,使旋回性变好,旋回圈减小。但同时也增加了旋回阻矩,超过了一定值后,旋回圈不能减小。因而一定类型的船舶都有一个最佳的舵面积比值。

各类船舶因其实际使用目的不同,对其应具备的旋回性在要求上也各不相同,同时还需综合考虑舵机功率、船舶阻力、与船尾形状的配合、便于安全操船等多方面条件的制约。比如大型油轮由于具有易于旋回的肥胖船型,不用很大的舵面积比;而旋回困难但又要求具有较高的机动性的高速货船则需要配备较大面积的舵;由于拖船和渔船需要优良的操纵性,所以舵面积比也较大。

2.船舶吃水状态

1)吃水

在船舶其他条件(吃水差、主机转速和船速)不变的情况下,一般船舶均有舵面积比随吃水变深而降低的趋势,舵力转船力矩减小,而且随着吃水的增加,船舶绕重心G的垂直

轴的转动惯量也将增加,所以船舶初始旋回缓慢。因此,若其他条件相同,吃水大的满载船的进距将有较大增长。此外,由于随着吃水的增大,斜航时转船力矩较旋回阻矩增加得明显,从而导致旋回初径和横距某种程度的降低。

2)纵倾

船舶的纵倾变化,相当于较大程度地改变了船舶水线下船体侧面积的形状分布,尾倾增大,重心后移,水动力作用点后移,使转船力矩减小,旋回圈增大;相反首倾增大时则回转加快,旋回圈减小。首倾每增加1%船长,旋回初径便可减小10%左右;尾倾量每增加1%船长,旋回初径则增加10%左右。

通常,满载时尾倾不大,但吃水增加了,舵面积比减小了;而空载时尾倾相当大,但吃水减小了,舵面积比增加了。所以总的看来,空船与满载时的旋回圈大小相差不多。

3)横倾

总的来说,横倾对旋回圈影响不大。船舶在前进时如存在横倾,船首受其影响会发生偏转。低速时,推力—阻力转矩起主要作用,推首向低舷侧偏转,若向低舷侧旋回,旋回圈小;高速时,首波峰压力转矩起主要作用,推首向高舷侧偏转,若向高舷一侧旋回,旋回圈小。

3.操船方面的影响

1)舵角

在极限舵角范围内,随着舵角的减小,旋回初径将会急剧增大,舵角越小,方形系数越小,舵的高宽比越小,旋回圈的增大率就越大,同时旋回时间也将明显地增长。一般操15°舵角旋回时与操满舵相比,旋回初径可能将增加到130%~170%,而掉头时间则可能增加到140%左右。

2)操舵时间

我国船舶检验局《钢质海船入级与建造规范》关于操舵装置部分规定,主操舵装置应具有足够能力,并足以在船舶处于最深航海吃水并以最大营运航速前进时进行操纵,将舵自任何一舷的35°转至另一舷的30°的时间应不超过28S。因此,在实际操船中一般认为从正舵位置操舵至最大舵角35°需要15S。如果操舵时间超过15S,则所需时间越长,旋回圈变大,进距将直接受其影响而变大,横距所受影响较小,而旋回直径几乎不受影响。

3)船速

船速对船舶旋回所需时间的长短具有明显的影响,船速越快,旋回时间大大缩短,然而,在商船速度范围内,船速对旋回初径的影响却很小,这是因为船舶在旋回中所受到的舵力转船力矩、旋回阻矩等均大致与船速的平方成正比。然而,当船速低于某一值(傅汝德系数F r<0.18)时,旋回圈将会逐渐增大,这是由于低速时舵力转船力矩明显减小,旋回性明显变差所致。反之,当F r>0.3,即船速增快时,由于兴波增

船舶用高性能铝合金材料的研制

船舶用高性能铝合金材料研制

目录 1铝材在船舶、舰艇上的应用概况 (1) 2船舶用高性能铝合金材料的发展趋势 (1) 3高性能铝合金材料在船舶领域研发及工程化的发展问题 (3) 4项目的总体目标与阶段目标 (4) 4.1项目的基本内容 (4) 4.2项目总体目标 (4) 4.3阶段思路 (4) 5 项目现有基础、启动条件极其运行机制 (5) 5.1项目现有基础 (5) 5.2项目运行机制 (5)

1铝材在船舶、舰艇上的应用概况 铝材在船舶上的应用发展得很快,铝合金已成为造船工业很有发展前途的材料。现在铝材在造船业上应用越来越广泛,小自舶板、汽艇,大到万吨巨轮,从民用到军用,从高速气垫船到深水潜艇,从渔船到海洋采矿船都在采用性能良好的铝合金材料做为船壳体、上层结构、各种设施、管路以至用具。船舶用铝合金材料包括板、型材、管、锻件、铸件等,随着船体大型化和挤压技术的进步,铝合金挤压型材的应用飞速发展。船用型材的铝合金主要有5154、5083、6063和6082等,典型的船舶型材种类及尺寸有:a、高40~300mm的对称圆头扁铝;b、高40~200mm的非对称圆头扁铝;c、厚3~80mm,宽7.5~250mm 的扁铝;d、高70~400mm的同向圆头角铝;e、高35~120mm的反向圆头角铝;f、15×15~200×200mm的等边角铝;g、20×15~200×120mm的非等边角铝;h、凸缘25V×45,腹板40~250mm的槽铝; i、200~2500mm扁宽薄壁带筋壁板型材;j、100~800mm扁宽空心壁板型材等等。除了一些常规的型材外,船舶上使用的特殊型材,如龙骨、舷墙、桅杆、、舱底和船底外板型材等。铝合金是代替钢材作为船壳体及船舶上层结构的理想材料,也是当今所需要的节能、环保绿色材料,铝合金与钢配合建造船舶,可使船舶减重达50%以上。 2船舶用高性能铝合金材料的发展趋势 中国船舶制造业在全球市场上所占的比重正在明显上升,中国已

