冰蓄冷空调培训内容

冰蓄冷空调培训内容
冰蓄冷空调培训内容

技术培训内容确认函

为了满足业主对冰蓄冷中央空调机房操作、维护管理人员的需要,我公司提供全面、完善的人员培训,培训人员能熟练操作设备,了解设备结构、工作原理,并能排除一切常见故障。

实际操作培训内容包括:

1、本工程的流程、系统与设备配置情况。

2、不同运行模式切换时的实现方式以及实际操作维护注意事项。

3、本工程自控系统设备特点、功能、以及操作维护注意事项。

4、其他水泵、冷却塔、换热器等设备的特点以及操作维护。

维护保养注意事项

冰蓄冷制冷空调系统设备及其控制系统在运行质保期结束后。为了今后整个设备能安全顺利地使用下去,我们向贵公司提供一个关于设备保养的计划与范围,以便能早做安排。

(一)冷冻机

冰蓄冷机房配置有水冷冷冻机组_3(其中常规制冷主机1台,双工况主机2台)_台,每年对机组保养内容如下:

A、每月预防性检查

1、检查冷水机组的蒸发器压力。

2、检查冷凝器的压力。

3、检查供油压力。

4、检查集油槽上的两个视镜中的油位。

5、检查停机油箱温度。

6、检查机组运行时油箱温度。

7、将所有数据收集后进行分析机组运行状态。

B、月常规保养

1、压缩机马达

a、检测及收紧所有之马达电源端子

b、检测马达线圈温度传感器欧姆值

c、马达线组之绝缘阻抗测试

2、马达启动控制箱

a、收紧所有之电源端子

b、对马达启动箱除垢

3、润滑系统

a、检查油槽油位是否正常

b、收紧油泵马达电源端子

c、检查及除垢处理

4、控制及保护电路

a、检查及调整导叶马达

b、润滑所有导叶之连杆及传动部分

5、冷凝器及蒸发器

a、检查水及冷媒之温差

6、一般系统检查

a、检测冷媒系统是否有漏

b、检测不正常之噪音,震动及高温

c、检测及报告损坏之表计

d、从视窗检查压缩机油位是否正常

e、运转主机,检查及报告其操作状况

C、年度保养(通常在机组启动前进行)

1、压缩机马达

a、检测及收紧所有之马达电源端子

b、检测马达线圈温度传感器欧姆值

c、马达线组之绝缘阻抗测试

2、马达启动控制箱

a、收紧所有之电源端子

b、检测马达启动器的所有其他装置

c、检测各接触器线路端子

d、对马达起动箱除垢

e、检测马达接线端子温度

f、检测各接触器接点

g、清洁各接触器接点

3、润滑系统

a、更换压缩机润滑油(约9加仑/每年每台)

b、检测油槽油位是否正常(运转中)

c、更换压缩机油过滤器(1个/每年每台)

d、检测油温控制传感器

e、收紧油泵马达电源端子

f、记录马达运转电流

g、检测油泵马达绕组

h、检测马达线圈内阻

I、检测及除垢处理

4、控制及保护电路

a、检测及校正低温传感器

b、检测及调整高压开关

c、检测及校正高压传感器(选择配备)

d、检测及调整油压调节阀

e、检测油压转换器

f、检测及调整Guide Vane步进马达

g、润滑所有Guide Vane之连杆及传动部分

h、检测冷却水及冰水温度传感器

I、检测及调整冷却水及冷冻水流量开关

J、校正及调整主机设定参数

5、冷凝器

a、检测水及冷媒之温差

b、检测冷媒和温度传感器

c、检测冷媒饱和压力传感起器

d、机械和化学清洗冷凝器(含清洗剂约10桶/每年每台)