船舶操纵复习小知识

旋回圈:全速,满舵,重心; 90°降速25%~50%、65%; 旋回圈:进距、横距:纵/横向、90°;进距小航向稳定性好; 旋回初径:横向、180°、3~6备船长; 旋回直径:定长旋回、重心圆直径、0.9~1.2倍旋回初径; 滞距:操舵到进入旋回的滞后距离; 反移量:重心在旋回初始反向横移距离、一个罗经点最大;船尾甩开; 漂角:船首尾线上重心点的线速度与船首尾面的交角;船宽、速度大、漂角大、旋回直径小、旋回性能好; 转心:船舶自转中心;无横移速度、无漂角;首柱后1/3~1/5船长;旋回性能越好,漂角越大,转心偏前;后退时靠近船尾; 旋回橫倾:先内后外、先同侧后异侧、急舵大角、斜航阻力 90°; 旋回时间:360°、与排水量相关、6min,超大型船大一倍; 超大型船:漂角大、回旋性好,降速快,进距大、时间长,航向不稳定; 旋回圈大小:肥大旋回圈小、船首部水下面积大(船型、吃水差:首倾减小,尾倾增加,越肥大,影响越大0.8~10%,0.6~3%)、舵角大、操舵时间短、舵面积大(舵面积、吃水)、旋回圈小; 橫倾:一般船速范围内低舷侧阻力大,高舷侧旋回圈小; 螺旋桨转动方向:右旋单车,左旋回初径小; 浅水:阻力大,漂角小,舵力小,旋回圈大; 顶风,顶流,污底:旋回圈小;顺风,顺流:增大旋回圈; 舵效:K/T K/T大舵效好,K/T小舵效不好; 减小伴流(降低船速),加大排出流(提高车速),提高滑失比(降低桨的进速,增加桨的转速和螺距);舵角大,舵效好;舵速大,舵效好;排水大,吃水深,舵效差;尾倾,舵效好,首倾,舵效差; 橫倾,一般船速范围内低舷侧阻力大 舵机,越快越好; 迎风、顶流偏转舵效好,顺风、顺流偏转舵效差; 满载,高速首迎风;空船,低速尾迎风;浅水,舵效差; 舵力转船力矩:舵中心到船舶重心的距离*作用在舵上的垂直压力 静航向稳定性:重心仍在原航向。 不稳定:斜航。首倾 动航向稳定性: 稳定:正舵,外力偏转,稳定于新航向;

船舶操纵性总结

2010年度操纵性总结 1.船舶操纵性含义 船舶操纵性是指船舶借助其控制装置来改变或保持其运动速率、姿态和方向的性能。 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3. 4.分析操舵后船舶在水平面运动特点。 船的重心G做变速曲线运动,同时船又绕重心G做变角速度转动,船的纵中剖面与航速之间有漂角。 5.漂角β的特性(随时间和沿船长的变化)。 船长:船尾处的速度和漂角为最大,向船首逐渐减小,至枢心P点处速度为最小且漂角减小至零,再向首则漂角和速度又逐渐增大,但漂角变为负值。 6. 7.作用在在船上的水动力是如何划分的。 船在实际流体中作非定常运动时所受的水动力,分为由于惯性引起的惯性类水动力和由于粘性引起的非惯性类水动力两类来考虑,并

忽略其相互影响。 8. 9.线性水动力导数的物理意义和几何意义。 物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它运动参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 位置导数:(Yv,Nv)船以u和v做直线运动,有一漂角-β,船首部和尾部所受横向力方向相同,都是负的,所以合力Yv是较大的负值。而首尾部产生的横向力对z轴的力矩方向相反,由于粘性的影响,使尾部的横向力减小,所以Nv为不大的负值。所以,Yv<0, Nv<0。 控制导数:(Yδ,Nδ)舵角δ左正右负。当δ>0时,Y(δ)>0,N(δ)<0。(Z轴向下为正)所以Yδ>0,Nδ<0。 旋转导数:(Yr,Nr) 总横向力Yr数值很小,方向不定。Nr数值较大,方向为阻止船舶转动。所以,Nr<0。 11. 12. 13. 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 在操舵不是很频繁的情况下,船舶的首摇响应线性方程式可近似

船舶操纵知识点196

船舶操纵知识点196

船舶操纵 1.满载船舶满舵旋回时的最大反移量约为船长的1%左右,船尾约为船长的1/5至1/10 2. 船舶满舵旋回过程中,当转向角达到约1个罗经点左右时,反移量最大 3. 一般商船满舵旋回中,重心G处的漂角一般约在3°~15° 4. 船舶前进旋回过程中,转心位置约位于首柱后1/3~1/5船长处 5. 万吨船全速满舵旋回一周所用时间约需6分钟 6. 船舶全速满舵旋回一周所用时间与排水量有关,超大型船需时约比万吨船几乎增加1倍 7. 船舶尾倾,且尾倾每增加1%时,Dt/L将增加10%左右 8. 船舶从静止状态起动主机前进直至达到常速,满载船的航进距离约为船长的 20倍,轻载时约为满载时的1/2~2/3 9. 排水量为1万吨的船舶,其减速常数为4分钟

大时,多的背流面容易出现空泡现象 32. 舵的背面吸入空气会产生涡流,降低舵效 33. 一般舵角为32~35度时的舵效最好 34. 当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为水中锚重的1.6倍 35. 当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为锚重的1.4倍 36. 一般情况下,万吨以下重载船拖锚制动时,出链长度应控制在2.5倍水深左右 37. 霍尔锚的抓力系数和链的抓力系数一般分别取为:3-5, 0.75-1.5 38. 满载万吨轮2kn余速拖单锚,淌航距离约为1.0倍船长 39. 满载万吨轮2kn余速拖双锚,淌航距离约为0.5倍船长 40. 满载万吨轮1.5kn余速拖单锚,淌航距离约为0.5倍船长 41. 满载万吨轮3kn余速拖双单锚,淌航距离约为1.0倍船长 42. 拖锚淌航距离计算:S=0.0135(△vk2/Pa) 43. 均匀底质中锚抓底后,若出链长度足够,则抓力随拖动距离将发生变化:一般拖动约5-6倍