6、蒸发器

a、检测水及冷媒之温差

b、检测冷媒饱和温度传感器

c、检测及校正冷媒蒸发压力

7、抽气系统

a、检测电磁阀

b、清洁冷凝盘管铝鳍

c、检测马达之绝缘阻抗

d、抽气系统整组清洁除垢

e、检测排气是否正常

f、检测冷媒水份指示器

8、开机运转测试

a、检测免得线圈温度传感器

b、油槽视镜油位是否正常

c、从视镜检测抽气回收马达

d、若有水份将其排除

e、检测不正常之噪音,震动及高温

f、检测及报告损坏之零件

g、检测及报告其操作状况

(二)水泵

冰蓄冷中央空调机房配置有各型号的水泵共__15_台,保养内容如下:

A、每季度进行1次,内容如下:

1、检查水泵有无漏水并处理

2、检查水泵有无异常声响并处理

3、检查水泵整体运行状况,并调整至最佳工作点

B、每年度的保养内容如下:

1、进行每季度的服务项目

2、检测水泵轴承并加专用油脂

3、检测电机轴承并加专用油脂

4、检查水泵联轴器及橡皮软接头

5、检查电机绝缘性能

6、水泵电机轴中心重新校正

7、水泵油漆整修

(三)冷却塔

冰蓄冷机房配置有冷却塔_3台,服务保养内容如下:

A、每季度进行1次,内容如下:

1、检查冷却塔有无漏水并处理;

2、检查风机叶片是否存在磨损变形裂化生锈,保持清洁;

3、检查风机皮带张力并调整;

4、检查并清理塔内积水盘的异物;

5、检查清理外板和百叶板是否变形或污垢;

6、检查补水盘内是否堵塞并清理;

7、检查调整浮球阀进水开度,保持正常;

B、每年度的保养内容如下:

1、进行每季度的服务项目;

2、检测电机轴承并加专用油脂;

3、检查风机轴承状况并加润滑油;

4、检查电机绝缘性能;

5、电机油漆整修;

6、检查填料是否清洁,如必要采用清洗剂进行清洗。

(四)电气与自控系统

冰蓄冷机房配置一套完整的电气与自控系统,服务保养内容如下:

1、检查系统对电源质量(电压、频率)与环境条件(温度、湿度、气压)的要求是否正常;

2、检查系统的就地、远程控制(启停与调节);

3、检查系统的启停时间、温度、水位、压力、流量、冷热量、运行工况等设置;

4、检查系统的温度、压力、阀开度、流量、水位、时间、电流、电压等信号(数

字或模拟量)的采集、变送及处理;

5、检查温度、电动机转速等的调节过程;

6、检查系统控制与调节信号的输出:启停主机、启停水泵、电机调速(15kW 以上为宜),启停阀门,阀开度调节等;

7、检查系统的保护:过电压、欠电压、瞬时\反时限过电流(短路、接地)、缺相

(零序)、温度、压力、水位、湿度、流量、失电自复位\失电记忆等保护;

8、检查系统的报警信号输出与信息提示;

9、检查PLC的输入与输出信号是否正常;

10、检查变频器的启动与运行;

11、检查控制柜内线性电源、变压器等辅助器件的工作;

12、自控系统的故障与排除:传感器与变送器、PLC及I/O模块、变频器、开

关电器、执行器(电动阀等)、上位机、触摸屏、主令电器、熔断器等;

13、对自动控制软件的维护与升级(如有必要);

14、每年供冷或采暖换季之前试运行所有工况;

(五)蓄冰装置及乙二醇系统(蓄冰装置规格8100 RTH数量_6 台__)

1、检查盘管有否破裂渗漏;

2、检查蓄冰装置是否有腐蚀和破损;

3、每年对乙二醇溶液进行检测,包括PH值、浓度、粘度等参数;

4、若乙二醇溶液浓度不够或者溶液缺少则计算乙二醇添加量,进行添加(费用另

计);

5、对盘管内的水质进行检查,循环过滤,对积累在盘管表面的灰尘进行处理。

6、检查与系统确保系统运行正常的相关设备状态:定压装置、阀门启闭、调节灵敏度、传感器精确度等。

7、检查槽体保温、结露情况,美化槽体外外观进行。

8、空调运行季节结束的维护保养:清洁盘管,扫除污垢,关闭阀门,顶盖添加玻璃密封胶,底板生锈处补锌等等。

(六)板式换热器

冰蓄冷机房配置有板式换热器_2 _台,服务保养内容如下:

1、随时检查板式换热器是否有冷凝水并作相应处理;

2、定期检查板式换热器的压力降是否正常;

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

冰蓄冷中央空调系统

☆冰蓄冷中央空调系统☆ 冰蓄冷概念冰蓄冷就是利用夜间谷期低价电力,满负荷运行制冰主机,使水发生相变制成冰,存储在专用的蓄冰槽中,然后在白天用电高峰时段融冰供冷。冰蓄冷系统与常规空调系统结合构成冰蓄冷空调系统,是电力系统及用户削峰填谷、平衡用电负荷的最有效方法。 冰蓄冷空调系统工作原理图 冰蓄冷空调系统工作模式 运行模式冷却泵乙二醇泵循环泵V1阀V2阀V3阀V4阀 制冷机蓄冰开开关开关开关 冷机蓄冰又供冷开开开开关调节调节 蓄冰槽单独供冷关开开调节调节关开 制冷机单独供冷开开开关开关开 冷机和冰槽联合供冷开开开调节调节关开 上述工作模式的相互切换是由共盈公司开发的冰蓄冷计算机控制系统自动完成的。 冰蓄冷空调系统组成由双工况制冷主机、储冰盘管及蓄冰槽、乙二醇溶液、乙二醇水泵、板式换热器、共盈冰蓄冷自动控制系统(包括流量传感器、温度传感器、电磁阀、电脑、控制软件等)、常规空调配件等部件组成。 冰蓄冷空调的优点 ◆节省初投资:新建冰蓄冷空调可节省主机、附属设备及配电设备初投资,包括变压器、配电柜等一次电力投资费用,但冰蓄冷专用设备的投资较大。 ◆节省运行电费:由于充分利用了廉价的电力低谷期满负荷蓄冰蓄冷,供高峰期融冰供冷,所以只要峰谷电价比达到3∶1以上,即可在全年节省电费达到30%以上。 ◆节省基本电费:冰蓄冷空调系统可减少主机和循环水泵装机容量和功率达30%~50%,平衡用电负荷,降低配电容量,由此每月可节省18元/kV A的基本电费,数量相当可观。 ◆系统安全可靠:整套系统采用智能控制,实行电脑监控,无须专人值守,管理简单可靠。蓄冷系统作为相对独立的冷源,增加了集中空调系统的运行可靠性。 ◆增大供冷能力:常规空调系统配上冰蓄冷设备可以提高30%-50%的供冷能力。 冰蓄冷自控系统简介冰蓄冷空调系统比较复杂,不可能靠手动操作控制系统运行,必须借助共盈蓄冷自控系统,根据室外温度、天气走势、历史记录、电价政策以及各种传感器件信息,自动选择主机优先、融冰优先模式或全量融冰模式,自动切换制冰、制冷工况与融冰、供冷模式,自动控制制冷主机和其它设备的启停,监视记录统计各设备工作状况与运行参数,自动诊断系统故障,使系统在任何负荷情况下都能达到用户要求,保证空调系统始终处于最经济的运行状态,提高系统的自动化水平,提高系统的管理效率,实乃冰蓄冷空调系统的关键部分。 冰蓄冷与水蓄冷比较

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点 和缺点 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的

运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点: ①系统异常复杂、庞大。冰蓄冷空调除了通常的制冷系统和空调设备外,还配备复杂的蓄冰设备,蓄冰设备包括蓄冷槽,乙二醇溶液泵、制冰泵、蓄冷介质