船舶及其操作性能

1.4 船舶及其操作性能 船舶,各种船只的总称。船舶是能航行或停泊于水域进行运输或作业的交通工具,按不同的使用要求而具有不同的技术性能、装备和结构型式。 船舶是一种主要在地理水中运行的人造交通工具。另外,民用船一般称为船,军用船称为舰,小型船称为艇或舟,其总称为舰船或船艇。内部主要包括容纳空间、支撑结构和排水结构,具有利用外在或自带能源的推进系统。外型一般是利于克服流体阻力的流线性包络,材料随着科技进步不断更新,早期为木、竹、麻等自然材料,近代多是钢材以及铝、玻璃纤维、亚克力和各种复合材料。 1.4.1 概述 船舶从史前刳木为舟起,经历了独木舟和木板船时代,1879年世界上第一艘钢船问世后,又开始了以钢船为主的时代。船舶的推进也由19世纪的依靠人力、畜力和风力(即撑篙、划桨、摇橹、拉纤和风帆)发展到使用机器驱动。 1807年,美国的富尔顿建成第一艘采用明轮推进的蒸汽机船“克莱蒙脱”号,时速约为8公里/小时;1839年,第一艘装有螺旋桨推进器的蒸汽机船“阿基米德”号问世,主机功率为58.8千瓦。这种推进器充分显示出它的优越性,因而被迅速推广。 1868年,中国第一艘载重600吨、功率为288千瓦的蒸汽机兵船“惠吉”号建造成功。1894年,英国的帕森斯用他发明的反动式汽轮机作为主机,安装在快艇“透平尼亚”号上,在泰晤士河上试航成功,航速超过了60公里。 早期汽轮机船的汽轮机与螺旋桨是同转速的。后约在1910年,出现了齿轮减速、电力传动减速和液力传动减速装置。在这以后,船舶汽轮机都开始采用了减速传动方式。 1902~1903年在法国建造了一艘柴油机海峡小船;1903年,俄国建造的柴油机船“万达尔”号下水。20世纪中叶,柴油机动力装置遂成为运输船舶的主要动力装置。 英国在1947年,首先将航空用的燃气轮机改型,然后安装在海岸快艇“加特利克”号上,以代替原来的汽油机,其主机功率为1837千瓦,转速为3600转/分,经齿轮减速箱和轴系驱动螺旋桨。这种装置的单位重量仅为2.08千克/千瓦,远比其他装置轻巧。60年代先后,又出现了用燃气轮机和蒸汽轮机联合

(完整版)船舶操纵与避碰总结

船舶操纵与避碰 9101:3000总吨及以上船舶船长9102:500~3000总吨船舶船长9103:3000总吨及以上船舶大副9104:500~3000总吨船舶大副9105:3000总吨及以上船舶二/三副9106:500~3000总吨船舶二/三副9107:未满500总吨船舶船长9108:未满500总吨船舶大副9109:未满500总吨船舶二/三副 考试大纲 适用对象 9101 9102 9103 9104 9105 9106 9107 9108 9109 1 船舶操纵基础 1.1 船舶操纵性能 1.1.1 船舶变速性能 1.1.1.1 船舶启动性能√√√√√√ 1.1.1.2 船舶停车性能√√√√√√ 1.1.1.3 倒车停船性能及影响倒车冲程的因素√√√√√√ 1.1.1.4 船舶制动方法及其适用√√√√√√ 1.1.2 旋回性能 1.1. 2.1 船舶旋回运动三个阶段及其特征√√√√√√ 1.1. 2.2 旋回圈,旋回要素的概念(旋回反移量、滞距、 纵距、横距、旋回初径、旋回直径、转心、旋回 时间、旋回降速、横倾等) √√√√√√ 1.1. 2.3 影响旋回性的因素√√√√√√ 1.1. 2.4 旋回圈要素在实际操船中的应用(反移量、旋回 初径、进距、横距、旋回速率在实际操船中的应 用;舵让与车让的比较) √√√√√√√√√ 1.1.3 航向稳定性和保向性 1.1.3.1 航向稳定性的定义及直线与动航向稳定性√√√√√√

1.1.3.2 航向稳定性的判别方法√√√√√√ 1.1.3.3 影响航向稳定性的因素√√√√√√ 1.1.3.4 保向性与航向稳定性的关系;影响保向性的因素√√√√√√ 1.1.4 船舶操纵性指数(K、T指数)的物理意义及其与操纵性 √√ 能的关系 1.1.5 船舶操纵性试验 1.1.5.1 旋回试验的目的、测定条件、测定方法√√√√√√ 1.1.5.2 冲程试验的目的、测定条件、测定方法√√√√√√ 1.1.5.3 Z形试验的目的和试验方法√ 1.1.6 IMO船舶操纵性衡准的基本内容√√√ 1.2 船舶操纵设备及其运用 1.2.1 螺旋桨的运用 1.2.1.1 船舶阻力的组成:基本阻力和附加阻力√√√√√√ 1.2.1.2 吸入流与排出流的概念及其特点√√√√√√ 1.2.1.3 推力与船速之间的关系,推力与转数之间的关系√√√√√√ 1.2.1.4 滑失和滑失比的基本概念,滑失在操船中的应用√√√√√√ 1.2.1.5 功率的分类及其之间的关系√√√√√√ 1.2.1.6 船速的分类及与主机转速之间的关系√√√√√√ 1.2.1.7 沉深横向力产生的条件、机理及偏转效果√√√√√√ 1.2.1.8 伴流的概念,螺旋桨盘面处伴流的分布规律√√√√√√ 1.2.1.9 伴流横向力产生条件、机理及偏转效果√√√√√√ 1.2.1.10 排出流横向力产生条件、机理及偏转效果√√√√√√ 1.2.1.11 螺旋桨致偏效应的运用√√√√√√ 1.2.1.12 单、双螺旋桨船的综合作用√√√√√√ 1.2.1.13 侧推器的使用及注意事项√√√ 1.2.2 舵设备及其运用

第二章 船舶操纵基本知识

第二章船舶操作基本知识 船舶操纵是指船舶驾驶人员根据船舶操纵性能和客观环境因素,正确地控制船舶以保持或改变船舶的运动状态,以达到船舶运行安全的目的。 船舶操纵是通过车、舵并借助锚、缆和拖船来实现的。要完成操纵任务,除保证所有操纵设备处于正常良好的技术状态外,操纵人员必须掌握船舶操纵性能(惯性和旋回性等)及对客观环境(风、流、水域的范围等)的正确估计。 第一节车的作用 推动船舶向前运动的工具叫船舶推进器,推进器的种类很多,目前常见的有明轮、喷水器推进器螺旋桨、平旋推进器、侧推器等。因为螺旋桨结构简单、性能可靠且推进效率高,所以被广泛应用于海上运输船舶。 一、螺旋桨的构造

1、螺旋桨的材料和组成 螺旋桨常用铸锰黄铜、青铜和不锈钢制作。现在也有采用玻璃制作的。 螺旋桨有桨叶和浆毂两部分组成,连接尾轴上。 (1)桨叶,一般为三片和四片,个别也有五片甚至六片的,低速船采用宽叶,高速船采用窄叶。 (2)桨毂,多数浆毂与桨叶铸成一体。浆毂中心又圆锥形空,用以套在尾轴后部。 (3)整流帽 (4)尾轴 2、螺旋桨的配置 一般海船都采用单螺旋桨,叫单车船。也有部分船舶(客船和军舰)采用双螺旋桨,叫双车船。 单桨船的螺旋桨通常是右旋转式的。右旋是指船舶在前进时,从船尾向船首看,螺旋桨在顺车时沿顺时针方向转动的称为右旋,沿逆时针方向转动的称为左旋。目前,大多数商船均采用右旋式。 双桨船的螺旋桨按其旋转方向可分为外旋式和内旋式两,对于双桨船,往舷外方向转动的称为外旋,反之称内旋。通常采用外旋,以防止水上浮物卷入而卡住桨叶。进车时,左舷螺旋桨左转,右舷螺旋桨右转,则称为外旋式;反之,称为内旋式。 二、推力、阻力和功率 1、船舶推力