冰蓄冷设计

东华大学环境学院冰蓄冷设计 姓名:何燕娜 班级:建筑1202 学号: 121430205 2014年12月

1.1 项目概述 本项目为浙江某办公楼建设项目的双工况冰蓄冷系统应用。 1.2 冰蓄冷系统在本项目中的应用 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 本文就对冰蓄冷系统设计进行详细阐述,并和传统的风冷系统进行初投资和运行成本的综合比较。 1.3 冰蓄冷系统的工作模式 冰蓄冷系统的工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需要在几种规定的方式下运行,以满足供冷负荷的要求,常用的工作模式有如下几种: (1)机组制冰模式

在此种工作模式下,通过浓度为25%的乙二醇溶液的循环,在蓄冰装置中制冰。此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇溶液达到最低出口温度时制冷机关闭。此种工作模式的示意图如图1-2所示。 图1-2 机组制冰工作模式示意图 (2)制冰同时供冷模式 当制冰期间存在冷负荷时,用于制冷的一部分低温乙二醇溶液被分送至冷负荷以满足供冷需要,乙二醇溶液分送量取决于空调水回路的设定温度。一般情况下,这部分的供冷负荷不宜过大,因为这部分冷负荷的制冷量是制冷机组在制冰工况下运行提供的。蓄冷时供冷在能耗及制冷机组容量上是不经济合理的,因此,只要此冷负荷有合适的制冷机组可选用,就应设置基载制冷机组专供这部分冷负荷,该工作模式示意图如图1-3所示。 图1-3 制冰同时供冷模式示意图 (3)单制冷机供冷模式: 在此种工作模式下,制冷机满足空调全部冷负荷需求。出口处的乙二醇溶液不再经过蓄冰装置,而直接流至负荷端设定温度有机组维持。该工作模式示意图如图1-4所示。

浅谈冰蓄冷空调与常规中央空调的优缺点

浅谈冰蓄冷空调与常规中央空调的优缺点 发表时间:2016-08-18T10:15:48.877Z 来源:《低碳地产》2015年第2期作者:韩广玉 [导读] 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置。 深圳机械院建筑设计有限公司广东深圳 518000 本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。 现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。 1)冰蓄冷中央空调系统特点 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。 该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。 中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。 冰蓄冷空调从其原理和实践中可以看出它有如下特点 优点: ①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。 ②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。 ③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。 ④使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 ⑤可以为较小的负荷(如只使用个别办公室)融冰定量供冷,而无需开主机。 ⑥在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况,运行更合理,费用节约明显。 ⑦具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现空调不能使用的状况。 ⑧制冷温度低而稳定,空调效果佳,提高大楼的舒适性和品位。 ⑨有低温冷源制冷速度快,上班前启动时间短。上班前启动时间越长,则空调无效运行越多,无谓的浪费越大。 ⑩作为驱动能源,清洁、环保、稳定、简单可靠,且峰谷电差价在不久的将来势必更优惠(周边省份在去年均已大幅优惠,国外的峰谷差更大)。 对于大型多建筑区域供冷,可以低温供水,降低送水能耗、减少管网投资;同时与每一建筑一个供冷站的形式比可以节约投资、减少管理费用、减少机房面积。 可以为末端提供低温冷冻水,降低末端的投资;加强除湿能力,大幅提高空调舒适性;如果采用低温送风系统,更是可以节约末端的风机能耗、提高空调品质、减少风管的尺寸和投资。 空调系统智能化程度高,可以实现系统的全自动运行,而且具备与大楼的BAS接口,是目前世界上最先进的空调系统。 不足之处: ①如果主机和蓄冰装置等设备均布置于冷冻机房内,蓄冰装置需要占用一定的空间。 ②机房设备投资比常规水冷电制冷和溴化锂机组系统稍高。 ③冰蓄冷只能夏天供冷,需要供热系统。(可以采用热网换热采暖,热网容量远低于溴化锂机组所需,只有50%左右容量)2)常规电制冷中央空调系统特点 是目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: ①系统简单,占地比其他形式的稍小。