船舶航行性能

船舶航行性能 为了确保船舶在各种条件下的安全和正常航行,要求船舶具有良好的航行性能,这些航行性能包括浮力、稳性、抗沉性、快速性、摇摆性和操作性。 船舶浮性 船舶在一定装载情况下的漂浮能力叫做船舶浮性(buoyancy) 船舶是浮体,决定船舶沉浮的力主要是重力和浮力。其漂浮条是:重力和浮力大小相等方向相反,而且两力应作用在同一铅垂线上。 船舶重力即船舶的总重量。船舶浮力是指水对船体的上托力 根据阿基米德定理,船舶浮力大小等于船体所排开同体积水的重量。 船舶重力,通常用W表示,它经过船舶重量的中心,也叫重心(G),其方向垂直向下,船舶重心G的位置是随货物移动而改变;船舶浮力,通常用B表示,它经过船舶水下体积的几何中心,也叫浮心(G),其方向垂直向上,船舶浮心G的位置是随水线下船体体积的变化而变化,如图1-23所示。 船舶重力(W)和浮力(B)大小相等、方向相反且重力与浮力又是作用在同一铅垂线上,这时船舶就平衡漂浮在水面上。 如果增加载货,重力增大船舶就会下沉,使吃水增加,浮力也就增大,直到浮力和重力又相等,船舶就达到新的平衡位置;同样,若重力减少,船舶上浮,也会到达另一新的平衡点。船舶的平衡漂浮状态,简称船舶浮态。船舶浮态可分为四种。 1.正浮状态 是指船舶首、尾、中的左右吃水都相等的情况。 2.纵倾状态 是指左右吃水相等而首尾吃水不等的情况。船首吃水大于船尾 水叫首倾;船尾吃水大于船首吃水叫尾倾。为保持螺旋桨一定的水深,提高螺旋桨效率,一航未满载的船舶都应有一定的尾倾。 3、横倾状态 是指船首尾吃水相等而左右吃水不等的情况,航行中不允许出现 横倾状态。 4、任意状态 是指既有横倾又有纵横倾的状态。 船舶在海上航行,经常会遇到海浪打上甲板,冬季还会结成很厚 的冰,这就等于给船舶增加了重量。为了保障船舶安全,船舶必须留有一定的储备浮力(也叫保留浮力)。储备浮力是指船舶主甲板以下至水线之间水密空间产生的浮力,如下图所示。载货越少,船舶干舷越高,储备浮力越大,浮性越好,越有利于航行安全。所以,为了既保证船舶安全,又能充分利用船舶的载重能力,就必须根据不同季节和航区进行合理配载,使最大吃水不超过载重线标志上规定的满载吃水线。 船舶稳性 稳性(stability)是指船舶在外力矩(如风、浪等)的作用下发生倾斜,当外力矩消

船舶操纵考试题库

船舶操纵考试题库(满分100分60分及格) 一、单选题 1.旋回直径约为旋回初径的: A.0.5倍 B.0.6倍 C.0.9~1.2倍 D.0.6~1.2倍 答案:C 2.______属于船舶操纵性能。 A.旋回性能 B.抗沉性 C.摇摆性 D.稳性 答案:A 3.船舶旋回中,随着漂角的逐渐增大,______。 A.降速减轻 B.转心后移 C.横倾角增大 D.旋回半径增大 答案:B

4.下列哪项可以作为衡量操纵性的标准? A.纵距和旋回初径 B.横距和漂角 C.纵距和反移量 D.进距和旋回半径 答案:A 5.航向稳定性好的船舶是指船舶在: A.航进中即使很少操舵也能较好的保向 B.操舵改向时,能较快地应舵 C.旋回中正舵,能较快地使航向稳定下来 D. A\B\C都正确 答案:D 6.船舶旋回中的漂角β: A.在首尾线的各点处具有相同的值 B.在重心G处的值最大 C.在转心P处的值最大 D.以重心G处首尾面迎流角衡量,约为3°~15° 答案:D 7.船舶试航时,变速运动所需时间及航程主要决定于:A.船舶排水量,变速范围,推力阻力的变化 B.船舶排水量,风流的影响

C.船舶线型,螺旋桨的直径 D.船舶大小及主机类型 答案:A 8.从实际操纵出发,船舶应具备良好的: A.旋回性和改向性 B.航向稳定性和抑制偏摆性 C.制动性(停船冲程短,冲时少) D. A\B\C均正确 答案:D 9.船舶改变航行方向的快慢能力称为: A.快速性 B.旋回性 C.稳定性 D.航向机动性 答案:D 10.船在航行中受外力影响而偏离航向,当外力消失,在不用舵的情况下不能稳定在一个新航向上的性能称为: A.静航向稳定性 B.静航向不稳定 C.动航向稳定 D.动航向不稳定

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1.船舶操纵性含义:P1 2.良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系。 4.分析操舵后船舶在水平面运动特点。 5.漂角β的特性(随时间和沿船长的变化)。 6.坐标原点在船的重心处时,船舶的运动方程的推导。 7.作用在在船上的水动力是如何划分的。 8.粘性水动力方程线性展开式及无因次化。 9.线性水动力导数的物理意义和几何意义。

物理意义:各线性水动力导数表示船舶在以u=u0运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10.常见线性水动力导数的特点。 11.船舶操纵水平面运动的线性方程组推导及无因次化。 12.写出MMG方程中非线性水动力的三种表达式。 13.首摇响应二阶线性K-T方程推导。 14.一阶K、T方程及K、T含义,可应用什么操纵性试验测得。 15.画图说明船舶在作直线航行时(舵角δ=0),若受到某种扰动后, 其重心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16.影响稳定性的因素有哪些? 17.船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加 速度信息) 18.船舶回转运动主要特征参数。 19.影响定常回转直径的5个因素是什么? 20.推导船舶定常回转时横倾角的确定公式。 21.按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22.如何获得船舶的水动力导数? 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三种方法来获得船舶的水动力导数。

第1章 船舶操纵基础理论解读

第一章船舶操纵基础理论 通过本章的学习,要求学员概念理解正确,定义描述准确,对船舶操纵性能够正确评估,并具有测定船舶操纵性能的知识。 根据船舶操纵理论,操纵性能包括: 1)机动性(旋回性能和变速运动性能) 2)稳定性(航向稳定性) 第一节船舶操纵运动方程为了定量地描述船舶的操纵运动,我们引入船舶操纵运动方程,用数学方法来讨论船舶的运动问题。 一、船舶操纵运动坐标系 1.固定坐标系Ox0y0z0 其原点为O,坐标分别为x0,y0,z0,由于我们仅讨论水面上的船舶运动,因此,该坐标系固定于地球表面。 作用于船舶重心的合外力在x0,y0轴上的投影分别为X0和Y0 对z0轴的合外力矩为N

2. 运动坐标系Gxyz 其原点为点G (船舶重心),坐标分别为x ,y ,z ,该坐标系固定于船上。 这主要是为了研究船舶操纵性的方便而建立的坐标系。 x ,y ,两个坐标方向的运动速度分别为u 和v ,所受的外力分别为X 和Y , 对z 轴的转动角速度为r ,z 轴的外力矩为N 。 二、 运动方程的建立 根据牛顿关于质心运动的动量定理和动量矩定理,船舶在水面的平面运动可由下列方程描述: y 0

??? ??===? Z og o og o I N y m Y x m X 该式一般很难直接解出。为了方便,将其转化为运动坐标系表示,这样可以使问题大为简化。经过转换,得: ?? ? ??=+=-=r I N ur v m Y vr u m X Z )()( 该方程看似复杂,但各函数和变量都与固定坐标系没有关系,因此,可以使问题大为简化。 三、 水动力和水动力矩的求解 对于上述方程中的水动力和水动力矩可表示为: ?? ? ??===),,,,,,(),,,,,,(),,,,,,(δδδr v u r v u f N r v u r v u f Y r v u r v u f X N Y X

高性能船舶船型介绍

高性能船舶船型介绍 发布: 2010-3-11 18:07 | 作者: lowellzhu | 来源: 龙de船人 [i=s] 本帖最后由lowellzhu 于2010-3-11 18:27 编辑 接触高性能船舶时一直不太理解什么是高性能船以及高性能船舶船型的分类,经过翻阅各类书籍及论文,总结一下,供船人参考,并希望专业人士斧正! 当前,高性能船舶的研发与推广应用备受国内外造船界的青睐,其船型更是国际著名学者机构研究的热点。这类船舶种类繁多,新船型层出不穷,日新月异,在各类船舶中是新思想最丰富、最有创新、也最有活力的领域;其高航性、优良的耐波性、低物理场辐射特征、舒适安全性、良好的经济性等性能受到军事和民用领域的极大关注,拥有良好的发展前景 依据支持船重的方式和作用原理的差异对高性能船舶船型进行分类,并分别介绍各类船型。 1 高性能船舶的分类 高性能船舶按其特性可分为气垫船,水翼船,小水线面双体船,多体船,地效翼船,高速单体船等各式各样的显著不同于常规船舶的船型。而按照支承船重的方式和作用原理差异,把高性能船舶分为:浮力支承型、静态气垫升力支承型、动态升力支承型、复合型。本文将按照后者分类方式分别对各种高性能船舶的船型进行介绍。 2 船型介绍 2.1

浮力支承型 1)高速深V型船 船首部横剖面呈深V形,并突出到船体基线的下方,其V形断面比U形断面的船体可以更好的满足适航性的要求。深V船型具有两种基本的舯剖面形式,即单折角线或双折角线(见下图)。当要求设计艇有较大内部容积和较低的相对航行速度(低傅氏数)时采用双折线型,而单折角线型的艇则更适合于要求较低的排水量和较高的相对航行速度(较高傅氏数)的情况。然而,对船舯剖面形式的选择不存在确定性的规则,因为其它的参数也起重要作用。所以双折角线型也可以应用于快艇,反之亦然。 1.jpg 2) 小水线面双体船 小水线面双体船基本上由三大部分组成,即水下体(提供浮力)、桥体结构(生活与工作平台)、支柱(星双凸流线形截面,作为前二者之联结体)。 小水线面双体水下体(如图)有两个深置水下承受大部分浮力的鱼雷状下潜体,它的宽敞的船体高出水面,船体和鱼雷状下潜体之间由狭长的流线型支柱连接。 小水线面双体船有几种形式:下图所示的为“单体单支型”,还有“单体双支柱型”(即一个潜体用前后两个支柱连接),或者“双体双支柱型”(每一侧有前后两个潜体,每个潜体各有一个支柱)。下潜体后端安装有两个螺旋桨,内侧装有前后各两个稳定鳍,前小后大[5]。

船舶操纵简答题类型

船舶操纵简答题类型 1.前航中船舶受到扰动后,船舶运动的稳定性有哪几种,船舶的航向稳定性指的是什么? 2.图示分析前进中的船舶斜顺风航行时受力和偏转规律。 3.船舶在选择锚地时应主要考虑哪些因素? 4.简述船舶在北半球台风右半圆的避台操纵方法。 5.简述船舶在波浪中航行横摇的谐摇条件及避免谐揺的措施。 6.简述减轻单锚泊偏荡的措施。 7.简述给定船舶影响倒车停船冲程的因素。 8.试比较大风浪中航行时滞航与漂滞的区别及优缺点。 9.简述发现人员落水时的紧急措施。 10.何谓船舶的动航向稳定性,如何判别? 11.常用锚泊方式有哪几种,各有什么优缺点? 12.简述船舶纵向受浪时的危害和预防措施。 13.简述驶近落水者的“Williamson”旋回的操纵方法及适用情况。 14.试述伴流横向力产生的原因、条件及作用规律。 15.拖轮顶首协助前进中大船转首,为何存在大船前进速度的极限航速? 16.前进中的船舶在斜顶风与斜顺风航行时,哪种情况易于保向?为什么? 17.简述超大型船舶的操纵性特点。 18.何谓滑失?对螺旋桨推力、排出流、舵效有何影响? 19.绘出倒车停船轨迹,并说明为何呈现这样的形状。 20.简述影响岸壁效应的因素。 21.简述驶近落水者的“Scharnow”旋回的操纵方法及适用情况。 22.简述影响锚抓力的因素。 23.简述影响给定船舶旋回直径大小的因素。 24.简述影响舵效的因素。 25.试述沉深横向力产生的条件,成因及其致偏作用。 26.图示说明后退中的船舶在正横后来风的受力和偏转规律。 27.简述驶近落水者的“单旋回”的操纵方法及适用情况。 28.决定富余水深应考虑哪些因素? 29.绘草图说明右旋FPP单桨船利用车、舵减小掉头区的方法。 30.图示说明后退中的船舶在正横前来风的受力和偏转规律。 31.简述驶近落水者的“双半旋回”的操纵方法及适用情况。 32.试述影响船舶旋回直径大小的船型因素。 33.试述不同船速情况下船体下沉的特点。 34.简述空载船舶在大风浪中航行的弊端。 35.简述停车不对水移动的船舶在风中的偏转和运动规律。 36.简述浅水中船舶操纵运动特点。 37.什么是岸壁效应?船舶在接近岸壁航行时应如何操舵保向? 38.简述影响船舶保向性的因素。