冰蓄冷中央空调技术原理及经济性分析

冰蓄冷中央空调技术原理及经济性分析 江苏安厦工程项目管理有限公司□卢义生 摘要:由于冰蓄冷中央空调系统具有节能环保等诸多优点,近几年在我国得到了迅速发展。以滁州第一人民医院为例,通过冰蓄冷中央空调系统与常规中央空调系统的经济性分析对比,可以看出冰蓄冷中央空调系统在实际应用中的优势。 关键词:冰蓄冷空调系统常规空调系统经济性分析 国外利用机械制冷机的蓄能空调最早出现在二十世纪三十年代,但随着机械制造业的进步,蓄能技术的发展很快停滞下来。直到二十世纪八十年代初期,蓄能空调在美国、日本等发达国家再次得到研究推广。到九十年代中后期,美国、日本、欧洲等国家和我国台湾地区的蓄能空调系统已得到广泛的应用,并取得了良好的经济效益。我国于九十年代中期正式引入冰蓄冷空调系统,近年来国家及地方电力部门相继制定了峰谷电价政策及优惠措施以促进冰蓄冷空调的发展。2000年,国家电力公司国电财[2000]114号文件明确要求加大峰谷电价推广力度,为此,全国多个省市纷纷出台了分时电价政策,一般低谷电价只相当于高峰电价的1/2甚至1/5,而且有取消电力增容费、电贴费等不同程度的优惠,在政策上支持冰蓄冷空调的发展。近两年来,随着我国节能减排政策的不断推广,冰蓄冷空调技术得到了迅猛发展。中国建筑设计研究院机电专业设计研究院总工程师、北京制冷学会常务理事宋孝春表示:“冰蓄冷空调系统是人类在面对能源危机时优化资源配置、保护生态环境的一项技术革新,能产生良好的社会效应和经济效益……。我国冰蓄冷空调市场已走向成熟,全国范围内,近两年的工程几乎等于前十年的总和。未来一段时间内,这个数字仍以几何级数字向上递增……” 1冰蓄冷技术介绍 1.1冰蓄冷系统原理 冰蓄冷中央空调是在夜间利用制冷主机制冰,将冷量以冰的形式蓄存起来,然后在白天根据空调负荷要求释放这些冷量,这样在电力低谷段蓄冰,在用电高峰时期就可以少开甚至不开主机。这样就可以将电网高峰时间的空调用电量转移至电网低谷时使用,从而利用峰谷电价政策,达到为用户节约电费的目的。 在一般大楼中,空调系统用电量占总耗电量的35%~65%,而制冷主机的电耗在空调系统耗电量中又占65%~75%。在常规空调设计中,冷水主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在大部分情况下都处于低效率的部分负荷状态运行,设备利用率也低,投资效益低。

冰蓄冷设计说明书

1.1上级批文详见总论部分; 1.2甲方提供的设计任务书; 1.3建筑专业提出的平面图和剖面图; 1.4室外计算参数(江苏地区) 夏季空调计算干球温度34.1℃ 夏季空调计算日平均温度31℃ 夏季空调计算湿球温度28.6℃ 夏季通风计算干球温度32℃ 夏季空调计算相对湿度69 % 夏季大气压力100.391Kpa 夏季平均风速 3.3m/s 冬季空调计算干球温度-12℃ 冬季通风计算干球温度-4℃ 冬季空调计算相对湿度74% 冬季大气压力102.524 Kpa 冬季平均风速 3.3 m/s 1.6国家主要规范和行业标准 (1)《采暖通风与空气调节设计规范》GB50019-2003; (2)《高层民用建筑设计防火规范》GB50045-95(2001版); (3)《民用建筑热工设计规范》GB50176-93; (4) 全国民用建筑工程设计技术措施《暖通空调·动力》; (5) 《民用建筑隔声设计规范》GBJ118 2 设计范围 本工程总建筑面积为120000平方米 设计范围为采暖、通风、空调、防排烟及冷热源设计。冷冻机房冷却水系统由给排水专业设计。 3 设计原则 满足国家及行业有关规范﹑规定的要求,利用国内外先进的空调技术及设备,创建健康舒适的室内空气品质及环境。