船舶操纵性与耐波性复习

漂角:船舶重心处速度与动坐标系中ox轴之间的夹角,速度方向顺时针到ox轴方向为正。首向角:船舶纵剖面与固定坐标系OX轴之间的夹角,OX到x轴顺时针为正 舵角:舵与动坐标系ox轴之间的夹角,偏向右舷为正 航速角:重心瞬时速度与固定坐标系OX轴的夹角,OX顺时针到速度方向为正 浪向角:波速与船速之间的夹角。 作用于船体的水动力、力矩将与其本身几何形状有关(L、m、I),与船体运动特性有关(u、v、r、n),也与流体本身特性有关(密度、粘性系数、g)。 对线速度分量u的导数为线性速度导数,对横向速度分量v的导数为位置导数,对回转角速度r的导数为旋转导数,对各角速度分量和角加速度分量的导数为加速度导数,对舵角的导数为控制导数。 直线稳定性:船舶受瞬时扰动后,最终能恢复指向航行状态,但是航向发生了变化; 方向稳定性:船舶受瞬时扰动后,新航线为与原航线平行的另一直线; 位置稳定性:船舶受瞬时扰动后,最终仍按原航线的延长线航行; 具备位置稳定性的必须具备直线和方向稳定性,具备方向稳定性的必定具有直线运动稳定性。 1.定常回转直径 2.战术直径 3.纵距 4.正横距 5.反横距 回转的三个阶段 一、转舵阶段二、过度阶段三、定常回转阶段 耦合特性:船舶在水平面内作回转运动时会同时产生横摇、纵摇、升沉等运动,以及由于回转过程中阻力增加引起的速降。以上所述可理解为回转运动的耦合,其中以回转横倾与速降最为明显。 Tr r Kδ += 回转性指数K是舵的转首力矩与阻尼力矩系数之比,表征船舶转首性, 应舵指T 是惯性力矩数系数与阻尼力矩系数之比, 由T=I/N可见:参数T是惯性力矩与阻尼力矩之比,T值越大,表示船舶惯性大而阻尼力矩小;反之,T值越小,表示船舶惯性小而阻尼力矩大。 由K=M/N可见:参数K是舵产生的回转力矩与阻尼力矩之比,K值越大,表示舵产生的回转力矩大而阻尼力矩小;反之,K值越小,表示舵产生的回转力矩小而阻尼力矩大。 K值越大,相应回转直径越小,回转性越好.T为小正值时,船舶具有良好的航向稳定性. K表示了回转性,T表示了应舵性和航向稳定性。舵角增加:K、T同时减小;吃水增加:K、T 同时增大;尾倾增加:K、T同时减小;水深变浅:K、T同时减小;船型越肥大:K、T 同时增大。 船舶操纵性设计的基本原则是:给定船的主尺度(即船的惯性),以提供必要和足够的流体动力阻尼及舵效,使之满足设计船舶所要求的回转性、航向稳定性和转首性。通常最常用的办法是改变舵面积,因为舵既有明显的航向稳定作用,又会产生回转力矩。

船舶原理整理资料,名词解释,简答题,武汉理工大学

第一章 船体形状 三个基准面(1)中线面(xoz 面)横剖线图(2)中站面(yoz 面)总剖线图(3) 基平面 (xoy 面)半宽水线图 型线图:用来描述(绘)船体外表面的几何形状。 船体主尺度 船长 L 、船宽(型宽)B 、吃水d 、吃水差t 、 t = dF – dA 、首吃水dF 、尾吃水dA 、平均吃水dM 、dM = (dF + dA )/ 2 } 、型深 D 、干舷 F 、(F = D – d ) 主尺度比 L / B 、B / d 、D / d 、B / D 、L / D 船体的三个主要剖面:设计水线面、中纵剖面、中横剖面 1.水线面系数Cw :船舶的水线面积Aw 与船长L,型宽B 的乘积之比。 2.中横剖面系数Cm :船舶的中横剖面积Am 与型宽B 、吃水d 二者的乘积之比值。 3.方型系数Cb :船舶的排水体积V,与船长L,型宽B 、吃水d 三者的乘积之比值。 4. 棱形系数(纵向)Cp :船舶排水体积V 与中横剖面积Am 、船长L 两者的乘积之比值。 5. 垂向棱形系数 Cvp :船舶排水体积V 与水线面积Aw 、吃水d 两者的乘积之比值。 船型系数的变化区域为:∈( 0 ,1 ] 第二章 船体计算的近似积分法 梯形法则约束条件(限制条件):(1) 等间距 辛氏一法则通项公式 约束条件(限制条件):(1)等间距 (2)等份数为偶数 (纵坐标数为奇数 )2m+1 辛氏二法则 约束条件(限制条件)(1)等间距 (2)等份数为3 3m+1 梯形法:(1)公式简明、直观、易记 ;(2)分割份数较少时和曲率变化较大时误差偏大。 辛氏法:(1)公式较复杂、计算过程多; (2)分割份数较少时和曲率变化较大时误差相对较小。 第三章 浮性 船舶(浮体)的漂浮状态:(1 )正浮(2)横倾(3)纵倾(4)纵横倾 排水量:指船舶在水中所排开的同体积水的重量。 平行沉浮条件:少量装卸货物P ≤ 10 ℅D 每厘米吃水吨数: TPC = 0.01×ρ×Aw {指使船舶吃水垂向(水平)改变1厘米应在船上施加的力(或重量) }{或指使船舶吃水垂向(水平)改变1厘米时,所引起的排水量的改变量 } (1)船型系数曲线 (2)浮性曲线 (3)稳性曲线 (4)邦金曲线 静水力曲线图:表示船舶正浮状态时的浮性要素、初稳性要素和船型系数等与吃水的关系曲线的总称,它是由船舶设计部门绘制,供驾驶员使用的一种重要的船舶资料。 第四章 稳性 稳性:是指船受外力作用离开平衡位置而倾斜,当外力消失后,船能回复到原平衡位置的能力。 稳心:船舶正浮时浮力作用线与微倾后浮力作用线的交点。 稳性的分类:(1)初稳性;(2)大倾角稳性;(3)横稳性;(4)纵稳性;(5)静稳性;(6)动稳性;(7)完整稳性;(8)非完整稳性(破舱稳性) 判断浮体的平衡状态:(1)根据倾斜力矩与稳性力矩的方向来判断;(2)根据重心与稳心的 相对位置来判断 浮态、稳性、初稳心高度、倾角 B L A C w w ?=d B A C m m ?=d V C ??=B L b L A V C m p ?=d A V C w vp ?=b b p vp m w C C C C C C ==, 002n n i i y y A l y =+??=-????∑[]012142...43n n l A y y y y y -=+++++[]0123213332...338n n n l A y y y y y y y --=++++++P D ?= P f P f x = x y = y = 0 ()P P d= cm TPC q ?= m g b g b g GM = z z = z BM z = z r z -+-+-