4.3空调系统 经技术﹑经济综合比较及专家组建议,空调方案确定为:独立新风空调系统,即新风机组加辐射冷吊顶。辐射吊顶已被美国能源部列为二十一世纪15项最节能,最有前途的空调技术之一,其突出的优点——更加舒适,更加节能,更加安静,使其成为目前欧美各国首选的空调末端装置,辐射吊顶、全热交换器和低温送风新风系统组成的独立新风系统,已经成为国际公认的最先进的空调系统。4.3.1 首层∽八层及地下一层南区各功能房间 采用独立新风空调系统(DOAS)。新风机组除了承担新风负荷外,还承担室内全部潜热和部分显热负荷,室内剩余的显热负荷由辐射冷吊顶承担。 新风机组选用专用DGKR08型低温送风新风机组,设置在专用的新风机房内,每台机组风量约为7000m3/h-8000m3/h。机组进水温度低于3℃,出水温度为辐射冷吊顶的进水温度(露点温度加1~2℃),由室内露点温度控制,新风机组 出风温度低于7℃。该机组除了具有普通空调机组具有的冷却﹑干燥﹑加热及加湿功能外,还具备有:(1)承担其全部新风负荷,室内全部潜热和部分显热; (2)机组内配置有板式全热交换器,回收焓效率大于50%,温度效率70% 以上;(3)机组内配置驻极静电过滤器,计数效率为99.9%可备光催化材料杀灭,空气阻力小于50Pa。 空调房间冬季加湿采用高品质的干蒸汽加湿,汽源由地下一层锅炉房引来。 新风系统按楼层分南﹑北两个系统设置,以利调节。新风管沿走道吊顶敷设,在进入每个房间的支管上设置E型定风量调节器,送风口采用大诱导比风口下送。排风通过每个房间侧墙上设置的排风口,通过走道吊顶,进入新风机组全热交换器释放能量后排入大气。 辐射板采用国产辐射板。因为它较进口辐射板热阻小,辐射冷/热量大,接头先进,价格便宜等优点。辐射板型号选用600×600规格板,颜色的选用与排版形式随装修进行。 4.3.2 餐厅及厨房。 由于餐厅空调负荷变化大,湿负荷大,空调运行时间短,层高较高等特点。故餐厅单独设置空调系统,空调形式采用独立的低温送风新风系统,送风口采用大诱导比风口下送,排风口为单层百叶风口,通过排风管进入新风机组全热交换器释放能量后排入大气。新风机组选用专用DGKR15型低温送风新风机组,设置在专用的新风机房内,机组风量约为15000m3/h。 厨房采用直流空调系统(冬季加热夏季降温),厨房排风量暂按40次/时,送风量为80% 排风量,其施工图设计待厨房设备确定后进行。 4.3.3 电话机房及计算机主机房 为了保证电话机房、消防值班室及计算机主机房值班空调,另分别设置一套VRV空调系统,室外机设置在屋顶,室内机采用四面吹出式,设置在吊顶上。 4.4空调系统冷源 本工程空调面积为23500m2,预留空调面积5500m2,共计空调面积29000m2。空调冷负荷为3351kW,折算为冷指标为115.56w/m2。空调热负荷为2595.5kW,算为冷指标为89.5w/m2。