船舶的操纵性能

船舶的操纵性能(旋回性、冲程、保向性、改向性以及船舶变速运动性能) 船舶驾驶人员必须较好地掌握船舶操纵知识,了解本船的操纵性能以及各种外界条件对本船操纵性能的影响,才能正确操纵船舶;准确控制船舶的运动。往往一艘操纵性能良好的船舶,具有稳定地保持运动状态和迅速准确地改变运动状态的性能。 一、旋回性能是船舶操纵中的重要部分,它包括的因素有偏移或反移量、进距、横距、旋回初径、漂角、转 心、旋回时间、旋回中的降速和横倾等。这些数值是在船舶满载,半载以及空载等不同的状态下实测所得,掌握这些要素,对避让船舶、狭窄区域旋回或掉头等情况下安全操纵船舶有着重要的作用,也是判定船舶是否处于安全操纵范围内的重要参数。偏移或反移量(KICK)是船舶重心向转舵相反一舷横移的距离,满载时其最大值约为船长的1%左右,但船尾的反移量较大,其最大值约为船长的1/10—1/5,可趁利避害的加以运用,如来船已过船首,且可能与船尾有碰撞危险,紧急情况下可向来船一侧满舵利用

反移量避免碰撞(有人落水时向人落水一舷操满舵也是利用该反移量);进距(ADVCNCE)是开始转舵到航向转过任一角度时中心所移动的纵向距离,旋回资料中提供的纵距通常特指转过90度的进距,即最大进距,其值约为旋回初径的0.85—1.0倍,熟练掌握可常帮助我们正确判断船首来船或危险的最晚避让距离;横距(TRANSPER)是开始转舵到航向90度时船舶中心所一定的横向距离,其值约为旋回初径的0.55倍;旋回初径(TACTICAL DIAMETER)是船舶开始转舵到航向180度时重心所移动的横向距离,其值约为3-6倍船长;旋回直径(PINAL IAMETER)是船舶做定常旋回运动时的直径,约为旋回初径的0.9-1.2倍。漂角(DRIPT AUGTE)是船舶旋回中船首与重心G点处旋回圈切线的方向夹角,其值约在3度—15度之间,漂角约大,其旋回性能越好;转心P是旋回圈的曲率中心O到船舶首尾线所做垂线的垂点,该点处的漂角和横移速度为零,转心P约在船首柱后1/3-1/5船长处,因此,旋回中尾部偏外较船首里为大,操船是应特别注意;旋回时间是旋回360度所需要的时间,它与排水量有密切关系,排水

高性能船舶动力定位系统技术分析

高性能船舶动力定位系统技术分析 摘要:对国外一些船舶动态定位控制系统设计方案的控制精度和响应速度控制 问题等进行了分析和研究,提出了相应的改进方案。根据定位控制系统设备情况 的基本配置,分析了系统的基本工作原理,得到了定位控制系统的基本数学模型 和传递函数,并根据控制系统的工作特性提出了解决问题的方法。该方法采用了 控制系统中的神经网络控制算法,代替了原方案中的多级系统控制算法。与改进 方案的控制性能相比,改进方案的控制性能大大提高。 关键词:高性能;船舶;定位系统;技术分析 1 前言 某造船厂为国外某公司承造的多用途工作船具有向钻井平台输送物资、起锚、消防、救生及拖带船舶和钻井平台等作业功能。根据该船设计任务书的要求,该 船必须配置动力自动定位系统,既能克服自动化操船问题,又能解决该船在大风 浪下的安全作业问题。该系统原由国外某公司进行设计,使用表明,其系统的设 计方案基本可行,但尚有改进之处。本文对该系统的基本设计思路进行了分析和 研究,提出了系统的设计改进方案,仿真结果表明该改进方案优于原设计方案, 可供有关人员参考及借鉴。 2 原设计方案 根据DNV规范及船东的要求,设计方提出了本船动力定位系统的设计方案的 基本配置如下: 2.1电力系统 电力系统包括2台2 000 kW的轴带发电机,2台1 360 kW及500 kW的主柴 油发电机,1台200 kW的应急发电机,12屏的主配电板一个,应急配电板一个,电站设有电站管理系统,可实现自动起停机组、自动并车、转移负载、大功率负 载询问、故障报警及处理功能。电力系统为动力定位系统的侧推、方位推等设备 提供驱动动力,为各设备及控制系统提供工作电源。 2.2推进系统 推进系统包括2台主机及齿轮箱、2根轴系及2个可调桨、2台舵机、艏艉侧推及方位推各1个以及相关的辅助设备等。在推进系统中,方位推与艏侧推、艉 侧推与桨及舵、主机与轴带电机之间可互为备用,能够保证推进系统的有效运性,从而确保动力定位系统的功能能够安全可靠地实现。推进系统的各主要设备均通 过通讯线路与动力定位控制系统相联,可由动力定位系统自动控制或人工操控, 实现动力推进功能。 2.3动力定位控制系统 该系统包括动力定位操作台、便携式定位操作板、动力定位系统控制器等设备。能够实现:手动操作、自动转向、自动定位、自动寻迹航行、自动导航和自 动跟踪目标航行等功能。动力定位操纵台:该操纵台为动力定位系统的主要控制 中心,配有显示器及操纵杆等设备。便携式操作板可作为动力定位操作台的备用 设备,其接线盒分别安装驾驶室的前后台、左右两翼及后操作椅上共5个位置。 动力定位系统控制器:该装置为动力定位系统信号采集、控制信息处理中心。本 船采用的动力定位控制处理器将采集到的各种信号进行分析处理后,送到控制模 块进行运算,并将得出的控制指令发送至所控制的推进或报警设备,实现船舶推 进控制及报警等功能。 3 动力定位控制系统设计原理