外文翻译--PLC在冰蓄冷中央空调系统控制中的应用

PLC in the ice storage central air-conditioning system of control 1 Introduction In PLC in 30 years which developed, it passes through develops unceasingly, already could unify simulates I/O, the network corresponds as well as uses new programming standard like IEC 61131-3. However, engineers only must use digital I/O and few simulations I/O number as well as simple programming skill on potential 80% industrial application. PLC has been widely used in all industrial sectors. According to "The United States market information" World PLC and software market report, in 1995 the global software PLC and its economies of scale of about 5 billion US dollars [5]. As electronic technology and the development of computer technology, Because uses traditional the tool to be possible to solve 80% industrial application, like this intensely needs to have low cost simple PLC; Thus promoted the low cost miniature PLC growth, it has the useful trapezoidal logical programming digital I/O. However, this has also created the discontinuity in the control technology, on the one hand 80% application need to use the simple low cost controller, but on the other hand other 20% application then have surpassed the function which the tradition control system can provide. Engineer is developing these 20% application to need to have the higher circulation speed, the senior control algorithm, the more simulations function as well as can well and the enterprise network integration. In 80 and the 90's, these must develop "20% application" engineers had considered uses PC in the industry control. PC provides the software function may carry out the senior task, provides the rich programming and the user environment, and the PC COTS part enables control engineer the technology which develops unceasingly to use in other applications. These technologies including floating point processor; High speed I/O main line, like PCI and ethernet; Fixed data memory; software development kit. Moreover PC also can provide the incomparable flexibility, highly effective software as well as senior low cost hardware. Ice thermal storage air conditioning is the central power grid could be redundant-night ice electricity in the form of cold storage, in the daytime peak hours

冰蓄冷空调原理

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、 槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

冰雪世界会议中心冰蓄冷空调设计

冰雪世界会议中心冰蓄冷空调设计 工程概况 冰雪世界会议中心位于北京市潮白河畔,为滑雪馆的配套设施,其主体建筑在滑雪馆的雪道正下方,总建筑面积为26700平方米。主要由客房及群房两部分组成,客房面积为13679平方米;群房的功能有会议、餐厅、厨房、多功能厅、体检中心、设备用房等,面积为13021平方米。地下二层,地上十层,建筑高度为43.35米。图1为该会议中心的正立面图。原滑雪馆已于2005年已建成,多种原因使得该滑雪馆制冷机未设置备用机组,此次会议中心制冷系统的设计需要考虑到为滑雪馆制冷系统提供备用的可能。 设计基本数据 电价政策及电价结构 冰蓄冷空调系统对电网移峰的意义在此不再赘述,影响冰蓄冷项目经济性的一个重要原因,是当地的电价政策及电价结构。项目所在地北京市顺义区的峰谷电时段及相应商业用电 电价如表1:

从表1可看出,尖峰电价与低谷电价的比为4:1,高峰电价与低谷电价的比为3.83:1,这对该建筑采用冰蓄冷空调系统提供了很好的电价基础。 设计日逐时冷负荷 经逐时冷负荷计算,设计日总冷负荷为36423kW,最大小时冷负荷(峰值)为3400kW,作为宾馆,其夜间也有一部分冷负荷。设计日的冷负荷曲线见图2。 对照表1和图2,可以看出,该建筑在电价的尖峰和高峰时段逐时冷负荷较大,在平电及低谷电时段有较低的连续的负荷,其负荷特点决定了该系统设置基载主机更为合理。 冰蓄冷系统设计 概述 冰蓄冷系统的设计应综合考虑多方面的因素,如建筑的规模、使用性质、设计日的冷负荷曲线以及所能采用的蓄冷装置的特性等等。建筑有可能提供的使用空间对蓄冷装置的选择有很大的限制。就本建筑而言,采用导热塑料(聚乙烯)蓄冰盘管,该盘管一般做成整体式的 蓄冰桶,为内融冰方式。 蓄冷系统的确定及主要设备 该建筑采用部分蓄冷的方式,在电网的尖峰及高峰时段,蓄冷设备提供部分空调负荷。双工况主机位于蓄冰设备的上游,为串联方式。同时考虑到连续空调负荷的比例设置基载主机一台。从系统运行的安全性及经济性的角度出发,设置了板式换热器,由乙二醇换取冷冻水(供回水温度为7℃/12℃)向空调系统供冷。蓄冷系统流程见图3。表2是蓄冷系统的主要 设备。