第一章 船舶操纵性能复习重点

第一章船舶操纵性能 说课笔记 知识与技能掌握要点: 通过学习,掌握船舶的旋回性能。重点对三副岗位值班与船舶操纵知识及能力要求相联系,做到技能在航运船舶工作中能实际运用; 对操纵运动方程与K、T指数能进行定性分析。对于船员职务晋升多项考试具有重要指导作用。并做到工学结合,使船舶操纵知识及能力要求与岗位紧密相联。 对航向稳定性与保向性、变速运动性能能准确理解。通过旋回试验等实训操作,对中、大型商船操纵有感性认识,为下一步深入学习打下基础。 掌握Z形试验与螺旋试验方法。使学生明确用途,以及在新船试航及修船试航中三副的操作要点。 工学结合: 三副值班时,船舶操纵知识及能力要求与本次课的关联; 岗位与船舶操纵知识及能力要求实际应用; 测试冲程选外高桥叠标场仿真场景,突出训练三副角色。

课程教学特色: 理论性较强,注意三校生与普高生的认知能力差别; 充分运用企业提供生产案例和影视资料,使内容贴近航运岗位; KT指数讲解插入本校教师几十年前的理论贡献,增强学生荣誉感; 在重点训练外高桥测速场冲程实验后,运用仿真模拟设备让学生领略世界主要狭水道场景。对学生职业兴趣的培养有意义。 第一节船舶旋回性能 在船舶操纵中,就舵的使用而言,大致可分为小舵角的保向操纵、一般舵角的转向操纵及大舵角的旋回操纵三种,船舶旋回性是船舶操纵中极为重要的一种性能。 一、船舶旋回运动的过程 船舶以一定航速直线航行中,操某一舵角并保持之,船舶将作旋回运动。根据船舶在旋回运动过程中的受力特点及运动状态的不同,可将船舶的旋回运动分为三个阶段,如图1—1所示。 1.第一阶段——转舵阶段 船舶从开始转舵起至转至规定舵角止(一般约8~15s),称为转舵阶段或初始旋回阶段。

船舶操纵性总结

哈尔滨工程大学船舶操纵性总结 1. 船舶操纵性含义:P1 2. 良好的操纵性应具备哪些特性 具有良好操纵性的船舶,能够根据驾驶者的要求,既能方便、稳定地保持航向、航速,又能迅速地改变航向、航速,准确地执行各种机动任务。 3.对于船舶的水平面运动,绘制固定坐标系和运动坐标系 ? 1-1-3表示籍舶操纵运动的参数GS中各运勒参数都为it値) 4. 分析操舵后船舶在水平面运动特点。 5. 漂角B的特性(随时间和沿船长的变化)。 6. 坐标原点在船的重心处时,船舶的运动方程的推导。 7. 作用在在船上的水动力是如何划分的。 8. 粘性水动力方程线性展开式及无因次化。 9. 线性水动力导数的物理意义和几何意义。物理意义:各线性水动力导数

表示船舶在以u=u0 运动的情况下,保持其它参数都不变,只改变某一个运动参数所引起船体所受水动力的改变与此运动参数的比值。 几何意义:各线性水动力导数表示相应于某一变化参数的受力(矩)曲线在原点处的斜率。 10. 常见线性水动力导数的特点。 11. 船舶操纵水平面运动的线性方程组推导及无因次化。 12. 写出MMG 方程中非线性水动力的三种表达式。 13. 首摇响应二阶线性K-T 方程推导。 14. 一阶K、T 方程及K、T 含义,可应用什么操纵性试验测得。 15. 画图说明船舶在作直线航行时(舵角3 =0),若受到某种扰动后, 其重 心运动轨迹的四种可能情况,并说明三种稳定性之间的关系。 16. 影响稳定性的因素有哪些 17. 船舶回转过程的三个阶段及船舶在各个过程运动特点(速度、加速度信 息) 18. 船舶回转运动主要特征参数。 19. 影响定常回转直径的5 个因素是什么 20. 推导船舶定常回转时横倾角的确定公式。 21. 按照操舵规律由线性响应方程求解舶的回转角速度和艏向角。 22. 如何获得船舶的水动力导数 可以通过理论数值计算、经验公式估算和拘束模型的水动力试验三

highspeedship高性能船舶

High speed vessels of semi-displacement type are often equipped with appendages such as trim tabs, stern flaps and wedges to control the trim angle and improve the resistance performance. However, dynamic instability can be occurred if dimensions of those appendages are not suitable for the hull. So it is important to predict effects of appendages on the running attitudes of a vessel and choose proper dimensions of appendages at initial design stage. There are many researchers that calculate running attitudes of high speed vessels in calm water and in waves. Especially, steady states of prismatic planning hulls were theoretically predicted in some previous researches. In this paper, running attitudes of a semi-displacement vessel are predicted by theoretical methods, and model tests are carried out to verify theoretical calculations. Present calculations are based on previous formulas for prismatic planning hulls and developed to be applied to semi-displacement round bilge vessels. High speed model tests for the vessel with various trim tabs are performed in Seoul National University towing tank. Vertical motions in calm water are measured at various Froude numbers, and those are compared with calculation, results. Running attitudes of semi-displacement vessels are significantly changed at high speed and thus have an effect on resistance performance and stability of the vessel. There have been many theoretical approaches about the prediction of running attitudes of high-speed vessels in calm water. Most of them proposed theoretical formulations for the prismatic hard-chine planing hull. In this paper, running attitudes of a semi-displacement round bilge vessel are theoretically predicted and verified by high-speed model tests. Previous calculation methods for hard-chine planing vessels are extended to be applied to semi-displacement round bilge vessels. Force and moment components acting on the vessel are estimated in the present iteration program. Hydrodynamic forces are calculated by 'added mass planing theory', and near-transom correction function is modified to be suitable to a semi-displacement vessel. Next, 'plate pressure distribution method' is proposed as a new hydrodynamic force calculation method. Theoretical pressure model of the 2-dimensional flat plate is distributed on the instantaneous waterplane corresponding to the attitude of the vessel, and hydrodynamic force and moment are estimated by integration of those pressures. Calculations by two methods show good agreements with experimental results. The Effect of Appendages on the Course Keeping Ability of a Semi-Displacement

相关文档
最新文档