冰蓄冷空调的原理

冰蓄冷空调的原理及应用说明 阅读: 6146发布时间: 2009年 07月 14日 1. 冰蓄冷空调系统的原理 冰蓄冷空调系统的原理即是:选择电力离峰时段(电费较低)啓动压缩机运转,冷却冰水制冰,将压缩机的冷却能量,以冰的形态(潜热)储存起来,等到白天尖峰电力时段(电费较高)需使用空调(冰水),而又不适宜运转冷气机组的时间,即可让夜间所储存的冰溶化,吸收空调冰水的热量,达到冰水冷却的效果,如此即可将白天尖峰时段的冷气用电需量,转移至夜间离峰时段。 冰蓄冷空调系统流程图

2. 冰蓄冷空调应用说明 冰蓄冷空调系统于美、日等国己发展使用30年以上,即使在台湾也已发展25年之久,其对于电力电网的波峰谷平衡调整,及投资设置者的电费回收效益,已是明显且成熟的技术。 基于空调系统的耗电,约占商业大楼用电的40%~50%,且集中于夏天,对于尖峰电力的需求造成很大的负担,因此发展冰蓄冷空调系统,除了符合国家政策需求外,其另具有下述

的商业效益优点: 2.1.转移尖峰时间耗电量 压缩机利用夜间或离峰时间,转移白天(尖峰时间)耗电量。具有平衡电力负载功能,符合国家削峰填谷的用电政策。 2.2.节约基本电费及外线补偿费(增容费) 利用非空调设备的契约电力容量(照明、电梯等),在离峰电力时段移转给储冰系统使用,如此可降低契约电力容量,节约基本电费。另因电力设备使用时段措开,因此可将受电设备容量降低,包括:无熔丝开关、电磁开关、管线、变压器等设备,及施工费用均可减少(各种设备电力、设备容量、设备费用、电力申请费用、基本电费和施工费用等,全部降低约20%)。 2.3.节约流动电费 透过使用二段式和三段式时间电价,享受波峰谷电费差价措施。 2.4.提升机组运转效率 传统空调系统,冰水主机容量选定都是以尖峰负荷为依据,但是实际上尖峰负荷全年不超过60天,主机绝大多数时间是在部份负荷下运转,在春天和秋天时,负荷更可能低至50%以下,采用储冰空调系统,主机满载运转至储冰完成,机组完全在100%容量下运转,避免卸载运转时的效率损失(传统机组当容量卸载至50%时,其耗电量仍高达75%)。 2.5.具扩充能力 不增加设备的情况下,在空调使用时段时,只要机组辅助运转,即可立即增加空调能力。 2.6.低温的冰水供应 可提供1℃到5℃冰水,供冷藏、低温除湿及制程冷却系统使用。同时在相同室温条件

冰蓄冷中央空调系统分析报告

冰蓄冷中央空调系统分 析报告 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

冰蓄冷中央空调系统分析报告 清华大学建筑设计研究院张菁华 清华同方股份有限公司节能蓄能事业部张希春摘要以某博物馆蓄冰空调系统设计为例,详细分析了该系统的 经济性,并阐述了冰蓄冷空调系统的社会性; 关键词冰蓄冷空调系统常规空调系统投资回收期 Analyticalreportingoficestorgeair- conditioningsystem Byzhangjinghuaandzhangxichun Abstract Introduceicestorgeair- conditioningsystemdesignbywayofamuseum,alsoanalyseitsecon omicsandsociality Keywords icestorgeair-conditioningsystem,usualair- conditioningsystem,periodofinvestmentrecovery 我国建筑用能已达全社会能源消费量的27.6%,其中空调制冷耗电量占电网高峰负荷的1/3左右。蓄能空调顺势而生,电力部门也积极推行峰谷分时电价,在政策上扶植蓄能空调的应用与推广。 蓄冷技术是一种投资少、见效快的调荷措施,目前已成为许多经济发达国家积极推广的一项促进能源、经济和环境协调发展的、实用的系统节能技术。蓄冰技术的推广对于提高我国能源利用水平、促进经济发展将会具有积极的影响。 一、蓄冰系统设计 1、案例工程简介 工程名称:某省博物馆冰蓄冷中央空调系统 建筑面积:10万m2左右

相关文档
最新文档